private INeuralModel Init4InputsNeuralModel() { var model = new NeuralModelBase(); model.defaultWeightInitializer = () => GARandomManager.NextFloat(-1, 1);; model.WeightConstraints = new Tuple <float, float>(-50f, 50f); var layers = new List <Neuron[]>() { model.AddInputNeurons(CartPoleAgent.nbOfInputs).ToArray(), model.AddOutputNeurons( 1, ActivationFunctions.TanH ).ToArray(), }; model.ConnectLayers(layers); var outputNeuron = layers.Last().Last(); model.AddConnection(outputNeuron.InnovationNb, outputNeuron.InnovationNb); return(model); }
private INeuralModel InitModel() { var model = new NeuralModelBase(); model.defaultWeightInitializer = () => GARandomManager.NextFloat(-1, 1); model.WeightConstraints = new Tuple <float, float>(-5, 5); var bias = model.AddBiasNeuron(); var layers = new[] { model.AddInputNeurons(1).ToArray(), model.AddNeurons( sampleNeuron: new Neuron(-1, ActivationFunctions.Gaussian), count: 1 ).ToArray(), model.AddOutputNeurons(1, ActivationFunctions.Sigmoid).ToArray() }; model.ConnectBias(bias, layers.Skip(1)); model.ConnectLayers(layers); // Adding RNN //foreach (var neuron in layers[1]) //{ // var mem = model.AddNeurons( // sampleNeuron: new MemoryNeuron(-1, neuron.InnovationNb), // count: 1); // model.AddConnection(mem[0].InnovationNb, neuron.InnovationNb); //} // Addin LSTM var input = layers.First().First(); var output = layers[1].First(); var a = new[] { 1, 2, 3 }; a.Where(x => x == 0) .GroupBy(x => x) .ToArray(); model.AddLSTM(out var lstmIn, out var lstmOut, biasNeuron: bias); model.AddConnection(input, lstmIn); model.AddConnection(lstmOut, output); return(model); }
public static void AddLSTM( this NeuralModelBase model, out Neuron input, out Neuron output, BiasNeuron biasNeuron = null, WeightInitializer weightInitializer = null, string groupName = "LSTM") { var concatNeur = model.AddNeuron( sampleNeuron: new Neuron(-1, null) ); // Multiply Gate var sigmoid1 = model.AddNeuron( sampleNeuron: new Neuron(-1, ActivationFunctions.Sigmoid) ); model.AddConnection(concatNeur, sigmoid1, weightInitializer) .isTransferConnection = true; var multiplyGate = model.AddNeuron( sampleNeuron: new Neuron(-1, null) { ValueCollector = new MultValueCollector() } ); model.AddConnection(sigmoid1, multiplyGate, weightInitializer); // Addition gate var sigmoid2 = model.AddNeuron( sampleNeuron: new Neuron(-1, ActivationFunctions.Sigmoid) ); model.AddConnection(concatNeur, sigmoid2, weightInitializer) .isTransferConnection = true; var tanh = model.AddNeuron( sampleNeuron: new Neuron(-1, ActivationFunctions.TanH) ); model.AddConnection(concatNeur, tanh, weightInitializer) .isTransferConnection = true; var sigmoidAndTanhMultGate = model.AddNeuron( sampleNeuron: new Neuron(-1, null) { ValueCollector = new MultValueCollector() } ); model.AddConnection(sigmoid2, sigmoidAndTanhMultGate, weightInitializer); model.AddConnection(tanh, sigmoidAndTanhMultGate, weightInitializer); var additionGate = model.AddNeuron(new Neuron(-1, null)); model.AddConnection(multiplyGate, additionGate, weightInitializer) .isTransferConnection = true; model.AddConnection(sigmoidAndTanhMultGate, additionGate, weightInitializer) .isTransferConnection = true; // Tanh gate var sigmoid3 = model.AddNeuron( sampleNeuron: new Neuron(-1, ActivationFunctions.Sigmoid) ); model.AddConnection(concatNeur, sigmoid3, weightInitializer) .isTransferConnection = true; var finalMult = model.AddNeuron( sampleNeuron: new Neuron(-1, null) { ValueCollector = new MultValueCollector() } ); var tanhGate = model.AddNeuron( sampleNeuron: new Neuron(-1, ActivationFunctions.TanH) ); model.AddConnection(additionGate, tanhGate, weightInitializer) .isTransferConnection = true; model.AddConnection(sigmoid3, finalMult, weightInitializer); model.AddConnection(tanhGate, finalMult, weightInitializer) .isTransferConnection = true; // Adding memory neurons var finalMultMem = model.AddNeuron( sampleNeuron: new MemoryNeuron(-1, finalMult.InnovationNb) ); model.AddConnection(finalMultMem, concatNeur, weightInitializer) .isTransferConnection = true; var cellStateMem = model.AddNeuron( sampleNeuron: new MemoryNeuron(-1, additionGate.InnovationNb) ); model.AddConnection(cellStateMem, multiplyGate, weightInitializer) .isTransferConnection = true; // Connecting bias if (biasNeuron != null) { model.AddConnection(biasNeuron, sigmoid1); model.AddConnection(biasNeuron, sigmoid2); model.AddConnection(biasNeuron, tanh); model.AddConnection(biasNeuron, sigmoid3); } // Assign neuron group concatNeur.group = groupName; sigmoid1.group = groupName; sigmoid2.group = groupName; sigmoid3.group = groupName; tanh.group = groupName; additionGate.group = groupName; multiplyGate.group = groupName; tanhGate.group = groupName; sigmoidAndTanhMultGate.group = groupName; finalMult.group = groupName; cellStateMem.group = groupName; finalMultMem.group = groupName; // Assigning out's input = concatNeur; output = finalMult; }