/// <summary> /// Evaluate the provided black box against the function regression task, /// and return its fitness score. /// </summary> /// <param name="box">The black box to evaluate.</param> /// <returns>A new instance of <see cref="FitnessInfo"/>.</returns> public FitnessInfo Evaluate(IBlackBox <double> box) { // Probe the black box over the full range of the input parameter. _blackBoxProbe.Probe(box, _yArr); // Calc gradients. FuncRegressionUtils.CalcGradients(_paramSamplingInfo, _yArr, _gradientArr); // Calc y position mean squared error (MSE), and apply weighting. double yMse = MathSpanUtils.MeanSquaredDelta(_yArr, _yArrTarget); yMse *= _yMseWeight; // Calc gradient mean squared error. double gradientMse = MathSpanUtils.MeanSquaredDelta(_gradientArr, _gradientArrTarget); gradientMse *= _gradientMseWeight; // Calc fitness as the inverse of MSE (higher value is fitter). // Add a constant to avoid divide by zero, and to constrain the fitness range between bad and good solutions; // this allows the selection strategy to select solutions that are mediocre and therefore helps preserve diversity. double fitness = 20.0 / (yMse + gradientMse + 0.02); return(new FitnessInfo(fitness)); }
private static void MeanSquaredDelta_Inner(UniformDistributionSampler sampler, int len) { // Alloc arrays and fill with uniform random noise. double[] a = new double[len]; double[] b = new double[len]; sampler.Sample(a); sampler.Sample(b); // Calc results and compare. double expected = PointwiseSumSquaredDelta(a, b) / a.Length; double actual = MathSpanUtils.MeanSquaredDelta(a, b); Assert.Equal(expected, actual, 10); }