示例#1
0
        public void LinearLayerHasRightRun()
        {
            double[,] weights = new double[, ] {
                { 1, 0, 1 }, { 1, 1, 0 }
            };
            NetworkVector inputvector = new NetworkVector(new double[] { 1, 2, 3 });
            Layer         layer       = new LinearLayer(weights);

            layer.Run(inputvector);
            double[] result         = layer.Output.ToArray();
            double[] expectedResult = new double[] { 4, 3 };
            Assert.AreEqual(expectedResult[0], result[0]);
            Assert.AreEqual(expectedResult[1], result[1]);
        }
示例#2
0
        public void BackPropagateIsCorrect()
        {
            double[,] weights = new double[, ] {
                { 1, 2 }, { 3, 5 }
            };
            Layer layer = new LinearLayer(weights);

            NetworkVector layerinput = new NetworkVector(new double[] { 1, -1 });

            layer.Run(layerinput);

            NetworkVector outputgradient = new NetworkVector(new double[] { 7, 11 });

            layer.BackPropagate(outputgradient);

            double[,] weightsCheck = new double[, ] {
                { -6, 9 }, { -8, 16 }
            };
            LayerState state = layer.State;

            for (int i = 0; i < layer.NumberOfInputs; i++)
            {
                for (int j = 0; j < layer.NumberOfInputs; j++)
                {
                    Assert.AreEqual(weightsCheck[i, j], state.Weights[i, j], string.Format("Failed for (i, j) = ({0}, {1}", i, j));
                }
            }

            double[] biasesCheck = new double[] { -7, -11 };
            for (int i = 0; i < layer.NumberOfInputs; i++)
            {
                Assert.AreEqual(biasesCheck[i], layer.State.Biases[i]);
            }

            double[] inputGradientCheck  = new double[] { 40, 69 };
            double[] inputGradientValues = layer.InputGradient.ToArray();
            for (int i = 0; i < layer.NumberOfInputs; i++)
            {
                Assert.AreEqual(inputGradientCheck[i], inputGradientValues[i], string.Format("Failure for input {0}", i));
            }
        }
示例#3
0
        public void BackpropagateRunsTwoByThree()
        {
            double[,] weights = new double[, ] {
                { 1, 2, 3 }, { 2, 3, 4 }
            };
            Layer layer = new LinearLayer(weights);

            NetworkVector layerinput = new NetworkVector(new double[] { 1, 0, -1 });

            layer.Run(layerinput);

            NetworkVector outputgradient = new NetworkVector(new double[] { 1, 1 });

            layer.BackPropagate(outputgradient);

            double[] inputGradientCheck  = new double[] { 3, 5, 7 };
            double[] inputGradientValues = layer.InputGradient.ToArray();
            for (int i = 0; i < layer.NumberOfInputs; i++)
            {
                Assert.AreEqual(inputGradientCheck[i], inputGradientValues[i], string.Format("Failure for input {0}", i));
            }
        }
示例#4
0
        public void BackpropagateRunsWithNonzeroLayerInput()
        {
            double[,] weights = new double[, ] {
                { 1 }
            };
            Layer layer = new LinearLayer(weights);

            NetworkVector layerinput = new NetworkVector(new double[] { 2 });

            layer.Run(layerinput);

            NetworkVector outputgradient = new NetworkVector(new double[] { 1 });

            layer.BackPropagate(outputgradient);

            double[] inputGradientCheck  = new double[] { 1 };
            double[] inputGradientValues = layer.InputGradient.ToArray();
            for (int i = 0; i < layer.NumberOfInputs; i++)
            {
                Assert.AreEqual(inputGradientCheck[i], inputGradientValues[i]);
            }
        }
示例#5
0
        public void CanUseBigLinearLayer()
        {
            double[,] weights = new double[2000, 1000];
            double[] input = new double[1000];

            for (int i = 0; i < 1000; i++)
            {
                weights[i, i] = 1.0;
                input[i]      = (double)i;
            }

            NetworkVector inputvector = new NetworkVector(input);
            Layer         layer       = new LinearLayer(weights);

            layer.Run(inputvector);
            double[] result = layer.Output.ToArray();

            for (int i = 0, j = 1000; i < 1000; i++, j++)
            {
                Assert.AreEqual((double)i, result[i], "Failed for i = " + i);
                Assert.AreEqual(0.0, result[j], "Failed for j = " + j);
            }
        }