示例#1
0
            internal ColumnInfoBase(ModelLoadContext ctx, string input, string output, bool normKindSerialized)
            {
                Contracts.AssertValue(ctx);
                Contracts.CheckNonWhiteSpace(input, nameof(input));
                Contracts.CheckNonWhiteSpace(output, nameof(output));
                Input  = input;
                Output = output;

                // *** Binary format ***
                // byte: SubtractMean
                // byte: NormKind
                // Float: Scale
                SubtractMean = ctx.Reader.ReadBoolByte();
                byte normKindVal = ctx.Reader.ReadByte();

                Contracts.CheckDecode(Enum.IsDefined(typeof(LpNormalizingEstimatorBase.NormalizerKind), normKindVal));
                NormKind = (LpNormalizingEstimatorBase.NormalizerKind)normKindVal;
                // Note: In early versions, a bool option (useStd) to whether to normalize by StdDev rather than
                // L2 norm was used. normKind was added in version=verVectorNormalizerSupported.
                // normKind was defined in a way such that the serialized boolean (0: use StdDev, 1: use L2) is
                // still valid.
                Contracts.CheckDecode(normKindSerialized ||
                                      (NormKind == LpNormalizingEstimatorBase.NormalizerKind.L2Norm || NormKind == LpNormalizingEstimatorBase.NormalizerKind.StdDev));
                Scale = ctx.Reader.ReadFloat();
                Contracts.CheckDecode(0 < Scale && Scale < float.PositiveInfinity);
            }
示例#2
0
 internal ColumnInfoBase(string input, string output, bool substractMean, LpNormalizingEstimatorBase.NormalizerKind normalizerKind, float scale)
 {
     Contracts.CheckNonWhiteSpace(input, nameof(input));
     Contracts.CheckNonWhiteSpace(output, nameof(output));
     Input        = input;
     Output       = output;
     SubtractMean = substractMean;
     Contracts.CheckUserArg(0 < scale && scale < float.PositiveInfinity, nameof(scale), "scale must be a positive finite value");
     Scale    = scale;
     NormKind = normalizerKind;
 }
示例#3
0
 /// <include file='doc.xml' path='doc/members/member[@name="LpNormalize"]/*'/>
 /// <param name="input">The column to apply to.</param>
 /// <param name="normKind">Type of norm to use to normalize each sample.</param>
 /// <param name="subMean">Subtract mean from each value before normalizing.</param>
 public static Vector <float> LpNormalize(this Vector <float> input,
                                          LpNormalizingEstimatorBase.NormalizerKind normKind = LpNormalizingEstimatorBase.Defaults.NormKind,
                                          bool subMean = LpNormalizingEstimatorBase.Defaults.LpSubstractMean) => new OutPipelineColumn(input, normKind, subMean);
示例#4
0
 public Reconciler(LpNormalizingEstimatorBase.NormalizerKind normKind, bool subMean)
 {
     _normKind = normKind;
     _subMean  = subMean;
 }
示例#5
0
 public OutPipelineColumn(Vector <float> input, LpNormalizingEstimatorBase.NormalizerKind normKind, bool subMean)
     : base(new Reconciler(normKind, subMean), input)
 {
     Input = input;
 }
示例#6
0
 /// <summary>
 /// Describes how the transformer handles one LpNorm column pair.
 /// </summary>
 /// <param name="input">Name of input column.</param>
 /// <param name="output">Name of output column.</param>
 /// <param name="substractMean">Subtract mean from each value before normalizing.</param>
 /// <param name="normalizerKind">The norm to use to normalize each sample.</param>
 public LpNormColumnInfo(string input, string output,
                         bool substractMean = LpNormalizingEstimatorBase.Defaults.LpSubstractMean,
                         LpNormalizingEstimatorBase.NormalizerKind normalizerKind = LpNormalizingEstimatorBase.Defaults.NormKind)
     : base(input, output, substractMean, normalizerKind, 1)
 {
 }
 /// <summary>
 /// Takes column filled with a vector of floats and computes L-p norm of it.
 /// </summary>
 /// <param name="catalog">The transform's catalog.</param>
 /// <param name="outputColumnName">Name of the column resulting from the transformation of <paramref name="inputColumnName"/>.</param>
 /// <param name="inputColumnName">Name of column to transform. If set to <see langword="null"/>, the value of the <paramref name="outputColumnName"/> will be used as source.</param>
 /// <param name="normKind">Type of norm to use to normalize each sample.</param>
 /// <param name="subMean">Subtract mean from each value before normalizing.</param>
 /// <example>
 /// <format type="text/markdown">
 /// <![CDATA[
 /// [!code-csharp[LpNormalize](~/../docs/samples/docs/samples/Microsoft.ML.Samples/Dynamic/ProjectionTransforms.cs?range=1-6,12-112)]
 /// ]]>
 /// </format>
 /// </example>
 public static LpNormalizingEstimator LpNormalize(this TransformsCatalog.ProjectionTransforms catalog, string outputColumnName, string inputColumnName = null,
                                                  LpNormalizingEstimatorBase.NormalizerKind normKind = LpNormalizingEstimatorBase.Defaults.NormKind, bool subMean = LpNormalizingEstimatorBase.Defaults.LpSubstractMean)
 => new LpNormalizingEstimator(CatalogUtils.GetEnvironment(catalog), outputColumnName, inputColumnName, normKind, subMean);
示例#8
0
 /// <summary>
 /// Describes how the transformer handles one LpNorm column pair.
 /// </summary>
 /// <param name="name">Name of the column resulting from the transformation of <paramref name="inputColumnName"/>.</param>
 /// <param name="inputColumnName">Name of column to transform. If set to <see langword="null"/>, the value of the <paramref name="name"/> will be used as source.</param>
 /// <param name="substractMean">Subtract mean from each value before normalizing.</param>
 /// <param name="normalizerKind">The norm to use to normalize each sample.</param>
 public LpNormColumnInfo(string name, string inputColumnName = null,
                         bool substractMean = LpNormalizingEstimatorBase.Defaults.LpSubstractMean,
                         LpNormalizingEstimatorBase.NormalizerKind normalizerKind = LpNormalizingEstimatorBase.Defaults.NormKind)
     : base(name, inputColumnName ?? name, substractMean, normalizerKind, 1)
 {
 }