public void ComputeTest5() { var dataset = SequentialMinimalOptimizationTest.GetYingYang(); var inputs = dataset.Submatrix(null, 0, 1).ToJagged(); var labels = dataset.GetColumn(2).ToInt32(); var kernel = new Polynomial(2, 0); { var machine = new KernelSupportVectorMachine(kernel, inputs[0].Length); var smo = new SequentialMinimalOptimization(machine, inputs, labels); smo.UseComplexityHeuristic = true; double error = smo.Run(); Assert.AreEqual(0.2, error); Assert.AreEqual(0.11714451552090824, smo.Complexity); int[] actual = new int[labels.Length]; for (int i = 0; i < actual.Length; i++) { actual[i] = Math.Sign(machine.Compute(inputs[i])); } ConfusionMatrix matrix = new ConfusionMatrix(actual, labels); Assert.AreEqual(20, matrix.FalseNegatives); Assert.AreEqual(0, matrix.FalsePositives); Assert.AreEqual(30, matrix.TruePositives); Assert.AreEqual(50, matrix.TrueNegatives); } { Accord.Math.Tools.SetupGenerator(0); var projection = inputs.Apply(kernel.Transform); var machine = new SupportVectorMachine(projection[0].Length); var smo = new LinearNewtonMethod(machine, projection, labels); smo.UseComplexityHeuristic = true; double error = smo.Run(); Assert.AreEqual(0.18, error); Assert.AreEqual(0.11714451552090821, smo.Complexity, 1e-15); int[] actual = new int[labels.Length]; for (int i = 0; i < actual.Length; i++) { actual[i] = Math.Sign(machine.Compute(projection[i])); } ConfusionMatrix matrix = new ConfusionMatrix(actual, labels); Assert.AreEqual(17, matrix.FalseNegatives); Assert.AreEqual(1, matrix.FalsePositives); Assert.AreEqual(33, matrix.TruePositives); Assert.AreEqual(49, matrix.TrueNegatives); } }
public void LearnTest() { double[][] inputs = { new double[] { -1, -1 }, new double[] { -1, 1 }, new double[] { 1, -1 }, new double[] { 1, 1 } }; int[] xor = { -1, 1, 1, -1 }; var kernel = new Polynomial(2, 0.0); double[][] augmented = new double[inputs.Length][]; for (int i = 0; i < inputs.Length; i++) { augmented[i] = kernel.Transform(inputs[i]); } SupportVectorMachine machine = new SupportVectorMachine(augmented[0].Length); // Create the Least Squares Support Vector Machine teacher var learn = new LinearNewtonMethod(machine, augmented, xor); // Run the learning algorithm double error = learn.Run(); Assert.AreEqual(0, error); int[] output = augmented.Apply(p => Math.Sign(machine.Compute(p))); for (int i = 0; i < output.Length; i++) { Assert.AreEqual(System.Math.Sign(xor[i]), System.Math.Sign(output[i])); } }