/// <summary>
        /// Evaluate the provided black box against the function regression task,
        /// and return its fitness score.
        /// </summary>
        /// <param name="box">The black box to evaluate.</param>
        /// <returns>A new instance of <see cref="FitnessInfo"/>.</returns>
        public FitnessInfo Evaluate(IBlackBox <double> box)
        {
            // Probe the black box over the full range of the input parameter.
            _blackBoxProbe.Probe(box, _yArr);

            // Calc gradients.
            FuncRegressionUtils.CalcGradients(_paramSamplingInfo, _yArr, _gradientArr);

            // Calc y position mean squared error (MSE), and apply weighting.
            double yMse = MathSpanUtils.MeanSquaredDelta(_yArr, _yArrTarget);

            yMse *= _yMseWeight;

            // Calc gradient mean squared error.
            double gradientMse = MathSpanUtils.MeanSquaredDelta(_gradientArr, _gradientArrTarget);

            gradientMse *= _gradientMseWeight;

            // Calc fitness as the inverse of MSE (higher value is fitter).
            // Add a constant to avoid divide by zero, and to constrain the fitness range between bad and good solutions;
            // this allows the selection strategy to select solutions that are mediocre and therefore helps preserve diversity.
            double fitness = 20.0 / (yMse + gradientMse + 0.02);

            return(new FitnessInfo(fitness));
        }
示例#2
0
        private static void MeanSquaredDelta_Inner(UniformDistributionSampler sampler, int len)
        {
            // Alloc arrays and fill with uniform random noise.
            double[] a = new double[len];
            double[] b = new double[len];
            sampler.Sample(a);
            sampler.Sample(b);

            // Calc results and compare.
            double expected = PointwiseSumSquaredDelta(a, b) / a.Length;
            double actual   = MathSpanUtils.MeanSquaredDelta(a, b);

            Assert.Equal(expected, actual, 10);
        }