示例#1
0
        static void Main(string[] args)
        {
            // Based on https://github.com/gsvgit/Brahma.FSharp/tree/master/Source/BlackScholes
            const int   optionCount          = 1000000;
            const float riskFreeInterestRate = 0.02f;
            const float volatility           = 0.30f;
            const float A1 = 0.31938153f;
            const float A2 = -0.356563782f;
            const float A3 = 1.781477937f;
            const float A4 = -1.821255978f;
            const float A5 = 1.330274429f;

            // Helper functions
            Expression <Func <float, float> > k   = x => 1.0f / (1.0f + 0.2316419f * FMath.Abs(x));
            Expression <Func <float, float> > cnd = x =>
                                                    1.0f - 1.0f / FMath.Sqrt(2.0f * FMath.PI)
                                                    * FMath.Exp(-(FMath.Abs(x)) * (FMath.Abs(x)) / 2.0f) * (A1 * k.Invoke(x) + A2 * k.Invoke(x) * k.Invoke(x) + A3 * FMath.Pow(k.Invoke(x), 3)
                                                                                                            + A4 * FMath.Pow(k.Invoke(x), 4) + A5 * FMath.Pow(k.Invoke(x), 4));

            Expression <Func <float, float> > cumulativeNormalDistribution = x => (x < 0.0f) ? 1.0f - cnd.Invoke(x) : cnd.Invoke(x);

            Expression <Func <float, float, float, float> > d1 =
                (stockPrice, strikePrice, timeToExpirationYears) =>
                FMath.Log(stockPrice / strikePrice) + (riskFreeInterestRate + volatility * volatility / 2.0f) * timeToExpirationYears
                / (volatility * FMath.Sqrt(timeToExpirationYears));

            Expression <Func <float, float, float> > d2 =
                (_d1, timeToExpirationYears) => _d1 - volatility * FMath.Sqrt(timeToExpirationYears);

            Expression <Func <float, float, float, float, float, float> > blackScholesCallOption =
                (_d1, _d2, stockPrice, strikePrice, timeToExpirationYears) =>
                stockPrice *cumulativeNormalDistribution.Invoke(_d1) -
                strikePrice * FMath.Exp(-(riskFreeInterestRate) * timeToExpirationYears) * cumulativeNormalDistribution.Invoke(_d2);

            Expression <Func <float, float, float, float, float, float> > blackScholesPutOption =
                (_d1, _d2, stockPrice, strikePrice, timeToExpirationYears) =>
                strikePrice *FMath.Exp(-riskFreeInterestRate *timeToExpirationYears) *
                cumulativeNormalDistribution.Invoke(-_d2) - stockPrice * cumulativeNormalDistribution.Invoke(-_d1);

            // Init data
            var random = new System.Random();
            var data   = Enumerable.Range(1, optionCount).Select(_ => new InputData
            {
                Stock  = random.Random(5.0f, 30.0f),
                Strike = random.Random(1.0f, 100.0f),
                Times  = random.Random(0.25f, 10.0f)
            }).ToArray();

            // Main code
            using (GpuContext context = new GpuContext())
            {
                using (var _data = context.CreateGpuArray(data))
                {
                    var query =
                        (from d in _data.AsGpuQueryExpr()
                         let _d1 = d1.Invoke(d.Stock, d.Strike, d.Times)
                                   let _d2 = d2.Invoke(_d1, d.Times)
                                             select new OutPutData {
                        Call = blackScholesCallOption.Invoke(_d1, _d2, d.Stock, d.Strike, d.Times),
                        Put = blackScholesPutOption.Invoke(_d1, _d2, d.Stock, d.Strike, d.Times)
                    }).ToArray();

                    var result = context.Run(query);
                }
            }
        }
示例#2
0
        public void MathFunctionsSingle()
        {
            using (var context = new GpuContext(platformWildCard))
            {
                Spec.ForAny <int[]>(xs =>
                {
                    using (var _xs = context.CreateGpuArray(xs))
                    {
                        var gpuResult = context.Run((from n in _xs.AsGpuQueryExpr()
                                                     let pi = SMath.PI
                                                              let c = SMath.Cos(n)
                                                                      let s = SMath.Sin(n)
                                                                              let f = SMath.Floor(pi)
                                                                                      let sq = SMath.Sqrt(n * n)
                                                                                               let ex = SMath.Exp(pi)
                                                                                                        let p = SMath.Pow(pi, 2)
                                                                                                                let a = SMath.Abs(c)
                                                                                                                        let l = SMath.Log(n)
                                                                                                                                select f *pi *c *s *sq *ex *p *a *l).ToArray());

                        var openClResult = this.MathFunctionsSingleTest(xs);


                        return(gpuResult.Zip(openClResult, (x, y) => (float.IsNaN(x) && float.IsNaN(y)) ? true : System.Math.Abs(x - y) < 0.001)
                               .SequenceEqual(Enumerable.Range(1, xs.Length).Select(_ => true)));
                    }
                }).QuickCheckThrowOnFailure();
            }
        }
示例#3
0
        static void Main(string[] args)
        {
            // Based on https://github.com/gsvgit/Brahma.FSharp/tree/master/Source/BlackScholes
            const int   optionCount          = 1000000;
            const float riskFreeInterestRate = 0.02f;
            const float volatility           = 0.30f;
            const float A1 = 0.31938153f;
            const float A2 = -0.356563782f;
            const float A3 = 1.781477937f;
            const float A4 = -1.821255978f;
            const float A5 = 1.330274429f;

            // Helper functions
            Expression <Func <float, float> > k = x => 1.0f / (1.0f + 0.2316419f * FMath.Abs(x));


            Expression <Func <float, float> > cnd = x =>
                                                    1.0f - 1.0f / FMath.Sqrt(2.0f * FMath.PI)
                                                    * FMath.Exp(-(FMath.Abs(x)) * (FMath.Abs(x)) / 2.0f) * (A1 * k.Invoke(x) + A2 * k.Invoke(x) * k.Invoke(x) + A3 * FMath.Pow(k.Invoke(x), 3)
                                                                                                            + A4 * FMath.Pow(k.Invoke(x), 4) + A5 * FMath.Pow(k.Invoke(x), 5));


            Expression <Func <float, float> > cumulativeNormalDistribution = x => (x < 0.0f) ? 1.0f - cnd.Invoke(x) : cnd.Invoke(x);

            Expression <Func <float, float, float, float> > d1 =
                (stockPrice, strikePrice, timeToExpirationYears) =>
                FMath.Log(stockPrice / strikePrice) + (riskFreeInterestRate + volatility * volatility / 2.0f) * timeToExpirationYears
                / (volatility * FMath.Sqrt(timeToExpirationYears));

            Expression <Func <float, float, float> > d2 =
                (_d1, timeToExpirationYears) => _d1 - volatility * FMath.Sqrt(timeToExpirationYears);

            Expression <Func <float, float, float, float, float, float> > blackScholesCallOption =
                (_d1, _d2, stockPrice, strikePrice, timeToExpirationYears) =>
                stockPrice *cumulativeNormalDistribution.Invoke(_d1) -
                strikePrice * FMath.Exp(-(riskFreeInterestRate) * timeToExpirationYears) * cumulativeNormalDistribution.Invoke(_d2);

            Expression <Func <float, float, float, float, float, float> > blackScholesPutOption =
                (_d1, _d2, stockPrice, strikePrice, timeToExpirationYears) =>
                strikePrice *FMath.Exp(-riskFreeInterestRate *timeToExpirationYears) *
                cumulativeNormalDistribution.Invoke(-_d2) - stockPrice * cumulativeNormalDistribution.Invoke(-_d1);

            // Init data
            var random = new System.Random();
            var data   = Enumerable.Range(1, optionCount).Select(_ => new InputData
            {
                Stock  = random.Random(5.0f, 30.0f),
                Strike = random.Random(1.0f, 100.0f),
                Times  = random.Random(0.25f, 10.0f)
            }).ToArray();
            // Main code
            Stopwatch timer = new Stopwatch();

            timer.Start();
            OutPutData[] results;
            using (GpuContext context = new GpuContext())
            {
                using (var _data = context.CreateGpuArray(data))
                {
                    var query =
                        (from d in _data.AsGpuQueryExpr()
                         let _d1 = d1.Invoke(d.Stock, d.Strike, d.Times)
                                   let _d2 = d2.Invoke(_d1, d.Times)
                                             select new OutPutData {
                        Call = blackScholesCallOption.Invoke(_d1, _d2, d.Stock, d.Strike, d.Times),
                        Put = blackScholesPutOption.Invoke(_d1, _d2, d.Stock, d.Strike, d.Times)
                    }).ToArray();

                    results = context.Run(query);
                }
            }
            timer.Stop();
            var elapsed = timer.ElapsedMilliseconds;

            Console.WriteLine("Black Scholes computed on Gpu in {0} milliseconds", elapsed);
            //String.Join<OutPutData>(", ", Enumerable.Range(1,120).
            //     Select(i => results.ElementAtOrDefault(i)).ToArray()));
            timer.Restart();
            var cpuResults = CpuBlackScholes(data);

            timer.Stop();
            elapsed = timer.ElapsedMilliseconds;
            Console.WriteLine("Black Scholes computed on Cpu in {0} milliseconds", elapsed);
            var resultsAreEqual = cpuResults.Zip(results, (a, b) => Tuple.Create(a, b)).All(pair => pair.Item1.IsEqual(pair.Item2));

            Console.WriteLine("Results calculated by cpu and gpu are {0}", resultsAreEqual ? "equal" : "not equal");
            Console.WriteLine("Results = {0}",
                              String.Join <Results>(", ", Enumerable.Range(1, 120).
                                                    Select(i => new Results()
            {
                Gpu = results.ElementAtOrDefault(i), Cpu = cpuResults.ElementAtOrDefault(i)
            }).ToArray()));
            Console.ReadLine();
        }