示例#1
0
        public void TestKmeans()
        {
            FloatMatrixIndexer data = new FloatMatrixIndexer(new float[, ] {
                { 1, 2, 3, 1 }, { 2, 3, 4, 2 }
            });

            KmeansClustering.GenerateClusters(data.Transpose(), 2, 100, 1, i => { }, out var clusterCenters, out var clusterIndices);
            Assert.AreEqual(2, clusterCenters.GetLength(0));
        }
示例#2
0
    /* K MEANS CLUSTERING ALGORITHM - My implementation */
    public Cluster[] computeClusters(List <Frame> framesToSearch)
    {
        KmeansClustering.Entity[] dataset = new KmeansClustering.Entity[framesToSearch.Count];
        int i, K = this.UAVs.Length;

        i = 0;
        foreach (Frame f in framesToSearch)
        {
            dataset[i] = new KmeansClustering.Entity(2);
            dataset[i].setIthFeature(0, f.center.x);
            dataset[i].setIthFeature(1, f.center.z);
            //	Debug.Log(dataset[i]);
            i++;
        }

        /* dataset = center of frames
         * K = number of UAVS */
        KmeansClustering clusterer = new KmeansClustering(dataset, this.UAVs.Length);

        KmeansClustering.ClusteringSolution sol = clusterer.runKmeans(5);          // 10 random starts

        //final number of clusters K could be less than number of UAV if entities are less than K.
        Cluster[] clustersArray = new Cluster[sol.finalK];
        for (i = 0; i < sol.finalK; i++)
        {
            clustersArray [i] = new Cluster();
        }

        i = 0;
        foreach (Frame f in framesToSearch)
        {
            //Debug.Log ("Point: "+dataset[i]+" - Cluster: " +sol.mapDataPointToCluster[i]);
            clustersArray[sol.mapDataPointToCluster[i]].addFrame(f);
            i++;
        }

        foreach (Cluster c in clustersArray)
        {
            c.debugCentroid();
            foreach (Frame f in c.frames)
            {
                f.displayDebug(colorList[currentColor], f.profitDensity);
            }
            currentColor++; currentColor %= colorList.Length;
        }

        return(clustersArray);
    }
示例#3
0
    /* K MEANS CLUSTERING ALGORITHM - ALGLIB */
    public Cluster[] computeClustersWithAlgLib(List <Frame> framesToSearch)
    {
        int i, K = this.UAVs.Length;

        Cluster[] clustersArray = new Cluster[K];
        for (i = 0; i < K; i++)
        {
            clustersArray [i] = new Cluster();
        }

        // array of points (frames' centers used in the clustering algorithm)
        double[,] dataset = new double[framesToSearch.Count, 2];         //{{1,1},{1,2},{4,1},{2,3},{4,1.5}};

        i = 0;
        foreach (Frame f in framesToSearch)
        {
            dataset[i, 0] = f.center.x;
            dataset[i, 1] = f.center.z; i++;
        }

        alglib.kmeansreport rep = KmeansClustering.computeClusters(dataset, K);

        i = 0;
        foreach (Frame f in framesToSearch)
        {
            //	Debug.Log(dataset[i,0] + "," + dataset[i,1] + " - cluster:" + rep.cidx[i]);
            clustersArray[rep.cidx[i]].addFrame(f);
            i++;
        }

        foreach (Cluster c in clustersArray)
        {
            c.debugCentroid();
            foreach (Frame f in c.frames)
            {
                f.displayDebug(colorList[currentColor], f.profitDensity);
            }
            currentColor++; currentColor %= colorList.Length;
        }

        return(clustersArray);
    }
示例#4
0
        public void Execute(Arguments arguments)
        {
            LoggedConsole.WriteLine("feature learning process...");

            var inputDir     = @"D:\Mahnoosh\Liz\Least_Bittern\";
            var inputPath    = Path.Combine(inputDir, "TrainSet\\one_min_recordings");
            var trainSetPath = Path.Combine(inputDir, "TrainSet\\train_data");

            // var testSetPath = Path.Combine(inputDir, "TestSet");
            var configPath = @"D:\Mahnoosh\Liz\Least_Bittern\FeatureLearningConfig.yml";
            var resultDir  = Path.Combine(inputDir, "FeatureLearning");

            Directory.CreateDirectory(resultDir);

            // var outputMelImagePath = Path.Combine(resultDir, "MelScaleSpectrogram.png");
            // var outputNormMelImagePath = Path.Combine(resultDir, "NormalizedMelScaleSpectrogram.png");
            // var outputNoiseReducedMelImagePath = Path.Combine(resultDir, "NoiseReducedMelSpectrogram.png");
            // var outputReSpecImagePath = Path.Combine(resultDir, "ReconstrcutedSpectrogram.png");
            // var outputClusterImagePath = Path.Combine(resultDir, "Clusters.bmp");

            // +++++++++++++++++++++++++++++++++++++++++++++++++patch sampling from 1-min recordings

            var configFile = configPath.ToFileInfo();

            if (configFile == null)
            {
                throw new FileNotFoundException("No config file argument provided");
            }
            else if (!configFile.Exists)
            {
                throw new ArgumentException($"Config file {configFile.FullName} not found");
            }

            var configuration = ConfigFile.Deserialize <FeatureLearningSettings>(configFile);
            int patchWidth    =
                (configuration.MaxFreqBin - configuration.MinFreqBin + 1) / configuration.NumFreqBand;

            var clusteringOutputList = FeatureLearning.UnsupervisedFeatureLearning(configuration, inputPath);

            List <double[][]> allBandsCentroids = new List <double[][]>();

            for (int i = 0; i < clusteringOutputList.Count; i++)
            {
                var clusteringOutput = clusteringOutputList[i];

                // writing centroids to a csv file
                // note that Csv.WriteToCsv can't write data types like dictionary<int, double[]> (problems with arrays)
                // I converted the dictionary values to a matrix and used the Csv.WriteMatrixToCsv
                // it might be a better way to do this
                string pathToClusterCsvFile = Path.Combine(resultDir, "ClusterCentroids" + i.ToString() + ".csv");
                var    clusterCentroids     = clusteringOutput.ClusterIdCentroid.Values.ToArray();
                Csv.WriteMatrixToCsv(pathToClusterCsvFile.ToFileInfo(), clusterCentroids.ToMatrix());

                // sorting clusters based on size and output it to a csv file
                Dictionary <int, double> clusterIdSize = clusteringOutput.ClusterIdSize;
                int[] sortOrder = KmeansClustering.SortClustersBasedOnSize(clusterIdSize);

                // Write cluster ID and size to a CSV file
                string pathToClusterSizeCsvFile = Path.Combine(resultDir, "ClusterSize" + i.ToString() + ".csv");
                Csv.WriteToCsv(pathToClusterSizeCsvFile.ToFileInfo(), clusterIdSize);

                // Draw cluster image directly from clustering output
                List <KeyValuePair <int, double[]> > list = clusteringOutput.ClusterIdCentroid.ToList();
                double[][] centroids = new double[list.Count][];

                for (int j = 0; j < list.Count; j++)
                {
                    centroids[j] = list[j].Value;
                }

                allBandsCentroids.Add(centroids);

                List <double[, ]> allCentroids = new List <double[, ]>();
                for (int k = 0; k < centroids.Length; k++)
                {
                    // convert each centroid to a matrix in order of cluster ID
                    // double[,] cent = PatchSampling.ArrayToMatrixByColumn(centroids[i], patchWidth, patchHeight);
                    // OR: in order of cluster size
                    double[,] cent = MatrixTools.ArrayToMatrixByColumn(centroids[sortOrder[k]], patchWidth, configuration.PatchHeight);

                    // normalize each centroid
                    double[,] normCent = DataTools.normalise(cent);

                    // add a row of zero to each centroid
                    double[,] cent2 = PatchSampling.AddRow(normCent);

                    allCentroids.Add(cent2);
                }

                // concatenate all centroids
                double[,] mergedCentroidMatrix = PatchSampling.ListOf2DArrayToOne2DArray(allCentroids);

                // Draw clusters
                var clusterImage = ImageTools.DrawMatrixWithoutNormalisation(mergedCentroidMatrix);
                clusterImage.RotateFlip(RotateFlipType.Rotate270FlipNone);
                var outputClusteringImage = Path.Combine(resultDir, "ClustersWithGrid" + i.ToString() + ".bmp");
                clusterImage.Save(outputClusteringImage);
            }

            // extracting features
            FeatureExtraction.UnsupervisedFeatureExtraction(configuration, allBandsCentroids, trainSetPath, resultDir);
            LoggedConsole.WriteLine("Done...");
        }
        public void TestFeatureLearning()
        {
            // var outputDir = this.outputDirectory;
            var resultDir  = PathHelper.ResolveAssetPath("FeatureLearning");
            var folderPath = Path.Combine(resultDir, "random_audio_segments"); // Liz

            // PathHelper.ResolveAssetPath(@"C:\Users\kholghim\Mahnoosh\PcaWhitening\random_audio_segments\1192_1000");
            // var resultDir = PathHelper.ResolveAssetPath(@"C:\Users\kholghim\Mahnoosh\PcaWhitening");
            var outputMelImagePath             = Path.Combine(resultDir, "MelScaleSpectrogram.png");
            var outputNormMelImagePath         = Path.Combine(resultDir, "NormalizedMelScaleSpectrogram.png");
            var outputNoiseReducedMelImagePath = Path.Combine(resultDir, "NoiseReducedMelSpectrogram.png");
            var outputReSpecImagePath          = Path.Combine(resultDir, "ReconstrcutedSpectrogram.png");

            // var outputClusterImagePath = Path.Combine(resultDir, "Clusters.bmp");

            // +++++++++++++++++++++++++++++++++++++++++++++++++patch sampling from 1000 random 1-min recordings from Gympie

            // check whether there is any file in the folder/subfolders
            if (Directory.GetFiles(folderPath, "*", SearchOption.AllDirectories).Length == 0)
            {
                throw new ArgumentException("The folder of recordings is empty...");
            }

            // get the nyquist value from the first wav file in the folder of recordings
            int nq = new AudioRecording(Directory.GetFiles(folderPath, "*.wav")[0]).Nyquist;

            int           nyquist       = nq;  // 11025;
            int           frameSize     = 1024;
            int           finalBinCount = 128; // 256; // 100; // 40; // 200; //
            int           hertzInterval = 1000;
            FreqScaleType scaleType     = FreqScaleType.Mel;
            var           freqScale     = new FrequencyScale(scaleType, nyquist, frameSize, finalBinCount, hertzInterval);
            var           fst           = freqScale.ScaleType;

            var sonoConfig = new SonogramConfig
            {
                WindowSize = frameSize,

                // since each 24 frames duration is equal to 1 second
                WindowOverlap      = 0.1028,
                DoMelScale         = (scaleType == FreqScaleType.Mel) ? true : false,
                MelBinCount        = (scaleType == FreqScaleType.Mel) ? finalBinCount : frameSize / 2,
                NoiseReductionType = NoiseReductionType.None,
            };

            /*
             * // testing
             * var recordingPath3 = PathHelper.ResolveAsset(folderPath, "SM304264_0+1_20160421_024539_46-47min.wav");
             * var recording3 = new AudioRecording(recordingPath3);
             * var sonogram3 = new SpectrogramStandard(sonoConfig, recording3.WavReader);
             *
             * // DO DRAW SPECTROGRAM
             * var image4 = sonogram3.GetImageFullyAnnotated(sonogram3.GetImage(), "MELSPECTROGRAM: " + fst.ToString(), freqScale.GridLineLocations);
             * image4.Save(outputMelImagePath);
             *
             * // Do RMS normalization
             * sonogram3.Data = SNR.RmsNormalization(sonogram3.Data);
             * var image5 = sonogram3.GetImageFullyAnnotated(sonogram3.GetImage(), "NORMALISEDMELSPECTROGRAM: " + fst.ToString(), freqScale.GridLineLocations);
             * image5.Save(outputNormMelImagePath);
             *
             * // NOISE REDUCTION
             * sonogram3.Data = PcaWhitening.NoiseReduction(sonogram3.Data);
             * var image6 = sonogram3.GetImageFullyAnnotated(sonogram3.GetImage(), "NOISEREDUCEDMELSPECTROGRAM: " + fst.ToString(), freqScale.GridLineLocations);
             * image6.Save(outputNoiseReducedMelImagePath);
             *
             * //testing
             */

            // Define the minFreBin and MaxFreqBin to be able to work at arbitrary frequency bin bounds.
            // The default value is minFreqBin = 1 and maxFreqBin = finalBinCount.
            // To work with arbitrary frequency bin bounds we need to manually set these two parameters.
            int minFreqBin       = 40;                                          //1
            int maxFreqBin       = 80;                                          //finalBinCount;
            int numFreqBand      = 1;                                           //4;
            int patchWidth       = (maxFreqBin - minFreqBin + 1) / numFreqBand; // finalBinCount / numFreqBand;
            int patchHeight      = 1;                                           // 2; // 4; // 16; // 6; // Frame size
            int numRandomPatches = 20;                                          // 40; // 80; // 30; // 100; // 500; //

            // int fileCount = Directory.GetFiles(folderPath, "*.wav").Length;

            // Define variable number of "randomPatch" lists based on "numFreqBand"
            Dictionary <string, List <double[, ]> > randomPatchLists = new Dictionary <string, List <double[, ]> >();

            for (int i = 0; i < numFreqBand; i++)
            {
                randomPatchLists.Add(string.Format("randomPatch{0}", i.ToString()), new List <double[, ]>());
            }

            List <double[, ]> randomPatches = new List <double[, ]>();

            /*
             * foreach (string filePath in Directory.GetFiles(folderPath, "*.wav"))
             * {
             *  FileInfo f = filePath.ToFileInfo();
             *  if (f.Length == 0)
             *  {
             *      Debug.WriteLine(f.Name);
             *  }
             * }
             */
            double[,] inputMatrix;

            foreach (string filePath in Directory.GetFiles(folderPath, "*.wav"))
            {
                FileInfo fileInfo = filePath.ToFileInfo();

                // process the wav file if it is not empty
                if (fileInfo.Length != 0)
                {
                    var recording = new AudioRecording(filePath);
                    sonoConfig.SourceFName = recording.BaseName;

                    var sonogram = new SpectrogramStandard(sonoConfig, recording.WavReader);

                    // DO RMS NORMALIZATION
                    sonogram.Data = SNR.RmsNormalization(sonogram.Data);

                    // DO NOISE REDUCTION
                    // sonogram.Data = SNR.NoiseReduce_Median(sonogram.Data, nhBackgroundThreshold: 2.0);
                    sonogram.Data = PcaWhitening.NoiseReduction(sonogram.Data);

                    // check whether the full band spectrogram is needed or a matrix with arbitrary freq bins
                    if (minFreqBin != 1 || maxFreqBin != finalBinCount)
                    {
                        inputMatrix = PatchSampling.GetArbitraryFreqBandMatrix(sonogram.Data, minFreqBin, maxFreqBin);
                    }
                    else
                    {
                        inputMatrix = sonogram.Data;
                    }

                    // creating matrices from different freq bands of the source spectrogram
                    List <double[, ]> allSubmatrices = PatchSampling.GetFreqBandMatrices(inputMatrix, numFreqBand);

                    // Second: selecting random patches from each freq band matrix and add them to the corresponding patch list
                    int count = 0;
                    while (count < allSubmatrices.Count)
                    {
                        randomPatchLists[$"randomPatch{count.ToString()}"].Add(PatchSampling
                                                                               .GetPatches(allSubmatrices.ToArray()[count], patchWidth, patchHeight, numRandomPatches,
                                                                                           PatchSampling.SamplingMethod.Random).ToMatrix());
                        count++;
                    }
                }
            }

            foreach (string key in randomPatchLists.Keys)
            {
                randomPatches.Add(PatchSampling.ListOf2DArrayToOne2DArray(randomPatchLists[key]));
            }

            // convert list of random patches matrices to one matrix
            int numberOfClusters = 50; //256; // 128; // 64; // 32; // 10; //
            List <double[][]> allBandsCentroids = new List <double[][]>();
            List <KMeansClusterCollection> allClusteringOutput = new List <KMeansClusterCollection>();

            for (int i = 0; i < randomPatches.Count; i++)
            {
                double[,] patchMatrix = randomPatches[i];

                // Apply PCA Whitening
                var whitenedSpectrogram = PcaWhitening.Whitening(true, patchMatrix);

                // Do k-means clustering
                var clusteringOutput = KmeansClustering.Clustering(whitenedSpectrogram.Reversion, numberOfClusters);

                // var clusteringOutput = KmeansClustering.Clustering(patchMatrix, noOfClusters, pathToClusterCsvFile);

                // writing centroids to a csv file
                // note that Csv.WriteToCsv can't write data types like dictionary<int, double[]> (problems with arrays)
                // I converted the dictionary values to a matrix and used the Csv.WriteMatrixToCsv
                // it might be a better way to do this
                string pathToClusterCsvFile = Path.Combine(resultDir, "ClusterCentroids" + i.ToString() + ".csv");
                var    clusterCentroids     = clusteringOutput.ClusterIdCentroid.Values.ToArray();
                Csv.WriteMatrixToCsv(pathToClusterCsvFile.ToFileInfo(), clusterCentroids.ToMatrix());

                //Csv.WriteToCsv(pathToClusterCsvFile.ToFileInfo(), clusterCentroids);

                // sorting clusters based on size and output it to a csv file
                Dictionary <int, double> clusterIdSize = clusteringOutput.ClusterIdSize;
                int[] sortOrder = KmeansClustering.SortClustersBasedOnSize(clusterIdSize);

                // Write cluster ID and size to a CSV file
                string pathToClusterSizeCsvFile = Path.Combine(resultDir, "ClusterSize" + i.ToString() + ".csv");
                Csv.WriteToCsv(pathToClusterSizeCsvFile.ToFileInfo(), clusterIdSize);

                // Draw cluster image directly from clustering output
                List <KeyValuePair <int, double[]> > list = clusteringOutput.ClusterIdCentroid.ToList();
                double[][] centroids = new double[list.Count][];

                for (int j = 0; j < list.Count; j++)
                {
                    centroids[j] = list[j].Value;
                }

                allBandsCentroids.Add(centroids);
                allClusteringOutput.Add(clusteringOutput.Clusters);

                List <double[, ]> allCentroids = new List <double[, ]>();
                for (int k = 0; k < centroids.Length; k++)
                {
                    // convert each centroid to a matrix in order of cluster ID
                    // double[,] cent = PatchSampling.ArrayToMatrixByColumn(centroids[i], patchWidth, patchHeight);
                    // OR: in order of cluster size
                    double[,] cent =
                        MatrixTools.ArrayToMatrixByColumn(centroids[sortOrder[k]], patchWidth, patchHeight);

                    // normalize each centroid
                    double[,] normCent = DataTools.normalise(cent);

                    // add a row of zero to each centroid
                    double[,] cent2 = PatchSampling.AddRow(normCent);

                    allCentroids.Add(cent2);
                }

                // concatenate all centroids
                double[,] mergedCentroidMatrix = PatchSampling.ListOf2DArrayToOne2DArray(allCentroids);

                // Draw clusters
                // int gridInterval = 1000;
                // var freqScale = new FrequencyScale(FreqScaleType.Mel, nyquist, frameSize, finalBinCount, gridInterval);

                var clusterImage = ImageTools.DrawMatrixWithoutNormalisation(mergedCentroidMatrix);
                clusterImage.RotateFlip(RotateFlipType.Rotate270FlipNone);

                // clusterImage.Save(outputClusterImagePath, ImageFormat.Bmp);

                var outputClusteringImage = Path.Combine(resultDir, "ClustersWithGrid" + i.ToString() + ".bmp");

                // Image bmp = Image.Load<Rgb24>(filename);
                FrequencyScale.DrawFrequencyLinesOnImage((Image <Rgb24>)clusterImage, freqScale, includeLabels: false);
                clusterImage.Save(outputClusteringImage);
            }

            //+++++++++++++++++++++++++++++++++++++++++++++++++++++Processing and generating features for the target recordings
            var recording2Path = PathHelper.ResolveAsset("Recordings", "BAC2_20071008-085040.wav");

            // var recording2Path = PathHelper.ResolveAsset(folderPath, "gympie_np_1192_353972_20160303_055854_60_0.wav");    // folder with 1000 files
            // var recording2Path = PathHelper.ResolveAsset(folderPath, "gympie_np_1192_353887_20151230_042625_60_0.wav");    // folder with 1000 files
            // var recording2Path = PathHelper.ResolveAsset(folderPath, "gympie_np_1192_354744_20151018_053923_60_0.wav");  // folder with 100 files

            var recording2 = new AudioRecording(recording2Path);
            var sonogram2  = new SpectrogramStandard(sonoConfig, recording2.WavReader);

            // DO DRAW SPECTROGRAM
            var image = sonogram2.GetImageFullyAnnotated(sonogram2.GetImage(), "MELSPECTROGRAM: " + fst.ToString(),
                                                         freqScale.GridLineLocations);

            image.Save(outputMelImagePath);

            // Do RMS normalization
            sonogram2.Data = SNR.RmsNormalization(sonogram2.Data);
            var image2 = sonogram2.GetImageFullyAnnotated(sonogram2.GetImage(),
                                                          "NORMALISEDMELSPECTROGRAM: " + fst.ToString(), freqScale.GridLineLocations);

            image2.Save(outputNormMelImagePath);

            // NOISE REDUCTION
            sonogram2.Data = PcaWhitening.NoiseReduction(sonogram2.Data);
            var image3 = sonogram2.GetImageFullyAnnotated(sonogram2.GetImage(),
                                                          "NOISEREDUCEDMELSPECTROGRAM: " + fst.ToString(), freqScale.GridLineLocations);

            image3.Save(outputNoiseReducedMelImagePath);

            // check whether the full band spectrogram is needed or a matrix with arbitrary freq bins
            if (minFreqBin != 1 || maxFreqBin != finalBinCount)
            {
                inputMatrix = PatchSampling.GetArbitraryFreqBandMatrix(sonogram2.Data, minFreqBin, maxFreqBin);
            }
            else
            {
                inputMatrix = sonogram2.Data;
            }

            // extracting sequential patches from the target spectrogram
            List <double[, ]> allSubmatrices2 = PatchSampling.GetFreqBandMatrices(inputMatrix, numFreqBand);

            double[][,] matrices2 = allSubmatrices2.ToArray();
            List <double[, ]> allSequentialPatchMatrix = new List <double[, ]>();

            for (int i = 0; i < matrices2.GetLength(0); i++)
            {
                int rows              = matrices2[i].GetLength(0);
                int columns           = matrices2[i].GetLength(1);
                var sequentialPatches = PatchSampling.GetPatches(matrices2[i], patchWidth, patchHeight,
                                                                 (rows / patchHeight) * (columns / patchWidth), PatchSampling.SamplingMethod.Sequential);
                allSequentialPatchMatrix.Add(sequentialPatches.ToMatrix());
            }

            // +++++++++++++++++++++++++++++++++++Feature Transformation
            // to do the feature transformation, we normalize centroids and
            // sequential patches from the input spectrogram to unit length
            // Then, we calculate the dot product of each patch with the centroids' matrix

            List <double[][]> allNormCentroids = new List <double[][]>();

            for (int i = 0; i < allBandsCentroids.Count; i++)
            {
                // double check the index of the list
                double[][] normCentroids = new double[allBandsCentroids.ToArray()[i].GetLength(0)][];
                for (int j = 0; j < allBandsCentroids.ToArray()[i].GetLength(0); j++)
                {
                    normCentroids[j] = ART_2A.NormaliseVector(allBandsCentroids.ToArray()[i][j]);
                }

                allNormCentroids.Add(normCentroids);
            }

            List <double[][]> allFeatureTransVectors = new List <double[][]>();

            for (int i = 0; i < allSequentialPatchMatrix.Count; i++)
            {
                double[][] featureTransVectors = new double[allSequentialPatchMatrix.ToArray()[i].GetLength(0)][];
                for (int j = 0; j < allSequentialPatchMatrix.ToArray()[i].GetLength(0); j++)
                {
                    var normVector =
                        ART_2A.NormaliseVector(allSequentialPatchMatrix.ToArray()[i]
                                               .ToJagged()[j]); // normalize each patch to unit length
                    featureTransVectors[j] = allNormCentroids.ToArray()[i].ToMatrix().Dot(normVector);
                }

                allFeatureTransVectors.Add(featureTransVectors);
            }

            // +++++++++++++++++++++++++++++++++++Feature Transformation

            // +++++++++++++++++++++++++++++++++++Temporal Summarization
            // The resolution to generate features is 1 second
            // Each 24 single-frame patches form 1 second
            // for each 24 patch, we generate 3 vectors of mean, std, and max
            // The pre-assumption is that each input spectrogram is 1 minute

            List <double[, ]> allMeanFeatureVectors = new List <double[, ]>();
            List <double[, ]> allMaxFeatureVectors  = new List <double[, ]>();
            List <double[, ]> allStdFeatureVectors  = new List <double[, ]>();

            // number of frames needs to be concatenated to form 1 second. Each 24 frames make 1 second.
            int numFrames = (24 / patchHeight) * 60;

            foreach (var freqBandFeature in allFeatureTransVectors)
            {
                // store features of different bands in lists
                List <double[]> meanFeatureVectors = new List <double[]>();
                List <double[]> maxFeatureVectors  = new List <double[]>();
                List <double[]> stdFeatureVectors  = new List <double[]>();
                int             c = 0;
                while (c + numFrames < freqBandFeature.GetLength(0))
                {
                    // First, make a list of patches that would be equal to 1 second
                    List <double[]> sequencesOfFramesList = new List <double[]>();
                    for (int i = c; i < c + numFrames; i++)
                    {
                        sequencesOfFramesList.Add(freqBandFeature[i]);
                    }

                    List <double> mean = new List <double>();
                    List <double> std  = new List <double>();
                    List <double> max  = new List <double>();
                    double[,] sequencesOfFrames = sequencesOfFramesList.ToArray().ToMatrix();

                    // int len = sequencesOfFrames.GetLength(1);

                    // Second, calculate mean, max, and standard deviation of six vectors element-wise
                    for (int j = 0; j < sequencesOfFrames.GetLength(1); j++)
                    {
                        double[] temp = new double[sequencesOfFrames.GetLength(0)];
                        for (int k = 0; k < sequencesOfFrames.GetLength(0); k++)
                        {
                            temp[k] = sequencesOfFrames[k, j];
                        }

                        mean.Add(AutoAndCrossCorrelation.GetAverage(temp));
                        std.Add(AutoAndCrossCorrelation.GetStdev(temp));
                        max.Add(temp.GetMaxValue());
                    }

                    meanFeatureVectors.Add(mean.ToArray());
                    maxFeatureVectors.Add(max.ToArray());
                    stdFeatureVectors.Add(std.ToArray());
                    c += numFrames;
                }

                allMeanFeatureVectors.Add(meanFeatureVectors.ToArray().ToMatrix());
                allMaxFeatureVectors.Add(maxFeatureVectors.ToArray().ToMatrix());
                allStdFeatureVectors.Add(stdFeatureVectors.ToArray().ToMatrix());
            }

            // +++++++++++++++++++++++++++++++++++Temporal Summarization

            // ++++++++++++++++++++++++++++++++++Writing features to file
            // First, concatenate mean, max, std for each second.
            // Then write to CSV file.

            for (int j = 0; j < allMeanFeatureVectors.Count; j++)
            {
                // write the features of each pre-defined frequency band into a separate CSV file
                var outputFeatureFile = Path.Combine(resultDir, "FeatureVectors" + j.ToString() + ".csv");

                // creating the header for CSV file
                List <string> header = new List <string>();
                for (int i = 0; i < allMeanFeatureVectors.ToArray()[j].GetLength(1); i++)
                {
                    header.Add("mean" + i.ToString());
                }

                for (int i = 0; i < allMaxFeatureVectors.ToArray()[j].GetLength(1); i++)
                {
                    header.Add("max" + i.ToString());
                }

                for (int i = 0; i < allStdFeatureVectors.ToArray()[j].GetLength(1); i++)
                {
                    header.Add("std" + i.ToString());
                }

                // concatenating mean, std, and max vector together for each 1 second
                List <double[]> featureVectors = new List <double[]>();
                for (int i = 0; i < allMeanFeatureVectors.ToArray()[j].ToJagged().GetLength(0); i++)
                {
                    List <double[]> featureList = new List <double[]>
                    {
                        allMeanFeatureVectors.ToArray()[j].ToJagged()[i],
                                    allMaxFeatureVectors.ToArray()[j].ToJagged()[i],
                                    allStdFeatureVectors.ToArray()[j].ToJagged()[i],
                    };
                    double[] featureVector = DataTools.ConcatenateVectors(featureList);
                    featureVectors.Add(featureVector);
                }

                // writing feature vectors to CSV file
                using (StreamWriter file = new StreamWriter(outputFeatureFile))
                {
                    // writing the header to CSV file
                    foreach (var entry in header.ToArray())
                    {
                        file.Write(entry + ",");
                    }

                    file.Write(Environment.NewLine);

                    foreach (var entry in featureVectors.ToArray())
                    {
                        foreach (var value in entry)
                        {
                            file.Write(value + ",");
                        }

                        file.Write(Environment.NewLine);
                    }
                }
            }

            /*
             * // Reconstructing the target spectrogram based on clusters' centroids
             * List<double[,]> convertedSpec = new List<double[,]>();
             * int columnPerFreqBand = sonogram2.Data.GetLength(1) / numFreqBand;
             * for (int i = 0; i < allSequentialPatchMatrix.Count; i++)
             * {
             *  double[,] reconstructedSpec2 = KmeansClustering.ReconstructSpectrogram(allSequentialPatchMatrix.ToArray()[i], allClusteringOutput.ToArray()[i]);
             *  convertedSpec.Add(PatchSampling.ConvertPatches(reconstructedSpec2, patchWidth, patchHeight, columnPerFreqBand));
             * }
             *
             * sonogram2.Data = PatchSampling.ConcatFreqBandMatrices(convertedSpec);
             *
             * // DO DRAW SPECTROGRAM
             * var reconstructedSpecImage = sonogram2.GetImageFullyAnnotated(sonogram2.GetImage(), "RECONSTRUCTEDSPECTROGRAM: " + freqScale.ScaleType.ToString(), freqScale.GridLineLocations);
             * reconstructedSpecImage.Save(outputReSpecImagePath);
             */
        }
        public void TestKmeansClustering()
        {
            var outputDir       = this.outputDirectory;
            var recordingsPath  = PathHelper.ResolveAssetPath("FeatureLearning");
            var folderPath      = Path.Combine(recordingsPath, "random_audio_segments");
            var outputImagePath = Path.Combine(outputDir.FullName, "ReconstrcutedSpectrogram.png");

            // check whether there is any file in the folder/subfolders
            if (Directory.GetFiles(folderPath, "*", SearchOption.AllDirectories).Length == 0)
            {
                throw new ArgumentException("The folder of recordings is empty. Test will fail!");
            }

            // get the nyquist value from the first wav file in the folder of recordings
            int nq = new AudioRecording(Directory.GetFiles(folderPath, "*.wav")[0]).Nyquist;

            int           nyquist       = nq;
            int           frameSize     = 1024;
            int           finalBinCount = 128;
            int           hertzInterval = 1000;
            FreqScaleType scaleType     = FreqScaleType.Mel;
            var           freqScale     = new FrequencyScale(scaleType, nyquist, frameSize, finalBinCount, hertzInterval);

            var sonoConfig = new SonogramConfig
            {
                WindowSize = frameSize,

                //WindowOverlap is set based on the fact that each 24 frames is equal to 1 second
                WindowOverlap      = 0.1028,
                DoMelScale         = (scaleType == FreqScaleType.Mel) ? true : false,
                MelBinCount        = (scaleType == FreqScaleType.Mel) ? finalBinCount : frameSize / 2,
                NoiseReductionType = NoiseReductionType.None,
            };

            int numberOfFreqBand      = 4;
            int patchWidth            = finalBinCount / numberOfFreqBand;
            int patchHeight           = 1;
            int numberOfRandomPatches = 20;

            // Define variable number of "randomPatch" lists based on "numberOfFreqBand"
            Dictionary <string, List <double[, ]> > randomPatchLists = new Dictionary <string, List <double[, ]> >();

            for (int i = 0; i < numberOfFreqBand; i++)
            {
                randomPatchLists.Add(string.Format("randomPatch{0}", i.ToString()), new List <double[, ]>());
            }

            List <double[, ]> randomPatches = new List <double[, ]>();

            foreach (string filePath in Directory.GetFiles(folderPath, "*.wav"))
            {
                FileInfo fileInfo = filePath.ToFileInfo();

                // process the wav file if it is not empty
                if (fileInfo.Length != 0)
                {
                    var recording = new AudioRecording(filePath);
                    sonoConfig.SourceFName = recording.BaseName;
                    var sonogram = new SpectrogramStandard(sonoConfig, recording.WavReader);

                    // DO RMS NORMALIZATION
                    sonogram.Data = SNR.RmsNormalization(sonogram.Data);

                    // DO NOISE REDUCTION
                    sonogram.Data = PcaWhitening.NoiseReduction(sonogram.Data);

                    // creating matrices from different freq bands of the source spectrogram
                    List <double[, ]> allSubmatrices = PatchSampling.GetFreqBandMatrices(sonogram.Data, numberOfFreqBand);

                    // Second: selecting random patches from each freq band matrix and add them to the corresponding patch list
                    int count = 0;
                    while (count < allSubmatrices.Count)
                    {
                        randomPatchLists[string.Format("randomPatch{0}", count.ToString())].Add(PatchSampling.GetPatches(allSubmatrices.ToArray()[count], patchWidth, patchHeight, numberOfRandomPatches, PatchSampling.SamplingMethod.Random).ToMatrix());
                        count++;
                    }
                }
            }

            foreach (string key in randomPatchLists.Keys)
            {
                randomPatches.Add(PatchSampling.ListOf2DArrayToOne2DArray(randomPatchLists[key]));
            }

            // convert list of random patches matrices to one matrix
            int numberOfClusters = 32;
            List <KMeansClusterCollection> allClusteringOutput = new List <KMeansClusterCollection>();

            for (int i = 0; i < randomPatches.Count; i++)
            {
                double[,] patchMatrix = randomPatches[i];

                // Do k-means clustering
                string pathToClusterCsvFile = Path.Combine(outputDir.FullName, "ClusterCentroids" + i.ToString() + ".csv");
                var    clusteringOutput     = KmeansClustering.Clustering(patchMatrix, numberOfClusters);

                // sorting clusters based on size and output it to a csv file
                Dictionary <int, double> clusterIdSize = clusteringOutput.ClusterIdSize;
                int[] sortOrder = KmeansClustering.SortClustersBasedOnSize(clusterIdSize);

                // Write cluster ID and size to a CSV file
                string pathToClusterSizeCsvFile = Path.Combine(outputDir.FullName, "ClusterSize" + i.ToString() + ".csv");
                Csv.WriteToCsv(pathToClusterSizeCsvFile.ToFileInfo(), clusterIdSize);

                // Draw cluster image directly from clustering output
                List <KeyValuePair <int, double[]> > listCluster = clusteringOutput.ClusterIdCentroid.ToList();
                double[][] centroids = new double[listCluster.Count][];

                for (int j = 0; j < listCluster.Count; j++)
                {
                    centroids[j] = listCluster[j].Value;
                }

                allClusteringOutput.Add(clusteringOutput.Clusters);

                List <double[, ]> allCentroids = new List <double[, ]>();
                for (int k = 0; k < centroids.Length; k++)
                {
                    // convert each centroid to a matrix in order of cluster ID
                    // OR: in order of cluster size
                    double[,] centroid = MatrixTools.ArrayToMatrixByColumn(centroids[sortOrder[k]], patchWidth, patchHeight);

                    // normalize each centroid
                    double[,] normalizedCentroid = DataTools.normalise(centroid);

                    // add a row of zero to each centroid
                    double[,] newCentroid = PatchSampling.AddRow(normalizedCentroid);

                    allCentroids.Add(newCentroid);
                }

                // concatenate all centroids
                double[,] mergedCentroidMatrix = PatchSampling.ListOf2DArrayToOne2DArray(allCentroids);

                // Draw clusters
                var clusterImage = ImageTools.DrawMatrixWithoutNormalisation(mergedCentroidMatrix);
                clusterImage.RotateFlip(RotateFlipType.Rotate270FlipNone);

                var outputClusteringImage = Path.Combine(outputDir.FullName, "ClustersWithGrid" + i.ToString() + ".bmp");
                FrequencyScale.DrawFrequencyLinesOnImage((Bitmap)clusterImage, freqScale, includeLabels: false);
                clusterImage.Save(outputClusteringImage);
            }

            //+++++++++++++++++++++++++++++++++++++++++++Reconstructing a target spectrogram from sequential patches and the cluster centroids
            var recording2Path = PathHelper.ResolveAsset("Recordings", "BAC2_20071008-085040.wav");
            var recording2     = new AudioRecording(recording2Path);
            var sonogram2      = new SpectrogramStandard(sonoConfig, recording2.WavReader);
            var targetSpec     = sonogram2.Data;

            // Do RMS normalization
            sonogram2.Data = SNR.RmsNormalization(sonogram2.Data);

            // NOISE REDUCTION
            sonogram2.Data = PcaWhitening.NoiseReduction(sonogram2.Data);

            // extracting sequential patches from the target spectrogram
            List <double[, ]> allSubmatrices2 = PatchSampling.GetFreqBandMatrices(sonogram2.Data, numberOfFreqBand);

            double[][,] matrices2 = allSubmatrices2.ToArray();
            List <double[, ]> allSequentialPatchMatrix = new List <double[, ]>();

            for (int i = 0; i < matrices2.GetLength(0); i++)
            {
                int rows              = matrices2[i].GetLength(0);
                int columns           = matrices2[i].GetLength(1);
                var sequentialPatches = PatchSampling.GetPatches(matrices2[i], patchWidth, patchHeight, (rows / patchHeight) * (columns / patchWidth), PatchSampling.SamplingMethod.Sequential);
                allSequentialPatchMatrix.Add(sequentialPatches.ToMatrix());
            }

            List <double[, ]> convertedSpectrogram = new List <double[, ]>();
            int columnPerFreqBand = sonogram2.Data.GetLength(1) / numberOfFreqBand;

            for (int i = 0; i < allSequentialPatchMatrix.Count; i++)
            {
                double[,] reconstructedSpec2 = KmeansClustering.ReconstructSpectrogram(allSequentialPatchMatrix.ToArray()[i], allClusteringOutput.ToArray()[i]);
                convertedSpectrogram.Add(PatchSampling.ConvertPatches(reconstructedSpec2, patchWidth, patchHeight, columnPerFreqBand));
            }

            sonogram2.Data = PatchSampling.ConcatFreqBandMatrices(convertedSpectrogram);

            // DO DRAW SPECTROGRAM
            var reconstructedSpecImage = sonogram2.GetImageFullyAnnotated(sonogram2.GetImage(), "RECONSTRUCTEDSPECTROGRAM: " + freqScale.ScaleType.ToString(), freqScale.GridLineLocations);

            reconstructedSpecImage.Save(outputImagePath, ImageFormat.Png);

            // DO UNIT TESTING
            Assert.AreEqual(targetSpec.GetLength(0), sonogram2.Data.GetLength(0));
            Assert.AreEqual(targetSpec.GetLength(1), sonogram2.Data.GetLength(1));
        }