public void NaivebayersLanguageTest() { var netMLString = "create classification naivebayers linearbayeskernel"; NetMLCreator netMLCreator = new NetMLCreator(netMLString); DataSetLoader dataSetLoader = new DataSetLoader(); var data = dataSetLoader.SelectAnimals(); netMLCreator.Create(data); netMLCreator.Train(); var testData = dataSetLoader.SelectAnimals(); var trueCounter = 0; var counter = 0; foreach (var item in testData) { var outputValue = netMLCreator.Classify(item.Item1); if (outputValue == item.Item2) { trueCounter++; } Debug.WriteLine(string.Format("Value {0} - Predicted {1} = {2}", item.Item2, outputValue, (outputValue == item.Item2) ? "true" : "false")); counter++; } Debug.WriteLine(string.Format("Data {0} - True {1} Verhältnis: {2}", counter.ToString(), trueCounter.ToString(), (Convert.ToDouble(trueCounter) / Convert.ToDouble(counter)).ToString())); }
public void BackprobpagationLanguageTest() { var netMLString = "create classification backpropagation inputneurons = 16 outputneurons = 1 firsthiddenlayerneurons = 16 evolutions = 100 learningrate = 0.1 "; NetMLParser netMLParser = new NetMLParser(); var result = netMLParser.Parse(netMLString); NetMLCreator netMLCreator = new NetMLCreator(result); DataSetLoader dataSetLoader = new DataSetLoader(); var data = dataSetLoader.SelectAnimals(); netMLCreator.Create(data); netMLCreator.Train(); var testData = dataSetLoader.SelectAnimals(); var trueCounter = 0; var counter = 0; foreach (var item in testData) { var outputValue = netMLCreator.Classify(item.Item1); if (outputValue == item.Item2) { trueCounter++; } Debug.WriteLine(string.Format("Value {0} - Predicted {1} = {2}", item.Item2, outputValue, (outputValue == item.Item2) ? "true" : "false")); counter++; } Debug.WriteLine(string.Format("Data {0} - True {1} Verhältnis: {2}", counter.ToString(), trueCounter.ToString(), (Convert.ToDouble(trueCounter) / Convert.ToDouble(counter)).ToString())); }