示例#1
0
    public static void Main(string[] args)
    {
        AppDomain.CurrentDomain.UnhandledException += new UnhandledExceptionEventHandler(Handlers.UnhandledExceptionHandler);

        // check number of command line parameters
        if (args.Length < 4)
        {
            Usage("Not enough arguments.");
        }

        // read command line parameters
        RecommenderParameters parameters = null;

        try     { parameters = new RecommenderParameters(args, 4); }
        catch (ArgumentException e)     { Usage(e.Message); }

        // other parameters
        string data_dir = parameters.GetRemoveString("data_dir");
        //Console.Error.WriteLine("data_dir " + data_dir);
        string item_attributes_file = parameters.GetRemoveString("item_attributes");
        string user_attributes_file = parameters.GetRemoveString("user_attributes");
        //string save_mapping_file    = parameters.GetRemoveString( "save_model");
        int    random_seed     = parameters.GetRemoveInt32("random_seed", -1);
        bool   no_eval         = parameters.GetRemoveBool("no_eval", false);
        bool   compute_fit     = parameters.GetRemoveBool("compute_fit", false);
        string prediction_file = parameters.GetRemoveString("prediction_file");

        if (random_seed != -1)
        {
            MyMediaLite.Util.Random.InitInstance(random_seed);
        }

        // main data files and method
        string trainfile       = args[0].Equals("-") ? "-" : Path.Combine(data_dir, args[0]);
        string testfile        = args[1].Equals("-") ? "-" : Path.Combine(data_dir, args[1]);
        string load_model_file = args[2];
        string method          = args[3];

        // set correct recommender
        switch (method)
        {
        case "MF-ItemMapping":
            recommender = Recommender.Configure(mf_map, parameters, Usage);
            break;

//				case "MF-ItemMapping-Optimal":
//					recommender = Recommender.Configure(mf_map_opt, parameters, Usage);
//					break;
//				case "BPR-MF-ItemMapping-kNN":
//					recommender = Recommender.Configure(mf_map_knn, parameters, Usage);
//					break;
//				case "BPR-MF-ItemMapping-SVR":
//					recommender = Recommender.Configure(mf_map_svr, parameters, Usage);
//					break;
        default:
            Usage(string.Format("Unknown method: '{0}'", method));
            break;
        }

        if (parameters.CheckForLeftovers())
        {
            Usage(-1);
        }

        // TODO move loading into its own method

        // ID mapping objects
        EntityMapping user_mapping = new EntityMapping();
        EntityMapping item_mapping = new EntityMapping();

        // training data
        training_data       = MyMediaLite.IO.RatingPrediction.Read(Path.Combine(data_dir, trainfile), user_mapping, item_mapping);
        recommender.Ratings = training_data;

        // user attributes
        if (recommender is IUserAttributeAwareRecommender)
        {
            if (user_attributes_file.Equals(string.Empty))
            {
                Usage("Recommender expects user_attributes=FILE.");
            }
            else
            {
                ((IUserAttributeAwareRecommender)recommender).UserAttributes = AttributeData.Read(Path.Combine(data_dir, user_attributes_file), user_mapping);
            }
        }

        // item attributes
        if (recommender is IItemAttributeAwareRecommender)
        {
            if (item_attributes_file.Equals(string.Empty))
            {
                Usage("Recommender expects item_attributes=FILE.");
            }
            else
            {
                ((IItemAttributeAwareRecommender)recommender).ItemAttributes = AttributeData.Read(Path.Combine(data_dir, item_attributes_file), item_mapping);
            }
        }

        // test data
        test_data = MyMediaLite.IO.RatingPrediction.Read(Path.Combine(data_dir, testfile), user_mapping, item_mapping);

        TimeSpan seconds;

        Recommender.LoadModel(recommender, load_model_file);

        // set the maximum user and item IDs in the recommender - this is important for the cold start use case
        recommender.MaxUserID = user_mapping.InternalIDs.Max();
        recommender.MaxItemID = item_mapping.InternalIDs.Max();

        Console.Error.WriteLine(string.Format(CultureInfo.InvariantCulture, "ratings range: [{0}, {1}]", recommender.MinRating, recommender.MaxRating));

        DisplayDataStats();

        Console.Write(recommender.ToString() + " ");

        if (compute_fit)
        {
            seconds = Utils.MeasureTime(delegate() {
                int num_iter = recommender.NumIterMapping;
                recommender.NumIterMapping = 0;
                recommender.LearnAttributeToFactorMapping();
                Console.Error.WriteLine();
                Console.Error.WriteLine(string.Format(CultureInfo.InvariantCulture, "iteration {0} fit {1}", -1, recommender.ComputeFit()));

                recommender.NumIterMapping = 1;
                for (int i = 0; i < num_iter; i++, i++)
                {
                    recommender.IterateMapping();
                    Console.Error.WriteLine(string.Format(CultureInfo.InvariantCulture, "iteration {0} fit {1}", i, recommender.ComputeFit()));
                }
                recommender.NumIterMapping = num_iter;                 // restore
            });
        }
        else
        {
            seconds = Utils.MeasureTime(delegate() {
                recommender.LearnAttributeToFactorMapping();
            });
        }
        Console.Write("mapping_time " + seconds + " ");

        if (!no_eval)
        {
            seconds = EvaluateRecommender(recommender);
        }
        Console.WriteLine();

        if (prediction_file != string.Empty)
        {
            Console.WriteLine();
            seconds = Utils.MeasureTime(
                delegate() {
                Prediction.WritePredictions(recommender, test_data, user_mapping, item_mapping, prediction_file);
            }
                );
            Console.Error.WriteLine("predicting_time " + seconds);
        }
    }
示例#2
0
    static TimeSpan EvaluateRecommender(MF_Mapping recommender)
    {
        Console.Error.WriteLine(string.Format(CultureInfo.InvariantCulture, "fit {0}", recommender.ComputeFit()));

        TimeSpan seconds = Utils.MeasureTime(delegate()
        {
            var result = MyMediaLite.Eval.Ratings.Evaluate(recommender, test_data);
            MyMediaLite.Eval.Ratings.DisplayResults(result);
        });

        Console.Write(" testing " + seconds);

        return(seconds);
    }