//public NeuralModelSimulator(String filename) //{ // mlp = new MLPDll(filename); //} public void Train(IModelSimulator sourceSimulator, double treshold) { Random r = new Random(); double mu = 0.0001; long count = 0; double errors = 0, errors2 = double.MaxValue; double[] error = new double[4]; do { for (int i2 = 0; i2 < EPOCH_COUNT; ++i2) { double angle = r.NextDouble() * 2 * Math.PI;//veletlen szog CarModelState carstate = new CarModelState(new PointD(ComMath.Normal(r.NextDouble(), 0, 1, CarModelState.MIN_POS_X, CarModelState.MAX_POS_X), ComMath.Normal(r.NextDouble(), 0, 1, CarModelState.MIN_POS_Y, CarModelState.MAX_POS_Y)), new PointD(ComMath.Normal(Math.Cos(angle), -1, 1, CarModelState.MIN_OR_XY, CarModelState.MAX_OR_XY), ComMath.Normal(Math.Sin(angle), -1, 1, CarModelState.MIN_OR_XY, CarModelState.MAX_OR_XY))); CarModelInput carinput = new CarModelInput(); //= new CarModelInput(ComMath.Normal(r.NextDouble(), 0, 1, CarModelInput.MIN_SPEED, CarModelInput.MAX_SPEED), // ComMath.Normal(r.NextDouble(), 0, 1, CarModelInput.MIN_SPEED, CarModelInput.MAX_SPEED)); carinput.Angle = ComMath.Normal(r.NextDouble(), 0, 1, CarModelInput.MIN_ANGLE, CarModelInput.MAX_ANGLE); CarModelState state, state2; double[] output; sourceSimulator.SimulateModel(carstate, carinput, out state); this.SimulateModel(carstate, carinput, out state2, out output); error = new double[4]; error[0] = -output[0] + ComMath.Normal(state.Position.X, CarModelState.MIN_POS_X, CarModelState.MAX_POS_X, MIN_NEURON_VALUE, MAX_NEURON_VALUE); error[1] = -output[1] + ComMath.Normal(state.Position.Y, CarModelState.MIN_POS_Y, CarModelState.MAX_POS_Y, MIN_NEURON_VALUE, MAX_NEURON_VALUE); error[2] = -output[2] + ComMath.Normal(state.Orientation.X, CarModelState.MIN_OR_XY, CarModelState.MAX_OR_XY, MIN_NEURON_VALUE, MAX_NEURON_VALUE); error[3] = -output[3] + ComMath.Normal(state.Orientation.Y, CarModelState.MIN_OR_XY, CarModelState.MAX_OR_XY, MIN_NEURON_VALUE, MAX_NEURON_VALUE); count++; mlp.Train(mu, error); errors += error[0] * error[0] + error[1] * error[1] + error[2] * error[2] + error[3] * error[3]; } errors /= EPOCH_COUNT; //if (errors2 < errors) mu *= 0.75; errors2 = errors; System.Console.WriteLine(errors.ToString()); } while (errors > treshold); // mlp.SaveNN("neuralmodel.mlp"); }
public double Train(double[] inputValues) { if (inputValues.Length >= dimension * (inputLength + 1)) { double error = 0; for (int i = inputLength; i < inputValues.Length / dimension; ++i) { double[] input = new double[dimension * inputLength]; int i3 = 0; for (int i2 = (i - inputLength) * dimension; i2 < i * dimension; ++i2) { input[i3] = inputValues[i2]; i3++; } double[] outp = mlp.Output(input); double[] err = new double[dimension]; for (int i2 = 0; i2 < dimension; ++i2) { err[i2] = inputValues[i * dimension + i2] - outp[i2]; error += err[i2] * err[i2]; } mlp.Train(mu, err); trainCount++; } //if (error > 1.2 * preverror) //{ // if (trainCount > 20000) mu *= 0.2; //} //else if (error < 0.8 * preverror) //{ // mu *= 1.2; //} preverror = error / inputValues.Length * dimension; return(preverror); } else { throw new Exception("Not enough data!"); } }