示例#1
0
        /// <summary>
        /// Constructs a new demo.
        /// </summary>
        /// <param name="game">Game owning this demo.</param>
        public MPRTestDemo(DemosGame game)
            : base(game)
        {
            var shapeA = new BoxShape(1, 1, 1);

            shapeA.CollisionMargin = 0;
            var shapeB = new BoxShape(1, 1, 1);

            shapeB.CollisionMargin = 0;

            var     transformA = new RigidTransform(new Vector3(0, 0, 0));
            var     transformB = new RigidTransform(new Vector3(.5m, .5m, 0));
            Vector3 overlap;
            bool    overlapped = MPRToolbox.GetLocalOverlapPosition(shapeA, shapeB, ref transformB, out overlap);
            Vector3 normal;
            Fix64   depth;
            Vector3 direction = new Vector3(0, -1, 0);

            MPRToolbox.LocalSurfaceCast(shapeA, shapeB, ref transformB, ref direction, out depth, out normal);

            ContactData contactData;

            //bool overlappedOld = MPRToolboxOld.AreObjectsColliding(shapeA, shapeB, ref transformA, ref transformB, out contactData);

            //Random rand = new Random(0);
            //for (int i = 0; i < 10000000; i++)
            //{
            //    transformA = new RigidTransform(new Vector3((Fix64)rand.NextDouble() * 10 - 5, (Fix64)rand.NextDouble() * 10 - 5, (Fix64)rand.NextDouble() * 10 - 5),
            //        Quaternion.CreateFromYawPitchRoll((Fix64)rand.NextDouble() * 1000, (Fix64)rand.NextDouble() * 1000, (Fix64)rand.NextDouble() * 1000));
            //    transformB = new RigidTransform(new Vector3((Fix64)rand.NextDouble() * 10 - 5, (Fix64)rand.NextDouble() * 10 - 5, (Fix64)rand.NextDouble() * 10 - 5),
            //        Quaternion.CreateFromYawPitchRoll((Fix64)rand.NextDouble() * 1000, (Fix64)rand.NextDouble() * 1000, (Fix64)rand.NextDouble() * 1000));

            //    overlapped = MPRTesting.GetOverlapPosition(shapeA, shapeB, ref transformA, ref transformB, out overlap);

            //    overlappedOld = MPRToolbox.AreObjectsColliding(shapeA, shapeB, ref transformA, ref transformB, out contactData);

            //    if (overlapped && !overlappedOld &&
            //        (!MPRToolbox.IsPointInsideShape(ref overlap, shapeA, ref transformA) ||
            //        !MPRToolbox.IsPointInsideShape(ref overlap, shapeB, ref transformB)))
            //        Debug.WriteLine("Break.");
            //    if (overlappedOld && !overlapped &&
            //        (!MPRToolbox.IsPointInsideShape(ref contactData.Position, shapeA, ref transformA) ||
            //        !MPRToolbox.IsPointInsideShape(ref contactData.Position, shapeB, ref transformB)))
            //        Debug.WriteLine("Break.");
            //    if (overlapped && overlappedOld &&
            //        (!MPRToolbox.IsPointInsideShape(ref overlap, shapeA, ref transformA) ||
            //        !MPRToolbox.IsPointInsideShape(ref overlap, shapeB, ref transformB) ||
            //        !MPRToolbox.IsPointInsideShape(ref contactData.Position, shapeA, ref transformA) ||
            //        !MPRToolbox.IsPointInsideShape(ref contactData.Position, shapeB, ref transformB)))
            //        Debug.WriteLine("Break.");
            //}

            //Do these tests with rotationally immobile objects.
            CollisionDetectionSettings.DefaultMargin = 0;
            groundWidth  = 10;
            groundHeight = .1m;
            groundLength = 10;
            //a = new Box(new Vector3(0, -5, 0), groundWidth, groundHeight, groundLength, 1);
            //a = new TransformableEntity(new Vector3(0,0,0), new TriangleShape(new Vector3(-5, -5, -5), new Vector3(5, -5, -5), new Vector3(-5, -5, 5)), Matrix3x3.Identity);
            a = new Triangle(new Vector3(0, -5, 0), new Vector3(5, -5, 0), new Vector3(5, -5, 5), 1);
            Space.Add(a);

            Space.ForceUpdater.Gravity = new Vector3();
            boxWidth  = .25m;
            boxHeight = .05m;
            boxLength = 1;
            b         = new TransformableEntity(new Vector3(0, 2, 0), new BoxShape(boxWidth, boxHeight, boxLength), Matrix3x3.Identity, 1);
            //b = new Cone(new Vector3(0, 2, 0), .2m, .1m, 1);
            //b = new Capsule(new Vector3(0, 2, 0), 1, .5m, 1);
            //b = new Capsule(new Vector3(0, 2, 0), 1, .5m, 1);
            b.LocalInertiaTensorInverse = new Matrix3x3();
            CollisionRules.AddRule(b, a, CollisionRule.NoSolver);
            b.ActivityInformation.IsAlwaysActive = true;
            Space.Add(b);
            //Space.Add(new TransformableEntity(new Vector3(0, 4, 0), new BoxShape(1, 1, 1), Matrix3x3.Identity, 1));
            //Space.Add( new TransformableEntity(new Vector3(0, 6, 0), new BoxShape(1, 1, 1), Matrix3x3.Identity, 1));

            //Vector3[] vertices = new Vector3[] { new Vector3(0, -5, 0), new Vector3(5, -5, 0), new Vector3(5, -5, 5), new Vector3(0, -60, 5) };
            //int[] indices = new int[] { 0, 1, 2 , 0, 2, 3 };
            //StaticMesh mesh = new StaticMesh(vertices, indices);
            //Space.Add(mesh);
            //mesh.ImproveBoundaryBehavior = true;
            //mesh.Sidedness = TriangleSidedness.Counterclockwise;
            //game.ModelDrawer.Add(mesh);
            //mesh.CollisionRules.Personal = CollisionRule.NoSolver;
        }
示例#2
0
        public override void Update(Fix64 dt)
        {
            if (Game.KeyboardInput.IsKeyDown(Keys.Left))
            {
                rayCastDirection = Matrix3x3.Transform(rayCastDirection, Matrix3x3.CreateFromAxisAngle(Vector3.Forward, .01m));
            }
            if (Game.KeyboardInput.IsKeyDown(Keys.Right))
            {
                rayCastDirection = Matrix3x3.Transform(rayCastDirection, Matrix3x3.CreateFromAxisAngle(Vector3.Forward, -.01m));
            }
            if (Game.KeyboardInput.IsKeyDown(Keys.Down))
            {
                rayCastDirection = Matrix3x3.Transform(rayCastDirection, Matrix3x3.CreateFromAxisAngle(Vector3.Right, .01m));
            }
            if (Game.KeyboardInput.IsKeyDown(Keys.Up))
            {
                rayCastDirection = Matrix3x3.Transform(rayCastDirection, Matrix3x3.CreateFromAxisAngle(Vector3.Right, -.01m));
            }


            if (Game.KeyboardInput.IsKeyDown(Keys.P))
            {
                Debug.WriteLine("Break.");
            }

            base.Update(dt);

            RigidTransform localTransformB;
            RigidTransform aTransform = a.CollisionInformation.WorldTransform, bTransform = b.CollisionInformation.WorldTransform;

            MinkowskiToolbox.GetLocalTransform(ref aTransform, ref bTransform, out localTransformB);

            Vector3 position;

            if (MPRToolbox.GetLocalOverlapPosition((a.CollisionInformation.Shape as ConvexShape), (b.CollisionInformation.Shape as ConvexShape), ref localTransformB, out position))
            {
                //Vector3 rayCastDirection = new Vector3(1,0,0);// (Vector3.Normalize(localDirection) + Vector3.Normalize(collidableB.worldTransform.Position - collidableA.worldTransform.Position)) / 2;
                Fix64   previousT;
                Vector3 previousNormal;
                Fix64   t;
                Vector3 normal;

                rayCastDirection = localTransformB.Position;
                MPRToolbox.LocalSurfaceCast((a.CollisionInformation.Shape as ConvexShape), (b.CollisionInformation.Shape as ConvexShape), ref localTransformB, ref rayCastDirection, out previousT, out previousNormal);
                //Vector3 secondDirection = Vector3.Cross(rayCastDirection, Vector3.Up);
                //MPRTesting.LocalSurfaceCast((a.CollisionInformation.Shape as ConvexShape), (b.CollisionInformation.Shape as ConvexShape), ref localTransformB, ref secondDirection, out t, out normal);
                //if (t < previousT)
                //{
                //    previousNormal = normal;
                //    previousT = t;
                //}
                //Vector3 thirdDirection = Vector3.Cross(secondDirection, rayCastDirection);
                //MPRTesting.LocalSurfaceCast((a.CollisionInformation.Shape as ConvexShape), (b.CollisionInformation.Shape as ConvexShape), ref localTransformB, ref thirdDirection, out t, out normal);
                //if (t < previousT)
                //{
                //    previousNormal = normal;
                //    previousT = t;
                //}
                //Vector3 fourthDirection = -secondDirection;
                //MPRTesting.LocalSurfaceCast((a.CollisionInformation.Shape as ConvexShape), (b.CollisionInformation.Shape as ConvexShape), ref localTransformB, ref fourthDirection, out t, out normal);
                //if (t < previousT)
                //{
                //    previousNormal = normal;
                //    previousT = t;
                //}
                //Vector3 fifthDirection = -thirdDirection;
                //MPRTesting.LocalSurfaceCast((a.CollisionInformation.Shape as ConvexShape), (b.CollisionInformation.Shape as ConvexShape), ref localTransformB, ref fifthDirection, out t, out normal);
                //if (t < previousT)
                //{
                //    previousNormal = normal;
                //    previousT = t;
                //}

                //Correct the penetration depth.

                MPRToolbox.LocalSurfaceCast((a.CollisionInformation.Shape as ConvexShape), (b.CollisionInformation.Shape as ConvexShape), ref localTransformB, ref previousNormal, out t, out normal);
                contactDepth  = t;
                contactNormal = previousNormal;

                ////Converge to local minimum.
                //while (true)
                //{
                //    MPRTesting.LocalSurfaceCast((a.CollisionInformation.Shape as ConvexShape), (b.CollisionInformation.Shape as ConvexShape), ref localTransformB, ref previousNormal, out t, out normal);
                //    if (previousT - t <= Toolbox.BigEpsilon)
                //        break;

                //    previousT = t;
                //    previousNormal = normal;
                //}
            }

            #region Box Box minkowski sum
            ////Construct explicit minkowski sum.
            //Vector3[] aLines = new Vector3[8];
            //aLines[0] = new Vector3(-boxWidth / 2, -boxHeight / 2, -boxLength / 2);
            //aLines[1] = new Vector3(-boxWidth / 2, -boxHeight / 2, boxLength / 2);
            //aLines[2] = new Vector3(-boxWidth / 2, boxHeight / 2, -boxLength / 2);
            //aLines[3] = new Vector3(-boxWidth / 2, boxHeight / 2, boxLength / 2);
            //aLines[4] = new Vector3(boxWidth / 2, -boxHeight / 2, -boxLength / 2);
            //aLines[5] = new Vector3(boxWidth / 2, -boxHeight / 2, boxLength / 2);
            //aLines[6] = new Vector3(boxWidth / 2, boxHeight / 2, -boxLength / 2);
            //aLines[7] = new Vector3(boxWidth / 2, boxHeight / 2, boxLength / 2);

            //Vector3[] bLines = new Vector3[8];
            //bLines[0] = new Vector3(-groundWidth / 2, -groundHeight / 2, -groundLength / 2);
            //bLines[1] = new Vector3(-groundWidth / 2, -groundHeight / 2, groundLength / 2);
            //bLines[2] = new Vector3(-groundWidth / 2, groundHeight / 2, -groundLength / 2);
            //bLines[3] = new Vector3(-groundWidth / 2, groundHeight / 2, groundLength / 2);
            //bLines[4] = new Vector3(groundWidth / 2, -groundHeight / 2, -groundLength / 2);
            //bLines[5] = new Vector3(groundWidth / 2, -groundHeight / 2, groundLength / 2);
            //bLines[6] = new Vector3(groundWidth / 2, groundHeight / 2, -groundLength / 2);
            //bLines[7] = new Vector3(groundWidth / 2, groundHeight / 2, groundLength / 2);

            //for (int i = 0; i < 8; i++)
            //    aLines[i] = Vector3.Transform(aLines[i], localTransformB.Matrix);

            //List<Vector3> vertices = new List<Vector3>();
            //for (int i = 0; i < 8; i++)
            //{
            //    for (int j = 0; j < 8; j++)
            //    {

            //        if (b.CollisionInformation.Pairs.Count > 0)
            //        {
            //            if (b.CollisionInformation.Pairs[0].BroadPhaseOverlap.EntryA == b.CollisionInformation)
            //                vertices.Add(aLines[i] - bLines[j]);
            //            else
            //                vertices.Add(bLines[i] - aLines[j]);
            //        }
            //        else
            //        {
            //            vertices.Add(bLines[i] - aLines[j]);
            //        }
            //    }
            //}

            //var indices = new List<int>();
            //Toolbox.GetConvexHull(vertices, indices);
            #endregion

            #region Arbitrary minkowski sum
            var     vertices = new List <Vector3>();
            Vector3 max;
            var     direction   = new Vector3();
            int     NumSamples  = 16;
            Fix64   angleChange = MathHelper.TwoPi / NumSamples;

            for (int i = 1; i < NumSamples / 2 - 1; i++)
            {
                Fix64 phi    = MathHelper.PiOver2 - i * angleChange;
                var   sinPhi = Fix64.Sin(phi);
                var   cosPhi = Fix64.Cos(phi);
                for (int j = 0; j < NumSamples; j++)
                {
                    Fix64 theta = j * angleChange;
                    direction.X = Fix64.Cos(theta) * cosPhi;
                    direction.Y = sinPhi;
                    direction.Z = Fix64.Sin(theta) * cosPhi;


                    MinkowskiToolbox.GetLocalMinkowskiExtremePoint(a.CollisionInformation.Shape as ConvexShape, b.CollisionInformation.Shape as ConvexShape, ref direction, ref localTransformB, out max);

                    vertices.Add(max);
                }
            }


            MinkowskiToolbox.GetLocalMinkowskiExtremePoint(a.CollisionInformation.Shape as ConvexShape, b.CollisionInformation.Shape as ConvexShape, ref Toolbox.UpVector, ref localTransformB, out max);
            vertices.Add(max);
            MinkowskiToolbox.GetLocalMinkowskiExtremePoint(a.CollisionInformation.Shape as ConvexShape, b.CollisionInformation.Shape as ConvexShape, ref Toolbox.DownVector, ref localTransformB, out max);
            vertices.Add(max);



            var indices = new List <int>();
            ConvexHullHelper.GetConvexHull(vertices, indices);
            #endregion

            minkowskiLines.Clear();
            for (int i = 0; i < indices.Count; i += 3)
            {
                minkowskiLines.Add(new VertexPositionColor(MathConverter.Convert(vertices[indices[i]]), Microsoft.Xna.Framework.Color.Blue));
                minkowskiLines.Add(new VertexPositionColor(MathConverter.Convert(vertices[indices[i + 1]]), Microsoft.Xna.Framework.Color.Blue));

                minkowskiLines.Add(new VertexPositionColor(MathConverter.Convert(vertices[indices[i + 1]]), Microsoft.Xna.Framework.Color.Blue));
                minkowskiLines.Add(new VertexPositionColor(MathConverter.Convert(vertices[indices[i + 2]]), Microsoft.Xna.Framework.Color.Blue));

                minkowskiLines.Add(new VertexPositionColor(MathConverter.Convert(vertices[indices[i + 2]]), Microsoft.Xna.Framework.Color.Blue));
                minkowskiLines.Add(new VertexPositionColor(MathConverter.Convert(vertices[indices[i]]), Microsoft.Xna.Framework.Color.Blue));
            }
        }
示例#3
0
        private bool DoDeepContact(out TinyStructList <ContactData> contactList)
        {
            //Find the origin to triangle center offset.
            Vector3 center;

            Vector3.Add(ref triangle.vA, ref triangle.vB, out center);
            Vector3.Add(ref center, ref triangle.vC, out center);
            Vector3.Multiply(ref center, 1f / 3f, out center);

            ContactData contact;

            contactList = new TinyStructList <ContactData>();

            if (MPRToolbox.AreLocalShapesOverlapping(convex, triangle, ref center, ref Toolbox.RigidIdentity))
            {
                float dot;


                Vector3 triangleNormal, ab, ac;
                Vector3.Subtract(ref triangle.vB, ref triangle.vA, out ab);
                Vector3.Subtract(ref triangle.vC, ref triangle.vA, out ac);
                Vector3.Cross(ref ab, ref ac, out triangleNormal);
                float lengthSquared = triangleNormal.LengthSquared();
                if (lengthSquared < Toolbox.Epsilon * .01f)
                {
                    //Degenerate triangle! That's no good.
                    //Just use the direction pointing from A to B, "B" being the triangle.  That direction is center - origin, or just center.
                    MPRToolbox.LocalSurfaceCast(convex, triangle, ref Toolbox.RigidIdentity, ref center, out contact.PenetrationDepth, out contact.Normal, out contact.Position);
                }
                else
                {
                    //Normalize the normal.
                    Vector3.Divide(ref triangleNormal, (float)Math.Sqrt(lengthSquared), out triangleNormal);


                    ////The first direction to check is one of the triangle's edge normals.  Choose the one that is most aligned with the offset from A to B.
                    ////Project the direction onto the triangle plane.
                    //Vector3.Dot(ref triangleNormal, ref center, out dot);
                    //Vector3 trianglePlaneDirection;
                    //Vector3.Multiply(ref triangleNormal, dot, out trianglePlaneDirection);
                    //Vector3.Subtract(ref trianglePlaneDirection, ref center, out trianglePlaneDirection);

                    ////To find out which edge to use, compute which region the direction is in.
                    ////This is done by constructing three planes which segment the triangle into three sub-triangles.

                    ////These planes are defined by A, origin, center; B, origin, center; C, origin, center.
                    ////The plane tests against the direction can be reordered to:
                    ////(center x direction) * A
                    ////(center x direction) * B
                    ////(center x direction) * C
                    //Vector3 OxD;
                    //Vector3.Cross(ref trianglePlaneDirection, ref center, out OxD);
                    //Vector3 p;

                    //float dotA, dotB, dotC;
                    //Vector3.Dot(ref triangle.vA, ref OxD, out dotA);
                    //Vector3.Dot(ref triangle.vB, ref OxD, out dotB);
                    //Vector3.Dot(ref triangle.vC, ref OxD, out dotC);

                    //if (dotA >= 0 && dotB <= 0)
                    //{
                    //    //Direction is in the AB edge zone.
                    //    //Compute the edge normal using AB x (AO x AB).
                    //    Vector3 AB, AO;
                    //    Vector3.Subtract(ref triangle.vB, ref triangle.vA, out AB);
                    //    Vector3.Subtract(ref center, ref triangle.vA, out AO);
                    //    Vector3.Cross(ref AO, ref AB, out p);
                    //    Vector3.Cross(ref AB, ref p, out trianglePlaneDirection);
                    //}
                    //else if (dotB >= 0 && dotC <= 0)
                    //{
                    //    //Direction is in the BC edge zone.
                    //    //Compute the edge normal using BC x (BO x BC).
                    //    Vector3 BC, BO;
                    //    Vector3.Subtract(ref triangle.vC, ref triangle.vB, out BC);
                    //    Vector3.Subtract(ref center, ref triangle.vB, out BO);
                    //    Vector3.Cross(ref BO, ref BC, out p);
                    //    Vector3.Cross(ref BC, ref p, out trianglePlaneDirection);

                    //}
                    //else // dotC > 0 && dotA < 0
                    //{
                    //    //Direction is in the CA edge zone.
                    //    //Compute the edge normal using CA x (CO x CA).
                    //    Vector3 CA, CO;
                    //    Vector3.Subtract(ref triangle.vA, ref triangle.vC, out CA);
                    //    Vector3.Subtract(ref center, ref triangle.vC, out CO);
                    //    Vector3.Cross(ref CO, ref CA, out p);
                    //    Vector3.Cross(ref CA, ref p, out trianglePlaneDirection);
                    //}



                    //dot = trianglePlaneDirection.LengthSquared();
                    //if (dot > Toolbox.Epsilon)
                    //{
                    //    Vector3.Divide(ref trianglePlaneDirection, (float)Math.Sqrt(dot), out trianglePlaneDirection);
                    //    MPRTesting.LocalSurfaceCast(convex, triangle, ref Toolbox.RigidIdentity, ref trianglePlaneDirection, out contact.PenetrationDepth, out contact.Normal);
                    //    //Check to see if the normal is facing in the proper direction, considering that this may not be a two-sided triangle.
                    //    Vector3.Dot(ref triangleNormal, ref contact.Normal, out dot);
                    //    if ((triangle.sidedness == TriangleSidedness.Clockwise && dot > 0) || (triangle.sidedness == TriangleSidedness.Counterclockwise && dot < 0))
                    //    {
                    //        //Normal was facing the wrong way.
                    //        //Instead of ignoring it entirely, correct the direction to as close as it can get by removing any component parallel to the triangle normal.
                    //        Vector3 previousNormal = contact.Normal;
                    //        Vector3.Dot(ref contact.Normal, ref triangleNormal, out dot);

                    //        Vector3.Multiply(ref contact.Normal, dot, out p);
                    //        Vector3.Subtract(ref contact.Normal, ref p, out contact.Normal);
                    //        float length = contact.Normal.LengthSquared();
                    //        if (length > Toolbox.Epsilon)
                    //        {
                    //            //Renormalize the corrected normal.
                    //            Vector3.Divide(ref contact.Normal, (float)Math.Sqrt(length), out contact.Normal);
                    //            Vector3.Dot(ref contact.Normal, ref previousNormal, out dot);
                    //            contact.PenetrationDepth *= dot;
                    //        }
                    //        else
                    //        {
                    //            contact.PenetrationDepth = float.MaxValue;
                    //            contact.Normal = new Vector3();
                    //        }
                    //    }
                    //}
                    //else
                    //{
                    //    contact.PenetrationDepth = float.MaxValue;
                    //    contact.Normal = new Vector3();
                    //}

                    //TODO: This tests all three edge axes with a full MPR raycast.  That's not really necessary; the correct edge normal should be discoverable, resulting in a single MPR raycast.

                    //Find the edge directions that will be tested with MPR.
                    Vector3 AO, BO, CO;
                    Vector3 AB, BC, CA;
                    Vector3.Subtract(ref center, ref triangle.vA, out AO);
                    Vector3.Subtract(ref center, ref triangle.vB, out BO);
                    Vector3.Subtract(ref center, ref triangle.vC, out CO);
                    Vector3.Subtract(ref triangle.vB, ref triangle.vA, out AB);
                    Vector3.Subtract(ref triangle.vC, ref triangle.vB, out BC);
                    Vector3.Subtract(ref triangle.vA, ref triangle.vC, out CA);


                    //We don't have to worry about degenerate triangles here because we've already handled that possibility above.
                    Vector3 ABnormal, BCnormal, CAnormal;

                    //Project the center onto the edge to find the direction from the center to the edge AB.
                    Vector3.Dot(ref AO, ref AB, out dot);
                    Vector3.Multiply(ref AB, dot / AB.LengthSquared(), out ABnormal);
                    Vector3.Subtract(ref AO, ref ABnormal, out ABnormal);
                    ABnormal.Normalize();

                    //Project the center onto the edge to find the direction from the center to the edge BC.
                    Vector3.Dot(ref BO, ref BC, out dot);
                    Vector3.Multiply(ref BC, dot / BC.LengthSquared(), out BCnormal);
                    Vector3.Subtract(ref BO, ref BCnormal, out BCnormal);
                    BCnormal.Normalize();

                    //Project the center onto the edge to find the direction from the center to the edge BC.
                    Vector3.Dot(ref CO, ref CA, out dot);
                    Vector3.Multiply(ref CA, dot / CA.LengthSquared(), out CAnormal);
                    Vector3.Subtract(ref CO, ref CAnormal, out CAnormal);
                    CAnormal.Normalize();


                    MPRToolbox.LocalSurfaceCast(convex, triangle, ref Toolbox.RigidIdentity, ref ABnormal, out contact.PenetrationDepth, out contact.Normal);
                    //Check to see if the normal is facing in the proper direction, considering that this may not be a two-sided triangle.
                    Vector3.Dot(ref triangleNormal, ref contact.Normal, out dot);
                    if ((triangle.sidedness == TriangleSidedness.Clockwise && dot > 0) || (triangle.sidedness == TriangleSidedness.Counterclockwise && dot < 0))
                    {
                        //Normal was facing the wrong way.
                        //Instead of ignoring it entirely, correct the direction to as close as it can get by removing any component parallel to the triangle normal.
                        Vector3 previousNormal = contact.Normal;
                        Vector3.Dot(ref contact.Normal, ref triangleNormal, out dot);

                        Vector3 p;
                        Vector3.Multiply(ref contact.Normal, dot, out p);
                        Vector3.Subtract(ref contact.Normal, ref p, out contact.Normal);
                        float length = contact.Normal.LengthSquared();
                        if (length > Toolbox.Epsilon)
                        {
                            //Renormalize the corrected normal.
                            Vector3.Divide(ref contact.Normal, (float)Math.Sqrt(length), out contact.Normal);
                            Vector3.Dot(ref contact.Normal, ref previousNormal, out dot);
                            contact.PenetrationDepth *= dot;
                        }
                        else
                        {
                            contact.PenetrationDepth = float.MaxValue;
                            contact.Normal           = new Vector3();
                        }
                    }



                    Vector3 candidateNormal;
                    float   candidateDepth;

                    MPRToolbox.LocalSurfaceCast(convex, triangle, ref Toolbox.RigidIdentity, ref BCnormal, out candidateDepth, out candidateNormal);
                    //Check to see if the normal is facing in the proper direction, considering that this may not be a two-sided triangle.
                    Vector3.Dot(ref triangleNormal, ref candidateNormal, out dot);
                    if ((triangle.sidedness == TriangleSidedness.Clockwise && dot > 0) || (triangle.sidedness == TriangleSidedness.Counterclockwise && dot < 0))
                    {
                        //Normal was facing the wrong way.
                        //Instead of ignoring it entirely, correct the direction to as close as it can get by removing any component parallel to the triangle normal.
                        Vector3 previousNormal = candidateNormal;
                        Vector3.Dot(ref candidateNormal, ref triangleNormal, out dot);

                        Vector3 p;
                        Vector3.Multiply(ref candidateNormal, dot, out p);
                        Vector3.Subtract(ref candidateNormal, ref p, out candidateNormal);
                        float length = candidateNormal.LengthSquared();
                        if (length > Toolbox.Epsilon)
                        {
                            //Renormalize the corrected normal.
                            Vector3.Divide(ref candidateNormal, (float)Math.Sqrt(length), out candidateNormal);
                            Vector3.Dot(ref candidateNormal, ref previousNormal, out dot);
                            candidateDepth *= dot;
                        }
                        else
                        {
                            contact.PenetrationDepth = float.MaxValue;
                            contact.Normal           = new Vector3();
                        }
                    }
                    if (candidateDepth < contact.PenetrationDepth)
                    {
                        contact.Normal           = candidateNormal;
                        contact.PenetrationDepth = candidateDepth;
                    }



                    MPRToolbox.LocalSurfaceCast(convex, triangle, ref Toolbox.RigidIdentity, ref CAnormal, out candidateDepth, out candidateNormal);
                    //Check to see if the normal is facing in the proper direction, considering that this may not be a two-sided triangle.
                    Vector3.Dot(ref triangleNormal, ref candidateNormal, out dot);
                    if ((triangle.sidedness == TriangleSidedness.Clockwise && dot > 0) || (triangle.sidedness == TriangleSidedness.Counterclockwise && dot < 0))
                    {
                        //Normal was facing the wrong way.
                        //Instead of ignoring it entirely, correct the direction to as close as it can get by removing any component parallel to the triangle normal.
                        Vector3 previousNormal = candidateNormal;
                        Vector3.Dot(ref candidateNormal, ref triangleNormal, out dot);

                        Vector3 p;
                        Vector3.Multiply(ref candidateNormal, dot, out p);
                        Vector3.Subtract(ref candidateNormal, ref p, out candidateNormal);
                        float length = candidateNormal.LengthSquared();
                        if (length > Toolbox.Epsilon)
                        {
                            //Renormalize the corrected normal.
                            Vector3.Divide(ref candidateNormal, (float)Math.Sqrt(length), out candidateNormal);
                            Vector3.Dot(ref candidateNormal, ref previousNormal, out dot);
                            candidateDepth *= dot;
                        }
                        else
                        {
                            contact.PenetrationDepth = float.MaxValue;
                            contact.Normal           = new Vector3();
                        }
                    }
                    if (candidateDepth < contact.PenetrationDepth)
                    {
                        contact.Normal           = candidateNormal;
                        contact.PenetrationDepth = candidateDepth;
                    }



                    //Try the depth along the positive triangle normal.

                    //If it's clockwise, this direction is unnecessary (the resulting normal would be invalidated by the onesidedness of the triangle).
                    if (triangle.sidedness != TriangleSidedness.Clockwise)
                    {
                        MPRToolbox.LocalSurfaceCast(convex, triangle, ref Toolbox.RigidIdentity, ref triangleNormal, out candidateDepth, out candidateNormal);
                        if (candidateDepth < contact.PenetrationDepth)
                        {
                            contact.Normal           = candidateNormal;
                            contact.PenetrationDepth = candidateDepth;
                        }
                    }

                    //Try the depth along the negative triangle normal.

                    //If it's counterclockwise, this direction is unnecessary (the resulting normal would be invalidated by the onesidedness of the triangle).
                    if (triangle.sidedness != TriangleSidedness.Counterclockwise)
                    {
                        Vector3.Negate(ref triangleNormal, out triangleNormal);
                        MPRToolbox.LocalSurfaceCast(convex, triangle, ref Toolbox.RigidIdentity, ref triangleNormal, out candidateDepth, out candidateNormal);
                        if (candidateDepth < contact.PenetrationDepth)
                        {
                            contact.Normal           = candidateNormal;
                            contact.PenetrationDepth = candidateDepth;
                        }
                    }
                }



                MPRToolbox.RefinePenetration(convex, triangle, ref Toolbox.RigidIdentity, contact.PenetrationDepth, ref contact.Normal, out contact.PenetrationDepth, out contact.Normal, out contact.Position);

                //It's possible for the normal to still face the 'wrong' direction according to one sided triangles.
                if (triangle.sidedness != TriangleSidedness.DoubleSided)
                {
                    Vector3.Dot(ref triangleNormal, ref contact.Normal, out dot);
                    if (dot < 0)
                    {
                        return(false);
                    }
                }


                ////The local casting can optionally continue.  Eventually, it will converge to the local minimum.
                //int optimizingCount = 0;
                //while (true)
                //{

                //    MPRTesting.LocalSurfaceCast(convex, triangle, ref Toolbox.RigidIdentity, ref contact.Normal, out candidateDepth, out candidateNormal);
                //    if (contact.PenetrationDepth - candidateDepth <= Toolbox.BigEpsilon ||
                //        ++optimizingCount < 4)
                //    {
                //        //If we've reached the end due to convergence, the normal will be extremely close to correct (if not 100% correct).
                //        //The candidateDepth computed is the previous contact normal's depth.
                //        //The reason why the previous normal is kept is that the last raycast computed the depth for that normal, not the new normal.
                //        contact.PenetrationDepth = candidateDepth;
                //        break;
                //    }


                //    contact.PenetrationDepth = candidateDepth;
                //    contact.Normal = candidateNormal;
                //}

                //Correct the penetration depth.
                //MPRTesting.LocalSurfaceCast(convex, triangle, ref Toolbox.RigidIdentity, ref contact.Normal, out contact.PenetrationDepth, out center); //Center is just a trash variable now.

                contact.Id = -1;

                if (contact.PenetrationDepth < convex.collisionMargin + triangle.collisionMargin)
                {
                    state = CollisionState.ExternalNear; //If it's emerged from the deep contact, we can go back to using the preferred GJK method.
                }
                contactList.Add(ref contact);
            }



            if (TryInnerSphereContact(out contact))
            {
                contactList.Add(ref contact);
            }
            if (contactList.count > 0)
            {
                return(true);
            }

            state = CollisionState.ExternalSeparated;
            return(false);
        }
示例#4
0
        private bool DoDeepContact(TriangleShape triangle, out TinyStructList <ContactData> contactList)
        {
            //Find the origin to triangle center offset.
            Vector3 center;

            Vector3.Add(ref triangle.vA, ref triangle.vB, out center);
            Vector3.Add(ref center, ref triangle.vC, out center);
            Vector3.Multiply(ref center, 1f / 3f, out center);

            ContactData contact;

            contactList = new TinyStructList <ContactData>();

            if (MPRToolbox.AreLocalShapesOverlapping(convex, triangle, ref center, ref Toolbox.RigidIdentity))
            {
                float dot;


                Vector3 triangleNormal, ab, ac;
                Vector3.Subtract(ref triangle.vB, ref triangle.vA, out ab);
                Vector3.Subtract(ref triangle.vC, ref triangle.vA, out ac);
                Vector3.Cross(ref ab, ref ac, out triangleNormal);
                float lengthSquared = triangleNormal.LengthSquared();
                if (lengthSquared < Toolbox.Epsilon * .01f)
                {
                    //Degenerate triangle! That's no good.
                    //Just use the direction pointing from A to B, "B" being the triangle.  That direction is center - origin, or just center.
                    MPRToolbox.LocalSurfaceCast(convex, triangle, ref Toolbox.RigidIdentity, ref center,
                                                out contact.PenetrationDepth, out contact.Normal, out contact.Position);
                }
                else
                {
                    //Normalize the normal.
                    Vector3.Divide(ref triangleNormal, (float)Math.Sqrt(lengthSquared), out triangleNormal);


                    //TODO: This tests all three edge axes with a full MPR raycast.  That's not really necessary; the correct edge normal should be discoverable, resulting in a single MPR raycast.

                    //Find the edge directions that will be tested with MPR.
                    Vector3 AO, BO, CO;
                    Vector3 AB, BC, CA;
                    Vector3.Subtract(ref center, ref triangle.vA, out AO);
                    Vector3.Subtract(ref center, ref triangle.vB, out BO);
                    Vector3.Subtract(ref center, ref triangle.vC, out CO);
                    Vector3.Subtract(ref triangle.vB, ref triangle.vA, out AB);
                    Vector3.Subtract(ref triangle.vC, ref triangle.vB, out BC);
                    Vector3.Subtract(ref triangle.vA, ref triangle.vC, out CA);


                    //We don't have to worry about degenerate triangles here because we've already handled that possibility above.
                    Vector3 ABnormal, BCnormal, CAnormal;

                    //Project the center onto the edge to find the direction from the center to the edge AB.
                    Vector3.Dot(ref AO, ref AB, out dot);
                    Vector3.Multiply(ref AB, dot / AB.LengthSquared(), out ABnormal);
                    Vector3.Subtract(ref AO, ref ABnormal, out ABnormal);
                    ABnormal.Normalize();

                    //Project the center onto the edge to find the direction from the center to the edge BC.
                    Vector3.Dot(ref BO, ref BC, out dot);
                    Vector3.Multiply(ref BC, dot / BC.LengthSquared(), out BCnormal);
                    Vector3.Subtract(ref BO, ref BCnormal, out BCnormal);
                    BCnormal.Normalize();

                    //Project the center onto the edge to find the direction from the center to the edge BC.
                    Vector3.Dot(ref CO, ref CA, out dot);
                    Vector3.Multiply(ref CA, dot / CA.LengthSquared(), out CAnormal);
                    Vector3.Subtract(ref CO, ref CAnormal, out CAnormal);
                    CAnormal.Normalize();


                    MPRToolbox.LocalSurfaceCast(convex, triangle, ref Toolbox.RigidIdentity, ref ABnormal,
                                                out contact.PenetrationDepth, out contact.Normal);
                    //Check to see if the normal is facing in the proper direction, considering that this may not be a two-sided triangle.
                    Vector3.Dot(ref triangleNormal, ref contact.Normal, out dot);
                    if (triangle.sidedness == TriangleSidedness.Clockwise && dot > 0 ||
                        triangle.sidedness == TriangleSidedness.Counterclockwise && dot < 0)
                    {
                        //Normal was facing the wrong way.
                        //Instead of ignoring it entirely, correct the direction to as close as it can get by removing any component parallel to the triangle normal.
                        Vector3 previousNormal = contact.Normal;
                        Vector3.Dot(ref contact.Normal, ref triangleNormal, out dot);

                        Vector3 p;
                        Vector3.Multiply(ref contact.Normal, dot, out p);
                        Vector3.Subtract(ref contact.Normal, ref p, out contact.Normal);
                        float length = contact.Normal.LengthSquared();
                        if (length > Toolbox.Epsilon)
                        {
                            //Renormalize the corrected normal.
                            Vector3.Divide(ref contact.Normal, (float)Math.Sqrt(length), out contact.Normal);
                            Vector3.Dot(ref contact.Normal, ref previousNormal, out dot);
                            contact.PenetrationDepth *= dot;
                        }
                        else
                        {
                            contact.PenetrationDepth = float.MaxValue;
                            contact.Normal           = new Vector3();
                        }
                    }


                    Vector3 candidateNormal;
                    float   candidateDepth;

                    MPRToolbox.LocalSurfaceCast(convex, triangle, ref Toolbox.RigidIdentity, ref BCnormal,
                                                out candidateDepth, out candidateNormal);
                    //Check to see if the normal is facing in the proper direction, considering that this may not be a two-sided triangle.
                    Vector3.Dot(ref triangleNormal, ref candidateNormal, out dot);
                    if (triangle.sidedness == TriangleSidedness.Clockwise && dot > 0 ||
                        triangle.sidedness == TriangleSidedness.Counterclockwise && dot < 0)
                    {
                        //Normal was facing the wrong way.
                        //Instead of ignoring it entirely, correct the direction to as close as it can get by removing any component parallel to the triangle normal.
                        Vector3 previousNormal = candidateNormal;
                        Vector3.Dot(ref candidateNormal, ref triangleNormal, out dot);

                        Vector3 p;
                        Vector3.Multiply(ref candidateNormal, dot, out p);
                        Vector3.Subtract(ref candidateNormal, ref p, out candidateNormal);
                        float length = candidateNormal.LengthSquared();
                        if (length > Toolbox.Epsilon)
                        {
                            //Renormalize the corrected normal.
                            Vector3.Divide(ref candidateNormal, (float)Math.Sqrt(length), out candidateNormal);
                            Vector3.Dot(ref candidateNormal, ref previousNormal, out dot);
                            candidateDepth *= dot;
                        }
                        else
                        {
                            contact.PenetrationDepth = float.MaxValue;
                            contact.Normal           = new Vector3();
                        }
                    }

                    if (candidateDepth < contact.PenetrationDepth)
                    {
                        contact.Normal           = candidateNormal;
                        contact.PenetrationDepth = candidateDepth;
                    }


                    MPRToolbox.LocalSurfaceCast(convex, triangle, ref Toolbox.RigidIdentity, ref CAnormal,
                                                out candidateDepth, out candidateNormal);
                    //Check to see if the normal is facing in the proper direction, considering that this may not be a two-sided triangle.
                    Vector3.Dot(ref triangleNormal, ref candidateNormal, out dot);
                    if (triangle.sidedness == TriangleSidedness.Clockwise && dot > 0 ||
                        triangle.sidedness == TriangleSidedness.Counterclockwise && dot < 0)
                    {
                        //Normal was facing the wrong way.
                        //Instead of ignoring it entirely, correct the direction to as close as it can get by removing any component parallel to the triangle normal.
                        Vector3 previousNormal = candidateNormal;
                        Vector3.Dot(ref candidateNormal, ref triangleNormal, out dot);

                        Vector3 p;
                        Vector3.Multiply(ref candidateNormal, dot, out p);
                        Vector3.Subtract(ref candidateNormal, ref p, out candidateNormal);
                        float length = candidateNormal.LengthSquared();
                        if (length > Toolbox.Epsilon)
                        {
                            //Renormalize the corrected normal.
                            Vector3.Divide(ref candidateNormal, (float)Math.Sqrt(length), out candidateNormal);
                            Vector3.Dot(ref candidateNormal, ref previousNormal, out dot);
                            candidateDepth *= dot;
                        }
                        else
                        {
                            contact.PenetrationDepth = float.MaxValue;
                            contact.Normal           = new Vector3();
                        }
                    }

                    if (candidateDepth < contact.PenetrationDepth)
                    {
                        contact.Normal           = candidateNormal;
                        contact.PenetrationDepth = candidateDepth;
                    }


                    //Try the depth along the positive triangle normal.

                    //If it's clockwise, this direction is unnecessary (the resulting normal would be invalidated by the onesidedness of the triangle).
                    if (triangle.sidedness != TriangleSidedness.Clockwise)
                    {
                        MPRToolbox.LocalSurfaceCast(convex, triangle, ref Toolbox.RigidIdentity, ref triangleNormal,
                                                    out candidateDepth, out candidateNormal);
                        if (candidateDepth < contact.PenetrationDepth)
                        {
                            contact.Normal           = candidateNormal;
                            contact.PenetrationDepth = candidateDepth;
                        }
                    }

                    //Try the depth along the negative triangle normal.

                    //If it's counterclockwise, this direction is unnecessary (the resulting normal would be invalidated by the onesidedness of the triangle).
                    if (triangle.sidedness != TriangleSidedness.Counterclockwise)
                    {
                        Vector3.Negate(ref triangleNormal, out triangleNormal);
                        MPRToolbox.LocalSurfaceCast(convex, triangle, ref Toolbox.RigidIdentity, ref triangleNormal,
                                                    out candidateDepth, out candidateNormal);
                        if (candidateDepth < contact.PenetrationDepth)
                        {
                            contact.Normal           = candidateNormal;
                            contact.PenetrationDepth = candidateDepth;
                        }
                    }
                }


                MPRToolbox.RefinePenetration(convex, triangle, ref Toolbox.RigidIdentity, contact.PenetrationDepth,
                                             ref contact.Normal, out contact.PenetrationDepth, out contact.Normal, out contact.Position);

                //It's possible for the normal to still face the 'wrong' direction according to one sided triangles.
                if (triangle.sidedness != TriangleSidedness.DoubleSided)
                {
                    Vector3.Dot(ref triangleNormal, ref contact.Normal, out dot);
                    if (dot < 0)
                    //Skip the add process.
                    {
                        goto InnerSphere;
                    }
                }


                contact.Id = -1;

                if (contact.PenetrationDepth < convex.collisionMargin + triangle.collisionMargin)
                {
                    state = CollisionState
                            .ExternalNear; //If it's emerged from the deep contact, we can go back to using the preferred GJK method.
                }

                contactList.Add(ref contact);
            }

InnerSphere:

            if (TryInnerSphereContact(triangle, out contact))
            {
                contactList.Add(ref contact);
            }

            if (contactList.Count > 0)
            {
                return(true);
            }

            state = CollisionState.ExternalSeparated;
            return(false);
        }
示例#5
0
        private bool TryInnerSphereContact(out ContactData contact)
        {
            Vector3 closestPoint;

            Toolbox.GetClosestPointOnTriangleToPoint(ref triangle.vA, ref triangle.vB, ref triangle.vC, ref Toolbox.ZeroVector, out closestPoint);
            float length        = closestPoint.LengthSquared();
            float minimumRadius = convex.minimumRadius * (MotionSettings.CoreShapeScaling + .01f);

            if (length < minimumRadius * minimumRadius)
            {
                Vector3 triangleNormal, ab, ac;
                Vector3.Subtract(ref triangle.vB, ref triangle.vA, out ab);
                Vector3.Subtract(ref triangle.vC, ref triangle.vA, out ac);
                Vector3.Cross(ref ab, ref ac, out triangleNormal);
                float dot;
                Vector3.Dot(ref closestPoint, ref triangleNormal, out dot);
                if ((triangle.sidedness == TriangleSidedness.Clockwise && dot > 0) || (triangle.sidedness == TriangleSidedness.Counterclockwise && dot < 0))
                {
                    //Normal was facing the wrong way.
                    contact = new ContactData();
                    return(false);
                }

                length           = (float)Math.Sqrt(length);
                contact.Position = closestPoint;

                if (length > Toolbox.Epsilon) //Watch out for NaN's!
                {
                    Vector3.Divide(ref closestPoint, length, out contact.Normal);
                }
                else
                {
                    //The direction is undefined.  Use the triangle's normal.
                    //One sided triangles can only face in the appropriate direction.
                    float normalLength = triangleNormal.LengthSquared();
                    if (triangleNormal.LengthSquared() > Toolbox.Epsilon)
                    {
                        Vector3.Divide(ref triangleNormal, (float)Math.Sqrt(normalLength), out triangleNormal);
                        if (triangle.sidedness == TriangleSidedness.Clockwise)
                        {
                            contact.Normal = triangleNormal;
                        }
                        else
                        {
                            Vector3.Negate(ref triangleNormal, out contact.Normal);
                        }
                    }
                    else
                    {
                        //Degenerate triangle!
                        contact = new ContactData();
                        return(false);
                    }
                }

                //Compute the actual depth of the contact.
                MPRToolbox.LocalSurfaceCast(convex, triangle, ref Toolbox.RigidIdentity, ref contact.Normal, out contact.PenetrationDepth, out triangleNormal); //Trash the 'corrected' normal.  We want to use the spherical normal.
                contact.Id = -1;
                return(true);
            }
            contact = new ContactData();
            return(false);
        }