/// <summary> /// Predict a target using a linear binary classification model trained with the <see cref="Microsoft.ML.Trainers.LbfgsLogisticRegressionBinaryTrainer"/> trainer. /// </summary> /// <param name="catalog">The binary classification catalog trainer object.</param> /// <param name="label">The label, or dependent variable.</param> /// <param name="features">The features, or independent variables.</param> /// <param name="weights">The optional example weights.</param> /// <param name="enforceNonNegativity">Enforce non-negative weights.</param> /// <param name="l1Regularization">Weight of L1 regularization term.</param> /// <param name="l2Regularization">Weight of L2 regularization term.</param> /// <param name="historySize">Memory size for <see cref="Microsoft.ML.Trainers.LbfgsLogisticRegressionBinaryTrainer"/>. Low=faster, less accurate.</param> /// <param name="optimizationTolerance">Threshold for optimizer convergence.</param> /// <param name="onFit">A delegate that is called every time the /// <see cref="Estimator{TInShape, TOutShape, TTransformer}.Fit(DataView{TInShape})"/> method is called on the /// <see cref="Estimator{TInShape, TOutShape, TTransformer}"/> instance created out of this. This delegate will receive /// the linear model that was trained. Note that this action cannot change the result in any way; it is only a way for the caller to /// be informed about what was learnt.</param> /// <returns>The predicted output.</returns> public static (Scalar <float> score, Scalar <float> probability, Scalar <bool> predictedLabel) LbfgsLogisticRegression(this BinaryClassificationCatalog.BinaryClassificationTrainers catalog, Scalar <bool> label, Vector <float> features, Scalar <float> weights = null, float l1Regularization = Options.Defaults.L1Regularization, float l2Regularization = Options.Defaults.L2Regularization, float optimizationTolerance = Options.Defaults.OptimizationTolerance, int historySize = Options.Defaults.HistorySize, bool enforceNonNegativity = Options.Defaults.EnforceNonNegativity, Action <CalibratedModelParametersBase <LinearBinaryModelParameters, PlattCalibrator> > onFit = null) { LbfgsStaticUtils.ValidateParams(label, features, weights, l1Regularization, l2Regularization, optimizationTolerance, historySize, enforceNonNegativity, onFit); var rec = new TrainerEstimatorReconciler.BinaryClassifier( (env, labelName, featuresName, weightsName) => { var trainer = new LbfgsLogisticRegressionBinaryTrainer(env, labelName, featuresName, weightsName, l1Regularization, l2Regularization, optimizationTolerance, historySize, enforceNonNegativity); if (onFit != null) { return(trainer.WithOnFitDelegate(trans => onFit(trans.Model))); } return(trainer); }, label, features, weights); return(rec.Output); }
/// <summary> /// Predict a target using a linear binary classification model trained with the <see cref="Microsoft.ML.Trainers.LbfgsLogisticRegressionBinaryTrainer"/> trainer. /// </summary> /// <param name="catalog">The binary classification catalog trainer object.</param> /// <param name="label">The label, or dependent variable.</param> /// <param name="features">The features, or independent variables.</param> /// <param name="weights">The optional example weights.</param> /// <param name="onFit">A delegate that is called every time the /// <see cref="Estimator{TInShape, TOutShape, TTransformer}.Fit(DataView{TInShape})"/> method is called on the /// <see cref="Estimator{TInShape, TOutShape, TTransformer}"/> instance created out of this. This delegate will receive /// the linear model that was trained. Note that this action cannot change the result in any way; it is only a way for the caller to /// be informed about what was learnt.</param> /// <param name="options">Advanced arguments to the algorithm.</param> /// <returns>The predicted output.</returns> public static (Scalar <float> score, Scalar <float> probability, Scalar <bool> predictedLabel) LbfgsLogisticRegression(this BinaryClassificationCatalog.BinaryClassificationTrainers catalog, Scalar <bool> label, Vector <float> features, Scalar <float> weights, Options options, Action <CalibratedModelParametersBase <LinearBinaryModelParameters, PlattCalibrator> > onFit = null) { Contracts.CheckValue(label, nameof(label)); Contracts.CheckValue(features, nameof(features)); Contracts.CheckValue(options, nameof(options)); Contracts.CheckValueOrNull(onFit); var rec = new TrainerEstimatorReconciler.BinaryClassifier( (env, labelName, featuresName, weightsName) => { options.LabelColumnName = labelName; options.FeatureColumnName = featuresName; options.ExampleWeightColumnName = weightsName; var trainer = new LbfgsLogisticRegressionBinaryTrainer(env, options); if (onFit != null) { return(trainer.WithOnFitDelegate(trans => onFit(trans.Model))); } return(trainer); }, label, features, weights); return(rec.Output); }
public static IEstimator <ITransformer> BuildTrainingPipeline(MLContext mlContext) { // Data process configuration with pipeline data transformations var dataProcessPipeline = mlContext.Transforms.Categorical.OneHotEncoding(new[] { new InputOutputColumnPair("logged_in", "logged_in"), new InputOutputColumnPair("ns", "ns"), new InputOutputColumnPair("sample", "sample"), new InputOutputColumnPair("split", "split") }) .Append(mlContext.Transforms.Text.FeaturizeText("comment_tf", "comment")) .Append(mlContext.Transforms.Concatenate("Features", new[] { "logged_in", "ns", "sample", "split", "comment_tf", "year" })) .Append(mlContext.Transforms.NormalizeMinMax("Features", "Features")) .AppendCacheCheckpoint(mlContext); // Set the training algorithm var trainer = mlContext.BinaryClassification.Trainers.LbfgsLogisticRegression(new LbfgsLogisticRegressionBinaryTrainer.Options() { L2Regularization = 0, 6806942f, L1Regularization = 0, 6276853f, OptimizationTolerance = 0, 0001f, HistorySize = 20, MaximumNumberOfIterations = 1294441415, InitialWeightsDiameter = 0, 8331606f, DenseOptimizer = true, LabelColumnName = "Label", FeatureColumnName = "Features" });