public void meanshift_new_method_no_ctor_args() { #region doc_sample1 // Use a fixed seed for reproducibility Accord.Math.Random.Generator.Seed = 0; // Declare some data to be clustered double[][] input = { new double[] { -5, -2, -4 }, new double[] { -5, -5, -6 }, new double[] { 2, 1, 1 }, new double[] { 1, 1, 2 }, new double[] { 1, 2, 2 }, new double[] { 3, 1, 2 }, new double[] { 11, 5, 4 }, new double[] { 15, 5, 6 }, new double[] { 10, 5, 6 }, }; // Create a new Mean-Shift algorithm for 3 dimensional samples MeanShift meanShift = new MeanShift() { // Use a uniform kernel density Kernel = new UniformKernel(), Bandwidth = 2.0 }; // Learn a data partitioning using the Mean Shift algorithm MeanShiftClusterCollection clustering = meanShift.Learn(input); // Predict group labels for each point int[] labels = clustering.Decide(input); // As a result, the first two observations should belong to the // same cluster (thus having the same label). The same should // happen to the next four observations and to the last three. #endregion Assert.AreEqual(labels[0], labels[1]); Assert.AreEqual(labels[2], labels[3]); Assert.AreEqual(labels[2], labels[4]); Assert.AreEqual(labels[2], labels[5]); Assert.AreEqual(labels[6], labels[7]); Assert.AreEqual(labels[6], labels[8]); Assert.AreNotEqual(labels[0], labels[2]); Assert.AreNotEqual(labels[2], labels[6]); Assert.AreNotEqual(labels[0], labels[6]); int[] labels2 = meanShift.Clusters.Decide(input); Assert.IsTrue(labels.IsEqual(labels2)); Assert.AreEqual(3 / 9.0, meanShift.Clusters.Proportions[labels[6]], 1e-6); Assert.AreEqual(2 / 9.0, meanShift.Clusters.Proportions[labels[0]], 1e-6); Assert.AreEqual(4 / 9.0, meanShift.Clusters.Proportions[labels[2]], 1e-6); }
public static List <List <Vector2> > ClusterPoints(List <Vector2> points)//delete "outliers" { double[][] input = new double[points.Count][]; for (int i = 0; i < points.Count; i++) { input[i] = new double[] { points[i].x, points[i].y }; } UniformKernel kernel = new UniformKernel(); MeanShift meanShift = new MeanShift(dimension: 2, kernel: kernel, bandwidth: 1e-2); MeanShiftClusterCollection clustering = meanShift.Learn(input); int[] labels = clustering.Decide(input); List <List <Vector2> > classedPoints = new List <List <Vector2> >(); for (int i = 0; i <= Mathf.Max(labels); i++) { List <Vector2> iClass = new List <Vector2>(); foreach (var p in points) { iClass.Add(p); } classedPoints.Add(iClass); } return(classedPoints); }
public void RunProcess(double[][] inputDataMS, bool displayResult = false) { Stopwatch sw = new Stopwatch(); sw.Start(); MeanShift clusterMS = new MeanShift(dataDimension, new UniformKernel(), msSearchRadius); clusterMS.Distance = new myDistanceClass(); MeanShiftClusterCollection clustering = clusterMS.Learn(inputDataMS); pointLabels = clustering.Decide(inputDataMS); clusteringPlaneRec = new List <pointPlaneClass>(); for (int i = 0; i < clustering.Count; i++) { clusteringPlaneRec.Add(new pointPlaneClass(i, 0)); } for (int i = 0; i < h * w; i++) { MyVector3 vector3T = new MyVector3(inputDataMS[i][6], inputDataMS[i][7], inputDataMS[i][8]); if (vector3T.x == 0 && vector3T.y == 0 && vector3T.z == 0) { continue; } int idx = pointLabels[i]; clusteringPlaneRec[idx].Points.Add(vector3T); clusteringPlaneRec[idx].PointsIdx.Add(i); clusteringPlaneRec[idx].Value++; } clusteringPlaneRec.Sort((x, y) => y.Value.CompareTo(x.Value)); #region visualization if (displayResult) { int loop = 0; Image <Bgr, byte> image2 = new Image <Bgr, byte>(w, h); image2.SetZero(); for (int i = 0; i < h; i++) { for (int j = 0; j < w; j++) { if (pointLabels[loop] >= 0) { byte r = (byte)(Utils.ColorMall[pointLabels[loop] % 30].R); byte g = (byte)(Utils.ColorMall[pointLabels[loop] % 30].G); byte b = (byte)(Utils.ColorMall[pointLabels[loop] % 30].B); image2[i, j] = new Bgr(b, g, r); } loop++; } } new ImageViewer(image2, "2 - MeanShiftClustering").Show(); } #endregion sw.Stop(); Console.WriteLine(clusteringPlaneRec.Count + " labels\tin" + sw.ElapsedMilliseconds / 1000 + "s"); sw.Restart(); // extract planes from clustered data SceondPlaneExtraction(); #region visualization if (displayResult) { int loop = 0; Image <Bgr, byte> image3 = new Image <Bgr, byte>(w, h); image3.SetZero(); for (int i = 0; i < h; i++) { for (int j = 0; j < w; j++) { if (pointLabels[loop] >= 0) { byte r = (byte)(Utils.ColorMall[pointLabels[loop] % 30].R); byte g = (byte)(Utils.ColorMall[pointLabels[loop] % 30].G); byte b = (byte)(Utils.ColorMall[pointLabels[loop] % 30].B); image3[i, j] = new Bgr(b, g, r); } loop++; } } new ImageViewer(image3, "3 - PlaneExtraction").Show(); } #endregion sw.Stop(); Console.WriteLine(extractionPlaneRec.Count + " labels\tin" + sw.ElapsedMilliseconds / 1000 + "s"); sw.Restart(); // merge planes if necessary MergePlanes(); #region visualization if (displayResult) { int loop = 0; Image <Bgr, byte> image4 = new Image <Bgr, byte>(w, h); image4.SetZero(); for (int i = 0; i < h; i++) { for (int j = 0; j < w; j++) { if (pointLabels[loop] >= 0) { byte r = (byte)(Utils.ColorMall[pointLabels[loop] % 30].R); byte g = (byte)(Utils.ColorMall[pointLabels[loop] % 30].G); byte b = (byte)(Utils.ColorMall[pointLabels[loop] % 30].B); image4[i, j] = new Bgr(b, g, r); } loop++; } } new ImageViewer(image4, "4 - MergedPlanes").Show(); } #endregion sw.Stop(); Console.WriteLine(mergedPlaneRec.Count + " labels\tin" + sw.ElapsedMilliseconds / 1000 + "s"); }
private List <Line2> Skeletonize(out bool iscurve) { Image <Gray, byte> img2 = body_img.Copy(); Image <Gray, byte> eroded = new Image <Gray, byte>(img2.Size); Image <Gray, byte> temp = new Image <Gray, byte>(img2.Size); Image <Gray, byte> skel = new Image <Gray, byte>(img2.Size); body_img.Save("test.png"); #region with matlab string argument1 = "\"" + "test.png" + "\""; System.Diagnostics.Process process = new System.Diagnostics.Process(); process.StartInfo.FileName = System.Environment.CurrentDirectory + "\\Assets\\frommatlab\\skeleton.exe"; process.StartInfo.Arguments = argument1; process.StartInfo.UseShellExecute = false; process.StartInfo.CreateNoWindow = true; process.StartInfo.RedirectStandardOutput = true; //启动 process.Start(); process.WaitForExit(); #endregion skel = new Image <Gray, byte>("prune.png"); ori_thin_img = new Image <Gray, byte>("thin.png"); ori_prune_img = skel; #region thining - comment //skel.SetValue(0); //CvInvoke.Threshold(img2, temp, 127, 256, 0); //var element = CvInvoke.GetStructuringElement(ElementShape.Cross, new Size(3, 3), new Point(-1, -1)); //bool done = false; ////skeleton //int itr = 0; //while (!done) //{ // CvInvoke.Erode(img2, eroded, element, new Point(-1, -1), 1, BorderType.Reflect, default(MCvScalar)); // CvInvoke.Dilate(eroded, temp, element, new Point(-1, -1), 1, BorderType.Reflect, default(MCvScalar)); // CvInvoke.Subtract(img2, temp, temp); // CvInvoke.BitwiseOr(skel, temp, skel); // eroded.CopyTo(img2); // itr++; // if (CvInvoke.CountNonZero(img2) == 0) done = true; //} //Image<Gray, Byte> cannyimg = body_img.Canny(60, 100); //CvInvoke.Dilate(cannyimg, cannyimg, element, new Point(-1, -1), 3, BorderType.Reflect, default(MCvScalar)); //CvInvoke.Subtract(skel, cannyimg, skel); //ori_skel_img = skel.Copy(); ////thinning //if (!noface) //{ // #region thinning // List<Mat> cs = new List<Mat>(); // List<Mat> ds = new List<Mat>(); // for (int i = 0; i < 8; i++) // { // cs.Add(CvInvoke.GetStructuringElement(ElementShape.Cross, new Size(3, 3), new Point(-1, -1))); // ds.Add(CvInvoke.GetStructuringElement(ElementShape.Cross, new Size(3, 3), new Point(-1, -1))); // } // cs[0].SetTo(new int[] { 0, 0, 0, 0, 1, 0, 1, 1, 1 }); // cs[1].SetTo(new int[] { 1, 0, 0, 1, 1, 0, 1, 0, 0 }); // cs[2].SetTo(new int[] { 1, 1, 1, 0, 1, 0, 0, 0, 0 }); // cs[3].SetTo(new int[] { 0, 0, 1, 0, 1, 1, 0, 0, 1 }); // ds[0].SetTo(new int[] { 1, 1, 1, 0, 0, 0, 0, 0, 0 }); // ds[1].SetTo(new int[] { 0, 0, 1, 0, 0, 1, 0, 0, 1 }); // ds[2].SetTo(new int[] { 0, 0, 0, 0, 0, 0, 1, 1, 1 }); // ds[3].SetTo(new int[] { 1, 0, 0, 1, 0, 0, 1, 0, 0 }); // cs[4].SetTo(new int[] { 0, 0, 0, 1, 1, 0, 1, 1, 0 }); // cs[5].SetTo(new int[] { 1, 1, 0, 1, 1, 0, 0, 0, 0 }); // cs[6].SetTo(new int[] { 0, 1, 1, 0, 1, 1, 0, 0, 0 }); // cs[7].SetTo(new int[] { 0, 0, 0, 0, 1, 1, 0, 1, 1 }); // ds[4].SetTo(new int[] { 0, 1, 1, 0, 0, 1, 0, 0, 0 }); // ds[5].SetTo(new int[] { 0, 0, 0, 0, 0, 1, 0, 1, 1 }); // ds[6].SetTo(new int[] { 0, 0, 0, 1, 0, 0, 1, 1, 0 }); // ds[7].SetTo(new int[] { 1, 1, 0, 1, 0, 0, 0, 0, 0 }); // Image<Gray, byte> img3 = skel.Copy(); // Image<Gray, byte> temp2 = skel.CopyBlank(); // Image<Gray, byte> lastimg3 = skel.Copy(); // done = false; // while (!done) // { // for (int i = 0; i < 8; i++) // { // temp = this.HitOrMiss(img3, cs[i], ds[i]); // CvInvoke.Subtract(img3, temp, img3); // } // CvInvoke.Subtract(lastimg3, img3, temp2); // lastimg3 = img3.Copy(); // if (CvInvoke.CountNonZero(temp2) == 0) done = true; // } // //img3.Save("thining.png"); // #endregion // skel = img3.Copy(); // ori_thinning_img = img3.Copy(); //} ////// remove noise ////for (int i = 0; i < img3.Height; i++) ////{ //// for (int j = 0; j < img3.Width; j++) //// { //// if (img3[i, j].Equals(new Gray(255))) //// { //// bool change = false; //// for (int pad = 1; pad < 3; pad++) //// { //// if (i >= pad && i < img3.Height - pad && j >= pad && j < img3.Width - pad) //// { //// if (img3[i - pad, j].Equals(new Gray(0)) && //// img3[i - pad, j - pad].Equals(new Gray(0)) && //// img3[i - pad, j + pad].Equals(new Gray(0)) && //// img3[i + pad, j].Equals(new Gray(0)) && //// img3[i + pad, j - pad].Equals(new Gray(0)) && //// img3[i + pad, j + pad].Equals(new Gray(0)) && //// img3[i, j - pad].Equals(new Gray(0)) && //// img3[i, j + pad].Equals(new Gray(0))) //// change = true; //// } //// } //// if (change) //// img3[i, j] = new Gray(0); //// } //// } ////} ////img3.Save("thiningdenoise.png"); #endregion // get line // consider both straight line and curve LineSegment2D[] lines = skel.HoughLinesBinary( 1, //Distance resolution in pixel-related units Math.PI / 180.0, //Angle resolution measured in radians. 3, //threshold 4, //min Line width 1 //gap between lines )[0]; //Get the lines from the first channel Image <Gray, byte> lineimg = skel.CopyBlank(); List <Line2> skel_lines = new List <Line2>(); foreach (LineSegment2D line in lines) { //remove image boundaries //if (line.P1.X > 10 && line.P1.Y > 10 && line.P1.X < body_img.Height - 10 && line.P1.Y < body_img.Width && // line.P2.X > 10 && line.P2.Y > 10 && line.P2.X < body_img.Height - 10 && line.P2.Y < body_img.Width - 10) //{ skel_lines.Add(new Line2(new Vector2(line.P1.X, line.P1.Y), new Vector2(line.P2.X, line.P2.Y))); lineimg.Draw(line, new Gray(255), 2); //} } if (debug) { lineimg.Save("skel-line.png"); } // cluster according to direction and relative distance // too many cluster means curve axis IMGSIZE = Math.Min(body_img.Width, body_img.Height); if (skel_lines.Count > 0) { double[][] xy = new double[skel_lines.Count][]; for (int i = 0; i < skel_lines.Count; i++) { xy[i] = new double[] { skel_lines[i].start.x, skel_lines[i].start.y, skel_lines[i].end.x, skel_lines[i].end.y }; } MeanShift clusterMS = new MeanShift(4, new UniformKernel(), 0.02); clusterMS.Distance = new myDistanceClass(); MeanShiftClusterCollection clustering = clusterMS.Learn(xy); var lineLabels = clustering.Decide(xy); int clustercount = lineLabels.DistinctCount(); //Debug.Log("cluster count: " + clustercount); if (debug) { Image <Rgb, byte> lineimg_rgb = lineimg.Convert <Rgb, byte>(); System.Random rnd = new System.Random(); Rgb[] colortable = new Rgb[clustering.Count]; for (int i = 0; i < clustering.Count; i++) { colortable[i] = new Rgb(rnd.Next(255), rnd.Next(255), rnd.Next(255)); } for (int i = 0; i < skel_lines.Count; i++) { int label = lineLabels[i]; lineimg_rgb.Draw(skel_lines[i].ToLineSegment2D(), colortable[label], 2); } lineimg_rgb.Save("skel-line-cluster.png"); } if (noface) { thred = 2; // 2 } if (clustercount > thred) { iscurve = true; } else { iscurve = false; } } else { iscurve = false; NumericalRecipes.RansacLine2d rcl = new NumericalRecipes.RansacLine2d(); List <Vector2> linepoints = new List <Vector2>(); linepoints = IExtension.GetMaskPoints(skel); Line2 bestline = rcl.Estimate(linepoints); skel_lines.Add(bestline); } return(skel_lines); }