public void ExecuteTest() { float max_err = 0; Random rd = new Random(1234); foreach (int batch in new int[] { 1, 2 }) { foreach (int channels in new int[] { 1, 2, 3, 4, 5, 6, 7, 8 }) { foreach (int stride in new int[] { 2, 3, 4 }) { foreach (int inwidth in new int[] { 5, 7, 11 }) { foreach (int inheight in new int[] { 5, 7, 11 }) { int outwidth = inwidth / stride, outheight = inheight / stride; float[] xval = (new float[inwidth * inheight * channels * batch]).Select((_) => (float)rd.NextDouble()).ToArray(); float[] gyval = (new float[outwidth * outheight * channels * batch]).Select((_) => (float)rd.NextDouble()).ToArray(); Map2D x = new Map2D(channels, inwidth, inheight, batch, xval); Map2D gy = new Map2D(channels, outwidth, outheight, batch, gyval); Map2D gx = Reference(x, gy, stride); OverflowCheckedTensor x_tensor = new OverflowCheckedTensor(Shape.Map2D(channels, inwidth, inheight, batch), xval); OverflowCheckedTensor y_tensor = new OverflowCheckedTensor(Shape.Map2D(channels, outwidth, outheight, batch)); OverflowCheckedTensor gy_tensor = new OverflowCheckedTensor(Shape.Map2D(channels, outwidth, outheight, batch), gyval); OverflowCheckedTensor gx_tensor = new OverflowCheckedTensor(Shape.Map2D(channels, inwidth, inheight, batch)); MaxPooling ope_pool = new MaxPooling(inwidth, inheight, channels, stride, batch); ope_pool.Execute(x_tensor, y_tensor); MaxUnpooling ope_unpool = new MaxUnpooling(inwidth, inheight, channels, stride, batch); ope_unpool.Execute(gy_tensor, x_tensor, y_tensor, gx_tensor); float[] gx_expect = gx.ToArray(); float[] gx_actual = gx_tensor.State; int gx_expect_nonzero = gx_expect.Count((v) => v != 0); int gx_actual_nonzero = gx_expect.Count((v) => v != 0); CollectionAssert.AreEqual(xval, x_tensor.State); CollectionAssert.AreEqual(gyval, gy_tensor.State); Assert.AreEqual(y_tensor.Length, gx_expect_nonzero); Assert.AreEqual(y_tensor.Length, gx_actual_nonzero); AssertError.Tolerance(gx_expect, gx_actual, 1e-7f, 1e-5f, ref max_err, $"mismatch value {channels},{stride},{inwidth},{inheight},{batch}"); Console.WriteLine($"pass: {channels},{stride},{inwidth},{inheight},{batch}"); } } } } } Console.WriteLine($"maxerr:{max_err}"); }
public void SpeedTest() { int inwidth = 512, inheight = 512, channels = 32, stride = 2; int outwidth = inwidth / stride, outheight = inheight / stride; OverflowCheckedTensor x_tensor = new OverflowCheckedTensor(Shape.Map2D(channels, inwidth, inheight)); OverflowCheckedTensor y_tensor = new OverflowCheckedTensor(Shape.Map2D(channels, outwidth, outheight)); OverflowCheckedTensor gy_tensor = new OverflowCheckedTensor(Shape.Map2D(channels, outwidth, outheight)); OverflowCheckedTensor gx_tensor = new OverflowCheckedTensor(Shape.Map2D(channels, inwidth, inheight)); MaxUnpooling ope = new MaxUnpooling(inwidth, inheight, channels, stride); Stopwatch sw = new Stopwatch(); sw.Start(); ope.Execute(gy_tensor, x_tensor, y_tensor, gx_tensor); ope.Execute(gy_tensor, x_tensor, y_tensor, gx_tensor); ope.Execute(gy_tensor, x_tensor, y_tensor, gx_tensor); ope.Execute(gy_tensor, x_tensor, y_tensor, gx_tensor); sw.Stop(); Console.WriteLine($"{sw.ElapsedMilliseconds / 4} msec"); }
public bool CreateLayer(int nCount, ELayerType type, ActivationSettings activationSettings) { Layer.Utility.Layer layer; switch (type) { case ELayerType.Invalid: throw new ArgumentException("Invalid \"type\" argument."); case ELayerType.AveragePooling: layer = new AveragePooling(nCount, Layers.Count, activationSettings); Layers.Add(layer); return(true); case ELayerType.AverageUnpooling: layer = new AverageUnpooling(nCount, Layers.Count, activationSettings); Layers.Add(layer); return(true); case ELayerType.Convolutional: layer = new Convolutional(nCount, Layers.Count, activationSettings); Layers.Add(layer); return(true); case ELayerType.Deconvolutional: layer = new Deconvolutional(nCount, Layers.Count, activationSettings); Layers.Add(layer); return(true); case ELayerType.Dropout: layer = new Dropout(nCount, Layers.Count, activationSettings); Layers.Add(layer); return(true); case ELayerType.FullyConnected: layer = new FullyConnected(nCount, Layers.Count, activationSettings); Layers.Add(layer); return(true); case ELayerType.GatedRecurrent: layer = new GatedRecurrent(nCount, Layers.Count, activationSettings); Layers.Add(layer); return(true); case ELayerType.LSTM: layer = new LSTM(nCount, Layers.Count, activationSettings); Layers.Add(layer); return(true); case ELayerType.MaxPooling: layer = new MaxPooling(nCount, Layers.Count, activationSettings); Layers.Add(layer); return(true); case ELayerType.MaxUnpooling: layer = new MaxUnpooling(nCount, Layers.Count, activationSettings); Layers.Add(layer); return(true); case ELayerType.Recurrent: layer = new Recurrent(nCount, Layers.Count, activationSettings); Layers.Add(layer); return(true); default: throw new ArgumentException("Invalid \"type\" argument."); } }