public override void Dispose() { if (grayMat != null) { grayMat.Dispose(); grayMat = null; } if (faces != null) { faces.Dispose(); } if (debugMat != null) { debugMat.Dispose(); debugMat = null; } if (debugTexture != null) { Texture2D.Destroy(debugTexture); debugTexture = null; } #if UNITY_WEBGL && !UNITY_EDITOR if (getFilePath_Coroutine != null) { StopCoroutine(getFilePath_Coroutine); ((IDisposable)getFilePath_Coroutine).Dispose(); } #endif }
/// <summary> /// Raises the destroy event. /// </summary> public override void Dispose() { if (grayMat != null) { grayMat.Dispose(); } if (faces != null) { faces.Dispose(); } if (texture != null) { Texture2D.Destroy(texture); texture = null; } #if UNITY_WEBGL && !UNITY_EDITOR foreach (var coroutine in coroutines) { StopCoroutine(coroutine); ((IDisposable)coroutine).Dispose(); } #endif }
/// <summary> /// Raises the webcam texture to mat helper disposed event. /// </summary> public void OnWebCamTextureToMatHelperDisposed() { Debug.Log("OnWebCamTextureToMatHelperDisposed"); if (grayMat != null) { grayMat.Dispose(); } if (effectsMat != null) { effectsMat.Dispose(); } if (texture != null) { Texture2D.Destroy(texture); texture = null; } if (faces != null) { faces.Dispose(); } }
/// <summary> /// Raises the web cam texture to mat helper disposed event. /// </summary> public void OnWebCamTextureToMatHelperDisposed() { Debug.Log("OnWebCamTextureToMatHelperDisposed"); processingAreaMat.Dispose(); grayMat.Dispose(); faces.Dispose(); }
/// <summary> /// Raises the web cam texture to mat helper disposed event. /// </summary> public void OnWebCamTextureToMatHelperDisposed() { Debug.Log("OnWebCamTextureToMatHelperDisposed"); grayMat.Dispose(); cascade.Dispose(); faces.Dispose(); }
/// <summary> /// Raises the web cam texture to mat helper disposed event. /// </summary> public void OnWebCamTextureToMatHelperDisposed() { Debug.Log("OnWebCamTextureToMatHelperDisposed"); if (grayMat != null) { grayMat.Dispose(); } if (faces != null) { faces.Dispose(); } }
/// <summary> /// Raises the destroy event. /// </summary> void OnDestroy() { if (grayMat != null) { grayMat.Dispose(); } if (faces != null) { faces.Dispose(); } if (cascade != null) { cascade.Dispose(); } }
public void OnWebCamTextureToMatHelperDisposed() { if (grayMat != null) { grayMat.Dispose(); } if (texture != null) { Texture2D.Destroy(texture); texture = null; } if (faces != null) { faces.Dispose(); } }
/// <summary> /// Postprocess the specified frame, outs and net. /// </summary> /// <param name="frame">Frame.</param> /// <param name="outs">Outs.</param> /// <param name="net">Net.</param> private void postprocess(Mat frame, List <Mat> outs, Net net) { string outLayerType = outBlobTypes[0]; List <int> classIdsList = new List <int>(); List <float> confidencesList = new List <float>(); List <OpenCVForUnity.CoreModule.Rect> boxesList = new List <OpenCVForUnity.CoreModule.Rect>(); if (net.getLayer(new DictValue(0)).outputNameToIndex("im_info") != -1) { // Faster-RCNN or R-FCN // Network produces output blob with a shape 1x1xNx7 where N is a number of // detections and an every detection is a vector of values // [batchId, classId, confidence, left, top, right, bottom] if (outs.Count == 1) { outs[0] = outs[0].reshape(1, (int)outs[0].total() / 7); //Debug.Log ("outs[i].ToString() " + outs [0].ToString ()); float[] data = new float[7]; for (int i = 0; i < outs[0].rows(); i++) { outs[0].get(i, 0, data); float confidence = data[2]; if (confidence > confThreshold) { int class_id = (int)(data[1]); int left = (int)(data[3] * frame.cols()); int top = (int)(data[4] * frame.rows()); int right = (int)(data[5] * frame.cols()); int bottom = (int)(data[6] * frame.rows()); int width = right - left + 1; int height = bottom - top + 1; classIdsList.Add((int)(class_id) - 0); confidencesList.Add((float)confidence); boxesList.Add(new OpenCVForUnity.CoreModule.Rect(left, top, width, height)); } } } } else if (outLayerType == "DetectionOutput") { // Network produces output blob with a shape 1x1xNx7 where N is a number of // detections and an every detection is a vector of values // [batchId, classId, confidence, left, top, right, bottom] if (outs.Count == 1) { outs[0] = outs[0].reshape(1, (int)outs[0].total() / 7); //Debug.Log ("outs[i].ToString() " + outs [0].ToString ()); float[] data = new float[7]; for (int i = 0; i < outs[0].rows(); i++) { outs[0].get(i, 0, data); float confidence = data[2]; if (confidence > confThreshold) { int class_id = (int)(data[1]); int left = (int)(data[3] * frame.cols()); int top = (int)(data[4] * frame.rows()); int right = (int)(data[5] * frame.cols()); int bottom = (int)(data[6] * frame.rows()); int width = right - left + 1; int height = bottom - top + 1; classIdsList.Add((int)(class_id) - 0); confidencesList.Add((float)confidence); boxesList.Add(new OpenCVForUnity.CoreModule.Rect(left, top, width, height)); } } } } else if (outLayerType == "Region") { for (int i = 0; i < outs.Count; ++i) { // Network produces output blob with a shape NxC where N is a number of // detected objects and C is a number of classes + 4 where the first 4 // numbers are [center_x, center_y, width, height] //Debug.Log ("outs[i].ToString() "+outs[i].ToString()); float[] positionData = new float[5]; float[] confidenceData = new float[outs[i].cols() - 5]; for (int p = 0; p < outs[i].rows(); p++) { outs[i].get(p, 0, positionData); outs[i].get(p, 5, confidenceData); int maxIdx = confidenceData.Select((val, idx) => new { V = val, I = idx }).Aggregate((max, working) => (max.V > working.V) ? max : working).I; float confidence = confidenceData[maxIdx]; if (confidence > confThreshold) { int centerX = (int)(positionData[0] * frame.cols()); int centerY = (int)(positionData[1] * frame.rows()); int width = (int)(positionData[2] * frame.cols()); int height = (int)(positionData[3] * frame.rows()); int left = centerX - width / 2; int top = centerY - height / 2; classIdsList.Add(maxIdx); confidencesList.Add((float)confidence); boxesList.Add(new OpenCVForUnity.CoreModule.Rect(left, top, width, height)); } } } } else { Debug.Log("Unknown output layer type: " + outLayerType); } MatOfRect boxes = new MatOfRect(); boxes.fromList(boxesList); MatOfFloat confidences = new MatOfFloat(); confidences.fromList(confidencesList); MatOfInt indices = new MatOfInt(); Dnn.NMSBoxes(boxes, confidences, confThreshold, nmsThreshold, indices); //Debug.Log ("indices.dump () "+indices.dump ()); //Debug.Log ("indices.ToString () "+indices.ToString()); for (int i = 0; i < indices.total(); ++i) { int idx = (int)indices.get(i, 0)[0]; OpenCVForUnity.CoreModule.Rect box = boxesList[idx]; drawPred(classIdsList[idx], confidencesList[idx], box.x, box.y, box.x + box.width, box.y + box.height, frame); } indices.Dispose(); boxes.Dispose(); confidences.Dispose(); }
private void Run() { //if true, The error log of the Native side OpenCV will be displayed on the Unity Editor Console. Utils.setDebugMode(true); Mat frame = Imgcodecs.imread(scenetext01_jpg_filepath); #if !UNITY_WSA_10_0 if (frame.empty()) { Debug.LogError("text/scenetext01.jpg is not loaded.Please copy from “OpenCVForUnity/StreamingAssets/text/” to “Assets/StreamingAssets/” folder. "); } #endif Mat binaryMat = new Mat(); Mat maskMat = new Mat(); List <MatOfPoint> regions = new List <MatOfPoint> (); ERFilter er_filter1 = Text.createERFilterNM1(trained_classifierNM1_xml_filepath, 8, 0.00015f, 0.13f, 0.2f, true, 0.1f); ERFilter er_filter2 = Text.createERFilterNM2(trained_classifierNM2_xml_filepath, 0.5f); Mat transition_p = new Mat(62, 62, CvType.CV_64FC1); // string filename = "OCRHMM_transitions_table.xml"; // FileStorage fs(filename, FileStorage::READ); // fs["transition_probabilities"] >> transition_p; // fs.release(); //Load TransitionProbabilitiesData. transition_p.put(0, 0, GetTransitionProbabilitiesData(OCRHMM_transitions_table_xml_filepath)); Mat emission_p = Mat.eye(62, 62, CvType.CV_64FC1); string voc = "abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789"; OCRHMMDecoder decoder = OCRHMMDecoder.create( OCRHMM_knn_model_data_xml_gz_filepath, voc, transition_p, emission_p); //Text Detection Imgproc.cvtColor(frame, frame, Imgproc.COLOR_BGR2RGB); Imgproc.cvtColor(frame, binaryMat, Imgproc.COLOR_RGB2GRAY); Imgproc.threshold(binaryMat, binaryMat, 0, 255, Imgproc.THRESH_BINARY | Imgproc.THRESH_OTSU); Core.absdiff(binaryMat, new Scalar(255), maskMat); Text.detectRegions(binaryMat, er_filter1, er_filter2, regions); Debug.Log("regions.Count " + regions.Count); MatOfRect groups_rects = new MatOfRect(); List <OpenCVForUnity.Rect> rects = new List <OpenCVForUnity.Rect> (); Text.erGrouping(frame, binaryMat, regions, groups_rects); for (int i = 0; i < regions.Count; i++) { regions [i].Dispose(); } regions.Clear(); rects.AddRange(groups_rects.toList()); groups_rects.Dispose(); //Text Recognition (OCR) List <Mat> detections = new List <Mat> (); for (int i = 0; i < (int)rects.Count; i++) { Mat group_img = new Mat(); maskMat.submat(rects [i]).copyTo(group_img); Core.copyMakeBorder(group_img, group_img, 15, 15, 15, 15, Core.BORDER_CONSTANT, new Scalar(0)); detections.Add(group_img); } Debug.Log("detections.Count " + detections.Count); //#Visualization for (int i = 0; i < rects.Count; i++) { Imgproc.rectangle(frame, new Point(rects [i].x, rects [i].y), new Point(rects [i].x + rects [i].width, rects [i].y + rects [i].height), new Scalar(255, 0, 0), 2); Imgproc.rectangle(frame, new Point(rects [i].x, rects [i].y), new Point(rects [i].x + rects [i].width, rects [i].y + rects [i].height), new Scalar(255, 255, 255), 1); string output = decoder.run(detections [i], 0); if (!string.IsNullOrEmpty(output)) { Debug.Log("output " + output); Imgproc.putText(frame, output, new Point(rects [i].x, rects [i].y), Core.FONT_HERSHEY_SIMPLEX, 0.5, new Scalar(0, 0, 255), 1, Imgproc.LINE_AA, false); } } Texture2D texture = new Texture2D(frame.cols(), frame.rows(), TextureFormat.RGBA32, false); Utils.matToTexture2D(frame, texture); // Texture2D texture = new Texture2D (detections [0].cols (), detections [0].rows (), TextureFormat.RGBA32, false); // // Utils.matToTexture2D (detections [0], texture); gameObject.GetComponent <Renderer> ().material.mainTexture = texture; for (int i = 0; i < detections.Count; i++) { detections [i].Dispose(); } binaryMat.Dispose(); maskMat.Dispose(); Utils.setDebugMode(false); }
/// <summary> /// Postprocess the specified frame, outs and net. /// </summary> /// <param name="frame">Frame.</param> /// <param name="outs">Outs.</param> /// <param name="net">Net.</param> private void postprocess(Mat frame, List <Mat> outs, Net net) { string outLayerType = outBlobTypes[0]; List <int> classIdsList = new List <int>(); List <float> confidencesList = new List <float>(); List <OpenCVForUnity.CoreModule.Rect> boxesList = new List <OpenCVForUnity.CoreModule.Rect>(); if (outLayerType == "Region") { for (int i = 0; i < outs.Count; ++i) { // Network produces output blob with a shape NxC where N is a number of // detected objects and C is a number of classes + 4 where the first 4 // numbers are [center_x, center_y, width, height] //Debug.Log("outs[i].ToString() " + outs[i].ToString()); float[] positionData = new float[5]; float[] confidenceData = new float[outs[i].cols() - 5]; for (int p = 0; p < outs[i].rows(); p++) { outs[i].get(p, 0, positionData); outs[i].get(p, 5, confidenceData); int maxIdx = confidenceData.Select((val, idx) => new { V = val, I = idx }).Aggregate((max, working) => (max.V > working.V) ? max : working).I; float confidence = confidenceData[maxIdx]; if (confidence > confThreshold) { int centerX = (int)(positionData[0] * frame.cols()); int centerY = (int)(positionData[1] * frame.rows()); int width = (int)(positionData[2] * frame.cols()); int height = (int)(positionData[3] * frame.rows()); int left = centerX - width / 2; int top = centerY - height / 2; classIdsList.Add(maxIdx); confidencesList.Add((float)confidence); boxesList.Add(new OpenCVForUnity.CoreModule.Rect(left, top, width, height)); } } } } else { Debug.Log("Unknown output layer type: " + outLayerType); } MatOfRect boxes = new MatOfRect(); boxes.fromList(boxesList); MatOfFloat confidences = new MatOfFloat(); confidences.fromList(confidencesList); MatOfInt indices = new MatOfInt(); Dnn.NMSBoxes(boxes, confidences, confThreshold, nmsThreshold, indices); //Check the Language selected switch (menuVariables.GetLanguage()) { case "EN": vocOffset = 0; break; case "ES": vocOffset = 80; break; case "FR": vocOffset = 160; break; case "DE": vocOffset = 240; break; case "IT": vocOffset = 320; break; default: vocOffset = 0; break; } //Draw the bouding box only if its in the center of the image (On Cursor) for (int i = 0; i < indices.total(); ++i) { int idx = (int)indices.get(i, 0)[0]; OpenCVForUnity.CoreModule.Rect box = boxesList[idx]; if (isOnCursor(box, cursorObject.GetComponent <Cursor>())) { drawPred(vocOffset + classIdsList[idx], confidencesList[idx], box.x, box.y, box.x + box.width, box.y + box.height, frame); wordDisplay.text = classNames[classIdsList[idx]]; //Update the text summarizing the object encountered if (!vocIDList.Contains(classIdsList[idx])) { //Update the vocabulary learned vocIDList.Add(classIdsList[idx]); EnglishText.text += "\n" + classNames[classIdsList[idx]] + "\n"; SpanishText.text += "\n" + classNames[80 + classIdsList[idx]] + "\n"; FrenchText.text += "\n" + classNames[160 + classIdsList[idx]] + "\n"; GermanText.text += "\n" + classNames[240 + classIdsList[idx]] + "\n"; ItalianText.text += "\n" + classNames[320 + classIdsList[idx]] + "\n"; } } } indices.Dispose(); boxes.Dispose(); confidences.Dispose(); }
/// <summary> /// Process /// </summary> /// <returns></returns> private async void Process() { float DOWNSCALE_RATIO = 1.0f; while (true) { // Check TaskCancel if (tokenSource.Token.IsCancellationRequested) { break; } rgbaMat = webCamTextureToMatHelper.GetMat(); // Debug.Log ("rgbaMat.ToString() " + rgbaMat.ToString ()); Mat downScaleRgbaMat = null; DOWNSCALE_RATIO = 1.0f; if (enableDownScale) { downScaleRgbaMat = imageOptimizationHelper.GetDownScaleMat(rgbaMat); DOWNSCALE_RATIO = imageOptimizationHelper.downscaleRatio; } else { downScaleRgbaMat = rgbaMat; DOWNSCALE_RATIO = 1.0f; } Imgproc.cvtColor(downScaleRgbaMat, bgrMat, Imgproc.COLOR_RGBA2BGR); await Task.Run(() => { // detect faces on the downscale image if (!enableSkipFrame || !imageOptimizationHelper.IsCurrentFrameSkipped()) { if (net == null) { Imgproc.putText(rgbaMat, "model file is not loaded.", new Point(5, rgbaMat.rows() - 30), Imgproc.FONT_HERSHEY_SIMPLEX, 0.7, new Scalar(255, 255, 255, 255), 2, Imgproc.LINE_AA, false); Imgproc.putText(rgbaMat, "Please read console message.", new Point(5, rgbaMat.rows() - 10), Imgproc.FONT_HERSHEY_SIMPLEX, 0.7, new Scalar(255, 255, 255, 255), 2, Imgproc.LINE_AA, false); } else { // Create a 4D blob from a frame. Size inpSize = new Size(inpWidth > 0 ? inpWidth : bgrMat.cols(), inpHeight > 0 ? inpHeight : bgrMat.rows()); Mat blob = Dnn.blobFromImage(bgrMat, scale, inpSize, mean, swapRB, false); // Run a model. net.setInput(blob); if (net.getLayer(new DictValue(0)).outputNameToIndex("im_info") != -1) { // Faster-RCNN or R-FCN Imgproc.resize(bgrMat, bgrMat, inpSize); Mat imInfo = new Mat(1, 3, CvType.CV_32FC1); imInfo.put(0, 0, new float[] { (float)inpSize.height, (float)inpSize.width, 1.6f }); net.setInput(imInfo, "im_info"); } TickMeter tm = new TickMeter(); tm.start(); List <Mat> outs = new List <Mat>(); net.forward(outs, outBlobNames); tm.stop(); // Debug.Log ("Inference time, ms: " + tm.getTimeMilli ()); postprocess(bgrMat, outs, net); for (int i = 0; i < outs.Count; i++) { outs[i].Dispose(); } blob.Dispose(); if (enableDownScale) { for (int i = 0; i < _boxesList.Count; ++i) { var rect = _boxesList[i]; _boxesList[i] = new OpenCVForUnity.CoreModule.Rect( (int)(rect.x * DOWNSCALE_RATIO), (int)(rect.y * DOWNSCALE_RATIO), (int)(rect.width * DOWNSCALE_RATIO), (int)(rect.height * DOWNSCALE_RATIO)); } } } //Imgproc.rectangle(rgbaMat, new Point(0, 0), new Point(rgbaMat.width(), rgbaMat.height()), new Scalar(0, 0, 0, 0), -1); MatOfRect boxes = new MatOfRect(); boxes.fromList(_boxesList); MatOfFloat confidences = new MatOfFloat(); confidences.fromList(_confidencesList); MatOfInt indices = new MatOfInt(); Dnn.NMSBoxes(boxes, confidences, confThreshold, nmsThreshold, indices); // Debug.Log ("indices.dump () "+indices.dump ()); // Debug.Log ("indices.ToString () "+indices.ToString()); for (int i = 0; i < indices.total(); ++i) { int idx = (int)indices.get(i, 0)[0]; OpenCVForUnity.CoreModule.Rect box = _boxesList[idx]; drawPred(_classIdsList[idx], _confidencesList[idx], box.x, box.y, box.x + box.width, box.y + box.height, rgbaMat); } indices.Dispose(); boxes.Dispose(); confidences.Dispose(); } }); Utils.fastMatToTexture2D(rgbaMat, texture); Thread.Sleep(10); } }
/// <summary> /// Scanning the specified frame, outs and net. /// </summary> /// <param name="frame">Frame.</param> /// <param name="outs">Outs.</param> /// <param name="net">Net.</param> private void postscan(Mat frame, List <Mat> outs, Net net) { string outLayerType = outBlobTypes[0]; List <int> classIdsList = new List <int>(); List <float> confidencesList = new List <float>(); List <OpenCVForUnity.CoreModule.Rect> boxesList = new List <OpenCVForUnity.CoreModule.Rect>(); if (outLayerType == "Region") { for (int i = 0; i < outs.Count; ++i) { // Network produces output blob with a shape NxC where N is a number of // detected objects and C is a number of classes + 4 where the first 4 // numbers are [center_x, center_y, width, height] //Debug.Log("outs[i].ToString() " + outs[i].ToString()); float[] positionData = new float[5]; float[] confidenceData = new float[outs[i].cols() - 5]; for (int p = 0; p < outs[i].rows(); p++) { outs[i].get(p, 0, positionData); outs[i].get(p, 5, confidenceData); int maxIdx = confidenceData.Select((val, idx) => new { V = val, I = idx }).Aggregate((max, working) => (max.V > working.V) ? max : working).I; float confidence = confidenceData[maxIdx]; if (confidence > confThreshold) { int centerX = (int)(positionData[0] * frame.cols()); int centerY = (int)(positionData[1] * frame.rows()); int width = (int)(positionData[2] * frame.cols()); int height = (int)(positionData[3] * frame.rows()); int left = centerX - width / 2; int top = centerY - height / 2; classIdsList.Add(maxIdx); confidencesList.Add((float)confidence); boxesList.Add(new OpenCVForUnity.CoreModule.Rect(left, top, width, height)); } } } } else { Debug.Log("Unknown output layer type: " + outLayerType); } MatOfRect boxes = new MatOfRect(); boxes.fromList(boxesList); MatOfFloat confidences = new MatOfFloat(); confidences.fromList(confidencesList); MatOfInt indices = new MatOfInt(); Dnn.NMSBoxes(boxes, confidences, confThreshold, nmsThreshold, indices); //for-loop for the mini game - if a new class appears, add it to the for (int i = 0; i < indices.total(); ++i) { int idx = (int)indices.get(i, 0)[0]; if (!minigameList.Contains(classIdsList[idx])) { Debug.Log(classNames[classIdsList[idx]]); minigameList.Add(classIdsList[idx]); if (minigameList.Count() > 1) { wordDisplay.text = minigameList.Count().ToString() + " words"; } else { wordDisplay.text = minigameList.Count().ToString() + " word"; } } } indices.Dispose(); boxes.Dispose(); confidences.Dispose(); }
// Update is called once per frame void Update() { if (webCamTextureToMatHelper.IsPlaying() && webCamTextureToMatHelper.DidUpdateThisFrame()) { Mat rgbaMat = webCamTextureToMatHelper.GetMat(); Imgproc.cvtColor(rgbaMat, rgbMat, Imgproc.COLOR_RGBA2RGB); /*Text Detection*/ Imgproc.cvtColor(rgbMat, binaryMat, Imgproc.COLOR_RGB2GRAY); Imgproc.threshold(binaryMat, binaryMat, 0, 255, Imgproc.THRESH_BINARY | Imgproc.THRESH_OTSU); Core.absdiff(binaryMat, new Scalar(255), maskMat); List <MatOfPoint> regions = new List <MatOfPoint> (); OpenCVForUnity.Text.detectRegions(binaryMat, er_filter1, er_filter2, regions); // Debug.Log ("regions.Count " + regions.Count); MatOfRect groups_rects = new MatOfRect(); List <OpenCVForUnity.Rect> rects = new List <OpenCVForUnity.Rect> (); if (regions.Count > 0) { OpenCVForUnity.Text.erGrouping(rgbMat, binaryMat, regions, groups_rects); } for (int i = 0; i < regions.Count; i++) { regions [i].Dispose(); } regions.Clear(); rects.AddRange(groups_rects.toList()); groups_rects.Dispose(); /*Text Recognition (OCR)*/ List <Mat> detections = new List <Mat> (); for (int i = 0; i < (int)rects.Count; i++) { Mat group_img = new Mat(); maskMat.submat(rects [i]).copyTo(group_img); Core.copyMakeBorder(group_img, group_img, 15, 15, 15, 15, Core.BORDER_CONSTANT, new Scalar(0)); detections.Add(group_img); } // Debug.Log ("detections.Count " + detections.Count); // Debug.Log ("rects.Count " + rects.Count); //#Visualization for (int i = 0; i < rects.Count; i++) { Imgproc.rectangle(rgbaMat, new Point(rects [i].x, rects [i].y), new Point(rects [i].x + rects [i].width, rects [i].y + rects [i].height), new Scalar(255, 0, 0, 255), 2); Imgproc.rectangle(rgbaMat, new Point(rects [i].x, rects [i].y), new Point(rects [i].x + rects [i].width, rects [i].y + rects [i].height), new Scalar(255, 255, 255, 255), 1); Imgproc.putText(rgbaMat, "" + i, new Point(rects [i].x, rects [i].y), Core.FONT_HERSHEY_SIMPLEX, 0.5, new Scalar(255, 0, 0, 255), 1, Imgproc.LINE_AA, false); } for (int i = 0; i < detections.Count; i++) { string output = decoder.run(detections [i], 0); Debug.Log("output " + output); if (string.IsNullOrEmpty(output)) { Debug.LogError("IsNullOrEmpty output " + output); } else { Imgproc.putText(rgbaMat, " " + output, new Point(rects [i].x, rects [i].y), Core.FONT_HERSHEY_SIMPLEX, 0.5, new Scalar(255, 0, 0, 255), 1, Imgproc.LINE_AA, false); } } for (int i = 0; i < detections.Count; i++) { detections [i].Dispose(); } detections.Clear(); Imgproc.putText(rgbaMat, "W:" + rgbaMat.width() + " H:" + rgbaMat.height() + " SO:" + Screen.orientation, new Point(5, rgbaMat.rows() - 10), Core.FONT_HERSHEY_SIMPLEX, 1.0, new Scalar(255, 255, 255, 255), 2, Imgproc.LINE_AA, false); Utils.matToTexture2D(rgbaMat, texture, webCamTextureToMatHelper.GetBufferColors()); } }