示例#1
0
        public void TestChargeStateSplit(string path)
        {
            var data = File.ReadAllLines(path);
            var map  = new Dictionary <int, List <MSFeatureLight> >();

            for (var i = 1; i < data.Length; i++)
            {
                var feature       = new MSFeatureLight();
                var msFeatureData = data[i].Split(',');

                feature.ChargeState      = Convert.ToInt32(msFeatureData[0]);
                feature.MassMonoisotopic = Convert.ToDouble(msFeatureData[1]);
                feature.Scan             = Convert.ToInt32(msFeatureData[2]);
                feature.Abundance        = Convert.ToInt64(msFeatureData[3]);

                if (!map.ContainsKey(feature.ChargeState))
                {
                    map.Add(feature.ChargeState, new List <MSFeatureLight>());
                }
                map[feature.ChargeState].Add(feature);
            }


            var features = new List <UMCLight>();

            foreach (var charge in map.Keys)
            {
                var feature = new UMCLight();
                foreach (var msFeature in map[charge])
                {
                    feature.AddChildFeature(msFeature);
                }
                feature.CalculateStatistics(ClusterCentroidRepresentation.Median);
                features.Add(feature);
            }

            var finder     = new MsFeatureTreeClusterer <MSFeatureLight, UMCLight>();
            var comparison = finder.CompareMonoisotopic(features[0], features[1]);

            Assert.AreNotEqual(comparison, 0);
        }
示例#2
0
        public void TestChargeStateSplit(string path)
        {
            var data = File.ReadAllLines(path);
            var map = new Dictionary<int, List<MSFeatureLight>>();

            for (var i = 1; i < data.Length; i++)
            {
                var feature = new MSFeatureLight();
                var msFeatureData = data[i].Split(',');

                feature.ChargeState = Convert.ToInt32(msFeatureData[0]);
                feature.MassMonoisotopic = Convert.ToDouble(msFeatureData[1]);
                feature.Scan = Convert.ToInt32(msFeatureData[2]);
                feature.Abundance = Convert.ToInt64(msFeatureData[3]);

                if (!map.ContainsKey(feature.ChargeState))
                {
                    map.Add(feature.ChargeState, new List<MSFeatureLight>());
                }
                map[feature.ChargeState].Add(feature);
            }

            var features = new List<UMCLight>();

            foreach (var charge in map.Keys)
            {
                var feature = new UMCLight();
                foreach (var msFeature in map[charge])
                {
                    feature.AddChildFeature(msFeature);
                }
                feature.CalculateStatistics(ClusterCentroidRepresentation.Median);
                features.Add(feature);
            }

            var finder = new MsFeatureTreeClusterer<MSFeatureLight, UMCLight>();
            var comparison = finder.CompareMonoisotopic(features[0], features[1]);

            Assert.AreNotEqual(comparison, 0);
        }
示例#3
0
        public void CreateFeaturesTest(string relativePath, string outputPath)
        {
            var path = GetPath(relativePath);

            var tolerances  = new FeatureTolerances
            {
                Mass =  13,
                Net = .01,
                DriftTime =  30,
                FragmentationWindowSize = .5
            };

            var reader      = new MsFeatureLightFileReader();
            var rawFeatures = reader.ReadFile(path);
            var msFilterOptions = new MsFeatureFilteringOptions
            {
                ChargeRange =  new FilterRange(1,6),
                MinimumIntensity = 200000,
                ShouldUseDeisotopingFilter =  true,
                ShouldUseIntensityFilter   =  true
            };
            rawFeatures = LcmsFeatureFilters.FilterMsFeatures(rawFeatures, msFilterOptions);

            var finder      = new MsFeatureTreeClusterer<MSFeatureLight, UMCLight> {Tolerances = tolerances};
            finder.Progress += (sender, args) => Console.WriteLine(args.Message);
            var features    = finder.Cluster(rawFeatures.ToList());

            var filterOptions = new LcmsFeatureFilteringOptions
            {
                FeatureLengthRange = new FilterRange
                {
                    Maximum = 30,
                    Minimum = 10
                }
            };
            features        = LcmsFeatureFilters.FilterFeatures(features, filterOptions);

            Console.WriteLine(@"Found - {0} features", features.Count);
            using (var writer = File.CreateText(GetPath(outputPath)))
            {
                var index = 0;
                foreach (var feature in features)
                {
                    feature.Id = index++;
                    feature.CalculateStatistics(ClusterCentroidRepresentation.Mean);
                    writer.WriteLine("{1}{0}{2}{0}{3}{0}{4}{0}{5}{0}{6}{0}{7}{0}{8}{0}{9}{0}{10}",
                        TextDelimiter,
                        feature.Net,
                        feature.ChargeState,
                        feature.Mz,
                        feature.Scan,
                        feature.MassMonoisotopic,
                        feature.MassMonoisotopicAligned,
                        feature.Id,
                        feature.ScanStart,
                        feature.ScanEnd,
                        feature.ScanAligned
                        );
                }
            }
        }
示例#4
0
        /// <summary>
        ///     Finds features
        /// </summary>
        /// <returns></returns>
        public List<UMCLight> FindFeatures(List<MSFeatureLight> msFeatures,
            LcmsFeatureFindingOptions options,
            ISpectraProvider provider)
        {
            var clusterer = new MsFeatureTreeClusterer<MSFeatureLight, UMCLight>
            {
                Tolerances =
                    new FeatureTolerances
                    {
                        Mass = options.InstrumentTolerances.Mass,
                        Net = options.MaximumNetRange
                    },
                ScanTolerance = options.MaximumScanRange,
                SpectraProvider = provider
                //TODO: Make sure we have a mass range for XIC's too....
            };

            clusterer.SpectraProvider = provider;

            OnStatus("Starting cluster definition");
            clusterer.Progress += (sender, args) => OnStatus(args.Message);

            var features = clusterer.Cluster(msFeatures);

            var minScan = int.MaxValue;
            var maxScan = int.MinValue;
            foreach (var feature in msFeatures)
            {
                minScan = Math.Min(feature.Scan, minScan);
                maxScan = Math.Max(feature.Scan, maxScan);
            }

            var id = 0;
            var newFeatures = new List<UMCLight>();
            foreach (var feature in features)
            {
                if (feature.MsFeatures.Count < 1)
                    continue;

                feature.Net = Convert.ToDouble(feature.Scan - minScan)/Convert.ToDouble(maxScan - minScan);
                feature.CalculateStatistics(ClusterCentroidRepresentation.Median);
                feature.Net = feature.Net;
                feature.Id = id++;
                newFeatures.Add(feature);
                //Sets the width of the feature to be the width of the peak, not the width of the tails
                var maxAbundance = double.MinValue;
                var maxAbundanceIndex = 0;
                for (var msFeatureIndex = 0; msFeatureIndex < feature.MsFeatures.Count - 1; msFeatureIndex++)
                {
                    var msFeature = feature.MsFeatures[msFeatureIndex];
                    if (msFeature.Abundance > maxAbundance)
                    {
                        maxAbundance = msFeature.Abundance;
                        maxAbundanceIndex = msFeatureIndex;
                    }
                }
                for (var msFeatureIndex = maxAbundanceIndex; msFeatureIndex > 0; msFeatureIndex--)
                {
                    if (feature.MsFeatures[msFeatureIndex].Abundance / maxAbundance <= 0.05)
                    {
                        feature.ScanStart = feature.MsFeatures[msFeatureIndex].Scan;
                        break;
                    }
                }
                for (var msFeatureIndex = maxAbundanceIndex; msFeatureIndex < feature.MsFeatures.Count - 1; msFeatureIndex++)
                {
                    if (feature.MsFeatures[msFeatureIndex].Abundance / maxAbundance <= 0.05)
                    {
                        feature.ScanEnd = feature.MsFeatures[msFeatureIndex].Scan;
                        break;
                    }
                }
            }
            return features;
        }
示例#5
0
        public void CreateFeaturesTest(string relativePath, string outputPath)
        {
            var path = GetPath(relativePath);

            var tolerances = new FeatureTolerances
            {
                Mass      = 13,
                Net       = .01,
                DriftTime = 30,
                FragmentationWindowSize = .5
            };

            var reader          = new MsFeatureLightFileReader();
            var rawFeatures     = reader.ReadFile(path);
            var msFilterOptions = new MsFeatureFilteringOptions
            {
                ChargeRange                = new FilterRange(1, 6),
                MinimumIntensity           = 200000,
                ShouldUseDeisotopingFilter = true,
                ShouldUseIntensityFilter   = true
            };

            rawFeatures = LcmsFeatureFilters.FilterMsFeatures(rawFeatures, msFilterOptions);

            var finder = new MsFeatureTreeClusterer <MSFeatureLight, UMCLight> {
                Tolerances = tolerances
            };

            finder.Progress += (sender, args) => Console.WriteLine(args.Message);
            var features = finder.Cluster(rawFeatures.ToList());

            var filterOptions = new LcmsFeatureFilteringOptions
            {
                FeatureLengthRangeScans = new FilterRange
                {
                    Maximum = 30,
                    Minimum = 10
                }
            };

            features = LcmsFeatureFilters.FilterFeatures(features, filterOptions);

            Console.WriteLine(@"Found - {0} features", features.Count);
            using (var writer = File.CreateText(GetPath(outputPath)))
            {
                var index = 0;
                foreach (var feature in features)
                {
                    feature.Id = index++;
                    feature.CalculateStatistics(ClusterCentroidRepresentation.Mean);
                    writer.WriteLine("{1}{0}{2}{0}{3}{0}{4}{0}{5}{0}{6}{0}{7}{0}{8}{0}{9}{0}{10}",
                                     TextDelimiter,
                                     feature.Net,
                                     feature.ChargeState,
                                     feature.Mz,
                                     feature.Scan,
                                     feature.MassMonoisotopic,
                                     feature.MassMonoisotopicAligned,
                                     feature.Id,
                                     feature.ScanStart,
                                     feature.ScanEnd,
                                     feature.ScanAligned
                                     );
                }
            }
        }