public static void Main()
    {
        modshogun.init_shogun_with_defaults();
        double width        = 0.8;
        int    C            = 1;
        double epsilon      = 1e-5;
        double tube_epsilon = 1e-2;

        double[,] traindata_real = Load.load_numbers("../data/fm_train_real.dat");
        double[,] testdata_real  = Load.load_numbers("../data/fm_test_real.dat");

        double[] trainlab = Load.load_labels("../data/label_train_twoclass.dat");

        RealFeatures   feats_train = new RealFeatures(traindata_real);
        RealFeatures   feats_test  = new RealFeatures(testdata_real);
        GaussianKernel kernel      = new GaussianKernel(feats_train, feats_train, width);

        RegressionLabels labels = new RegressionLabels(trainlab);

        LibSVR svr = new LibSVR(C, epsilon, kernel, labels);

        svr.set_tube_epsilon(tube_epsilon);
        svr.train();

        kernel.init(feats_train, feats_test);
        double[] out_labels = LabelsFactory.to_regression(svr.apply()).get_labels();

        foreach (double item in out_labels)
        {
            Console.Write(out_labels);
        }

        modshogun.exit_shogun();
    }
示例#2
0
    public static void Main()
    {
        modshogun.init_shogun_with_defaults();
        double width = 0.8;
        double tau   = 1e-6;

        double[,] traindata_real = Load.load_numbers("../data/fm_train_real.dat");
        double[,] testdata_real  = Load.load_numbers("../data/fm_test_real.dat");

        double[] trainlab = Load.load_labels("../data/label_train_twoclass.dat");

        RealFeatures   feats_train = new RealFeatures(traindata_real);
        RealFeatures   feats_test  = new RealFeatures(testdata_real);
        GaussianKernel kernel      = new GaussianKernel(feats_train, feats_train, width);

        RegressionLabels labels = new RegressionLabels(trainlab);

        KernelRidgeRegression krr = new KernelRidgeRegression(tau, kernel, labels);

        krr.train(feats_train);

        kernel.init(feats_train, feats_test);
        double[] out_labels = LabelsFactory.to_regression(krr.apply()).get_labels();

        foreach (double item in out_labels)
        {
            Console.Write(item);
        }
    }