/// <summary>
        /// Initializes a new instance of the <see cref="SimpleHeadPoseEstimator"/> class with the model files to estimate head pose.
        /// </summary>
        /// <param name="rollModelFile">The model file path to estimate roll angle.</param>
        /// <param name="pitchModelFile">The model file path to estimate pitch angle.</param>
        /// <param name="yawModelFile">The model file path to estimate yaw angle.</param>
        /// <exception cref="FileNotFoundException"><paramref name="rollModelFile"/>, <paramref name="pitchModelFile"/> or <paramref name="yawModelFile"/> does not exist.</exception>
        public SimpleHeadPoseEstimator(string rollModelFile,
                                       string pitchModelFile,
                                       string yawModelFile)
        {
            if (!File.Exists(rollModelFile))
            {
                throw new FileNotFoundException($"{nameof(rollModelFile)} does not exist.", nameof(rollModelFile));
            }
            if (!File.Exists(pitchModelFile))
            {
                throw new FileNotFoundException($"{nameof(pitchModelFile)} does not exist.", nameof(pitchModelFile));
            }
            if (!File.Exists(yawModelFile))
            {
                throw new FileNotFoundException($"{nameof(yawModelFile)} does not exist.", nameof(yawModelFile));
            }

            // gamma parameter is meaningless
            this._RollKernel  = new RadialBasisKernel <double, Matrix <double> >(0.1, 0, 0);
            this._PitchKernel = new RadialBasisKernel <double, Matrix <double> >(0.1, 0, 0);
            this._YawKernel   = new RadialBasisKernel <double, Matrix <double> >(0.1, 0, 0);

            this._RollEstimator  = new Krls <double, RadialBasisKernel <double, Matrix <double> > >(this._RollKernel);
            this._PitchEstimator = new Krls <double, RadialBasisKernel <double, Matrix <double> > >(this._PitchKernel);
            this._YawEstimator   = new Krls <double, RadialBasisKernel <double, Matrix <double> > >(this._YawKernel);

            Krls <double, RadialBasisKernel <double, Matrix <double> > > .Deserialize(rollModelFile, ref this._RollEstimator);

            Krls <double, RadialBasisKernel <double, Matrix <double> > > .Deserialize(pitchModelFile, ref this._PitchEstimator);

            Krls <double, RadialBasisKernel <double, Matrix <double> > > .Deserialize(yawModelFile, ref this._YawEstimator);
        }
示例#2
0
        private static void Main()
        {
            // Here we declare that our samples will be 1 dimensional column vectors.  The reason for
            // using a matrix here is that in general you can use N dimensional vectors as inputs to the
            // krls object.  But here we only have 1 dimension to make the example simple.


            // Now we are making a typedef for the kind of kernel we want to use.  I picked the
            // radial basis kernel because it only has one parameter and generally gives good
            // results without much fiddling.


            // Here we declare an instance of the krls object.  The first argument to the constructor
            // is the kernel we wish to use.  The second is a parameter that determines the numerical
            // accuracy with which the object will perform part of the regression algorithm.  Generally
            // smaller values give better results but cause the algorithm to run slower (because it tries
            // to use more "dictionary vectors" to represent the function it is learning.
            // You just have to play with it to decide what balance of speed and accuracy is right
            // for your problem.  Here we have set it to 0.001.
            //
            // The last argument is the maximum number of dictionary vectors the algorithm is allowed
            // to use.  The default value for this field is 1,000,000 which is large enough that you
            // won't ever hit it in practice.  However, here we have set it to the much smaller value
            // of 7.  This means that once the krls object accumulates 7 dictionary vectors it will
            // start discarding old ones in favor of new ones as it goes through the training process.
            // In other words, the algorithm "forgets" about old training data and focuses on recent
            // training samples. So the bigger the maximum dictionary size the longer its memory will
            // be.  But in this example program we are doing filtering so we only care about the most
            // recent data.  So using a small value is appropriate here since it will result in much
            // faster filtering and won't introduce much error.

            using (var rbk = new RadialBasisKernel <double, Matrix <double> >(0.1, 1, 1))
                using (var test = new Krls <double, RadialBasisKernel <double, Matrix <double> > >(rbk, 0.001))
                {
                    // now we train our object on a few samples of the sinc function.
                    using (var m = Matrix <double> .CreateTemplateParameterizeMatrix(1, 1))
                    {
                        for (double x = -10; x <= 4; x += 1)
                        {
                            m[0] = x;
                            test.Train(m, Sinc(x));
                        }

                        // now we output the value of the sinc function for a few test points as well as the
                        // value predicted by krls object.
                        m[0] = 2.5;
                        Console.WriteLine($"{Sinc(m[0])}   {test.Operator(m)}");
                        m[0] = 0.1;
                        Console.WriteLine($"{Sinc(m[0])}   {test.Operator(m)}");
                        m[0] = -4;
                        Console.WriteLine($"{Sinc(m[0])}   {test.Operator(m)}");
                        m[0] = 5.0;
                        Console.WriteLine($"{Sinc(m[0])}   {test.Operator(m)}");

                        // The output is as follows:
                        // 0.239389   0.239362
                        // 0.998334   0.998333
                        // -0.189201   -0.189201
                        // -0.191785   -0.197267


                        // The first column is the true value of t          he sinc function and the second
                        // column is the output from the krls estimate.



                        // Another thing that is worth knowing is that just about everything in dlib is serializable.
                        // So for example, you can save the test object to disk and recall it later like so:
                        Krls <double, RadialBasisKernel <double, Matrix <double> > > .Serialize(test, "saved_krls_object.dat");

                        // Now let's open that file back up and load the krls object it contains.
                        using (var rbk2 = new RadialBasisKernel <double, Matrix <double> >(0.1, 1, 1))
                        {
                            var test2 = new Krls <double, RadialBasisKernel <double, Matrix <double> > >(rbk2, 0.001);
                            Krls <double, RadialBasisKernel <double, Matrix <double> > > .Deserialize("saved_krls_object.dat", ref test2);

                            // If you don't want to save the whole krls object (it might be a bit large)
                            // you can save just the decision function it has learned so far.  You can get
                            // the decision function out of it by calling test.get_decision_function() and
                            // then you can serialize that object instead.  E.g.
                            var funct = test2.GetDecisionFunction();
                            DecisionFunction <double, RadialBasisKernel <double, Matrix <double> > > .Serialize(funct, "saved_krls_function.dat");
                        }
                    }
                }
        }