示例#1
0
        static void SimpleRaycast(Texture2D texture)
        {
            Raytracer <MyRayPayload, float3, Material> raycaster = new Raytracer <MyRayPayload, float3, Material>();

            // View and projection matrices
            float4x4 viewMatrix       = Transforms.LookAtLH(float3(2, 1f, 4), float3(0, 0, 0), float3(0, 1, 0));
            float4x4 projectionMatrix = Transforms.PerspectiveFovLH(pi_over_4, texture.Height / (float)texture.Width, 0.01f, 20);

            Scene <float3, Material> scene = new Scene <float3, Material>();

            CreateScene(scene);

            raycaster.OnClosestHit += delegate(IRaycastContext context, float3 attribute, Material material, ref MyRayPayload payload)
            {
                payload.Color = attribute;
            };

            for (float px = 0.5f; px < texture.Width; px++)
            {
                for (float py = 0.5f; py < texture.Height; py++)
                {
                    RayDescription ray = RayDescription.FromScreen(px, py, texture.Width, texture.Height, inverse(viewMatrix), inverse(projectionMatrix), 0, 1000);

                    MyRayPayload coloring = new MyRayPayload();

                    raycaster.Trace(scene, ray, ref coloring);

                    texture.Write((int)px, (int)py, float4(coloring.Color, 1));
                }
            }
        }
示例#2
0
        static void LitRaycast(Texture2D texture)
        {
            // Scene Setup
            float3 CameraPosition = float3(3, 2f, 4);
            float3 LightPosition  = float3(3, 5, -2);
            // View and projection matrices
            float4x4 viewMatrix       = Transforms.LookAtLH(CameraPosition, float3(0, 1, 0), float3(0, 1, 0));
            float4x4 projectionMatrix = Transforms.PerspectiveFovLH(pi_over_4, texture.Height / (float)texture.Width, 0.01f, 20);

            Scene <PositionNormal, Material> scene = new Scene <PositionNormal, Material>();

            CreateScene(scene);

            // Raycaster to trace rays and check for shadow rays.
            Raytracer <ShadowRayPayload, PositionNormal, Material> shadower = new Raytracer <ShadowRayPayload, PositionNormal, Material>();

            shadower.OnAnyHit += delegate(IRaycastContext context, PositionNormal attribute, Material material, ref ShadowRayPayload payload)
            {
                // If any object is found in ray-path to the light, the ray is shadowed.
                payload.Shadowed = true;
                // No neccessary to continue checking other objects
                return(HitResult.Stop);
            };

            // Raycaster to trace rays and lit closest surfaces
            Raytracer <MyRayPayload, PositionNormal, Material> raycaster = new Raytracer <MyRayPayload, PositionNormal, Material>();

            raycaster.OnClosestHit += delegate(IRaycastContext context, PositionNormal attribute, Material material, ref MyRayPayload payload)
            {
                // Move geometry attribute to world space
                attribute = attribute.Transform(context.FromGeometryToWorld);

                float3 V             = normalize(CameraPosition - attribute.Position);
                float3 L             = normalize(LightPosition - attribute.Position);
                float  lambertFactor = max(0, dot(attribute.Normal, L));

                // Check ray to light...
                ShadowRayPayload shadow = new ShadowRayPayload();
                shadower.Trace(scene,
                               RayDescription.FromTo(attribute.Position + attribute.Normal * 0.001f, // Move an epsilon away from the surface to avoid self-shadowing
                                                     LightPosition), ref shadow);

                payload.Color = shadow.Shadowed ? float3(0, 0, 0) : float3(1, 1, 1) * lambertFactor;
            };
            raycaster.OnMiss += delegate(IRaycastContext context, ref MyRayPayload payload)
            {
                payload.Color = float3(0, 0, 1); // Blue, as the sky.
            };

            /// Render all points of the screen
            for (int px = 0; px < texture.Width; px++)
            {
                for (int py = 0; py < texture.Height; py++)
                {
                    RayDescription ray = RayDescription.FromScreen(px + 0.5f, py + 0.5f, texture.Width, texture.Height, inverse(viewMatrix), inverse(projectionMatrix), 0, 1000);

                    MyRayPayload coloring = new MyRayPayload();

                    raycaster.Trace(scene, ray, ref coloring);

                    texture.Write(px, py, float4(coloring.Color, 1));
                }
            }
        }
示例#3
0
        static void Raytracing(Texture2D texture)
        {
            // View and projection matrices
            float4x4 viewMatrix       = Transforms.LookAtLH(CameraPosition, float3(0, 1, 0), float3(0, 1, 0));
            float4x4 projectionMatrix = Transforms.PerspectiveFovLH(pi_over_4, texture.Height / (float)texture.Width, 0.01f, 20);

            Scene <PositionNormalCoordinate, Material> scene = new Scene <PositionNormalCoordinate, Material>();

            //CreateMeshScene(scene);
            CreateRaycastScene(scene);

            // Raycaster to trace rays and check for shadow rays.
            Raytracer <ShadowRayPayload, PositionNormalCoordinate, Material> shadower = new Raytracer <ShadowRayPayload, PositionNormalCoordinate, Material>();

            shadower.OnAnyHit += delegate(IRaycastContext context, PositionNormalCoordinate attribute, Material material, ref ShadowRayPayload payload)
            {
                if (any(material.Emissive))
                {
                    return(HitResult.Discard); // Discard light sources during shadow test.
                }
                // If any object is found in ray-path to the light, the ray is shadowed.
                payload.Shadowed = true;
                // No neccessary to continue checking other objects
                return(HitResult.Stop);
            };

            // Raycaster to trace rays and lit closest surfaces
            Raytracer <MyRayPayload, PositionNormalCoordinate, Material> raycaster = new Raytracer <MyRayPayload, PositionNormalCoordinate, Material>();

            raycaster.OnClosestHit += delegate(IRaycastContext context, PositionNormalCoordinate attribute, Material material, ref MyRayPayload payload)
            {
                // Move geometry attribute to world space
                attribute = attribute.Transform(context.FromGeometryToWorld);

                float3 V = -normalize(context.GlobalRay.Direction);

                float3 L = (LightPosition - attribute.Position);
                float  d = length(L);
                L /= d; // normalize direction to light reusing distance to light

                attribute.Normal = normalize(attribute.Normal);

                if (material.BumpMap != null)
                {
                    float3 T, B;
                    createOrthoBasis(attribute.Normal, out T, out B);
                    float3 tangentBump = material.BumpMap.Sample(material.TextureSampler, attribute.Coordinates).xyz * 2 - 1;
                    float3 globalBump  = tangentBump.x * T + tangentBump.y * B + tangentBump.z * attribute.Normal;
                    //attribute.Normal = globalBump;
                    attribute.Normal = normalize(attribute.Normal + globalBump);
                }

                float lambertFactor = max(0, dot(attribute.Normal, L));

                // Check ray to light...
                ShadowRayPayload shadow = new ShadowRayPayload();
                shadower.Trace(scene,
                               RayDescription.FromDir(attribute.Position + attribute.Normal * 0.001f, // Move an epsilon away from the surface to avoid self-shadowing
                                                      L), ref shadow);

                float3 Intensity = (shadow.Shadowed ? 0.2f : 1.0f) * LightIntensity / (d * d);

                payload.Color = material.Emissive + material.EvalBRDF(attribute, V, L) * Intensity * lambertFactor; // direct light computation

                // Recursive calls for indirect light due to reflections and refractions
                if (payload.Bounces > 0)
                {
                    foreach (var impulse in material.GetBRDFImpulses(attribute, V))
                    {
                        float3 D           = impulse.Direction;                                                   // recursive direction to check
                        float3 facedNormal = dot(D, attribute.Normal) > 0 ? attribute.Normal : -attribute.Normal; // normal respect to direction

                        RayDescription ray = new RayDescription {
                            Direction = D, Origin = attribute.Position + facedNormal * 0.001f, MinT = 0.0001f, MaxT = 10000
                        };

                        MyRayPayload newPayload = new MyRayPayload
                        {
                            Bounces = payload.Bounces - 1
                        };

                        raycaster.Trace(scene, ray, ref newPayload);

                        payload.Color += newPayload.Color * impulse.Ratio;
                    }
                }
            };
            raycaster.OnMiss += delegate(IRaycastContext context, ref MyRayPayload payload)
            {
                payload.Color = float3(0, 0, 0); // Blue, as the sky.
            };

            /// Render all points of the screen
            for (int px = 0; px < texture.Width; px++)
            {
                for (int py = 0; py < texture.Height; py++)
                {
                    int progress = (px * texture.Height + py);
                    if (progress % 1000 == 0)
                    {
                        Console.Write("\r" + progress * 100 / (float)(texture.Width * texture.Height) + "%            ");
                    }

                    RayDescription ray = RayDescription.FromScreen(px + 0.5f, py + 0.5f, texture.Width, texture.Height, inverse(viewMatrix), inverse(projectionMatrix), 0, 1000);

                    MyRayPayload coloring = new MyRayPayload();
                    coloring.Bounces = 3;

                    raycaster.Trace(scene, ray, ref coloring);

                    texture.Write(px, py, float4(coloring.Color, 1));
                }
            }
        }
示例#4
0
        static void RaycastingMeshTexture(Texture2D texture, Material mat)
        {
            // Scene Setup
            float3 CameraPosition = float3(3, 2f, 4);
            float3 LightPosition  = float3(3, 5, -2);
            float3 LightIntensity = float3(1, 1, 1) * 100;

            // View and projection matrices
            float4x4 viewMatrix       = Transforms.LookAtLH(CameraPosition, float3(0, 1, 0), float3(0, 1, 0));
            float4x4 projectionMatrix = Transforms.PerspectiveFovLH(pi_over_4, texture.Height / (float)texture.Width, 0.01f, 20);

            Scene <PositionNormalCoordinate, Material> scene = new Scene <PositionNormalCoordinate, Material>();

            CreateMeshScene(scene);
            //CreateRaycastScene(scene, mat);

            // Raycaster to trace rays and check for shadow rays.
            Raytracer <ShadowRayPayload, PositionNormalCoordinate, Material> shadower = new Raytracer <ShadowRayPayload, PositionNormalCoordinate, Material>();

            shadower.OnAnyHit += delegate(IRaycastContext context, PositionNormalCoordinate attribute, Material material, ref ShadowRayPayload payload)
            {
                // If any object is found in ray-path to the light, the ray is shadowed.
                payload.Shadowed = true;
                // No neccessary to continue checking other objects
                return(HitResult.Stop);
            };

            // Raycaster to trace rays and lit closest surfaces
            Raytracer <MyRayPayload, PositionNormalCoordinate, Material> raycaster = new Raytracer <MyRayPayload, PositionNormalCoordinate, Material>();

            raycaster.OnClosestHit += delegate(IRaycastContext context, PositionNormalCoordinate attribute, Material material, ref MyRayPayload payload)
            {
                // Move geometry attribute to world space
                attribute = attribute.Transform(context.FromGeometryToWorld);

                float3 V = normalize(CameraPosition - attribute.Position);
                float3 L = (LightPosition - attribute.Position);
                float  d = length(L);
                L /= d; // normalize direction to light reusing distance to light

                attribute.Normal = normalize(attribute.Normal);

                float lambertFactor = max(0, dot(attribute.Normal, L));

                // Check ray to light...
                ShadowRayPayload shadow = new ShadowRayPayload();
                shadower.Trace(scene,
                               RayDescription.FromDir(attribute.Position + attribute.Normal * 0.001f, // Move an epsilon away from the surface to avoid self-shadowing
                                                      L), ref shadow);

                float3 Intensity = (shadow.Shadowed ? 0.2f : 1.0f) * LightIntensity / (d * d);

                payload.Color = material.EvalBRDF(attribute, V, L) * Intensity * lambertFactor;
            };
            raycaster.OnMiss += delegate(IRaycastContext context, ref MyRayPayload payload)
            {
                payload.Color = float3(0, 0, 0); // Blue, as the sky.
            };

            /// Render all points of the screen
            for (int px = 0; px < texture.Width; px++)
            {
                for (int py = 0; py < texture.Height; py++)
                {
                    int progress = (px * texture.Height + py);
                    if (progress % 1000 == 0)
                    {
                        Console.Write("\r" + progress * 100 / (float)(texture.Width * texture.Height) + "%            ");
                    }

                    RayDescription ray = RayDescription.FromScreen(px + 0.5f, py + 0.5f, texture.Width, texture.Height, inverse(viewMatrix), inverse(projectionMatrix), 0, 1000);

                    MyRayPayload coloring = new MyRayPayload();

                    raycaster.Trace(scene, ray, ref coloring);

                    texture.Write(px, py, float4(coloring.Color, 1));
                }
            }
        }