示例#1
0
        /*
         * public IplImage HoughLines_Point(IplImage src, int canny1, int canny2, int thresh, int sideData)
         * {
         *  // cvHoughLines2
         *  // 확률적 허프 변환을 지정해 선분의 검출을 실시한다
         *
         *  // (1) 화상 읽기
         *  IplImage srcImgStd = src.Clone();
         *  IplImage srcImgGray = new IplImage(src.Size, BitDepth.U8, 1);
         *
         *  CvMemStorage storage = new CvMemStorage();
         *  CvSeq houghLines;
         *  Cv.CvtColor(srcImgStd, srcImgGray, ColorConversion.BgrToGray);
         *  Cv.Canny(srcImgGray, srcImgGray, canny1, canny2, ApertureSize.Size3);
         *  houghLines = srcImgGray.HoughLines2(storage, HoughLinesMethod.Probabilistic, 1, Math.PI/180, thresh, 5, 0);
         *
         *
         *  LinePoints.Clear();
         *  int limit = Math.Min(houghLines.Total, 6);
         *  for (int i = 0; i < limit; i++)
         *  {
         *      CvLineSegmentPolar elem = houghLines.GetSeqElem<CvLineSegmentPolar>(i).Value;
         *      CvPoint pt1 = houghLines.GetSeqElem<CvLineSegmentPoint>(i).Value.P1;
         *      CvPoint pt2 = houghLines.GetSeqElem<CvLineSegmentPoint>(i).Value.P2;
         *
         *      //Trace.WriteLine(pt1.X.ToString("000.00000  ") + pt1.Y.ToString("000.00000  ") + pt2.X.ToString("000.00000  ")+ pt2.Y.ToString("000.00000"));
         *
         *      srcImgStd.Line(pt1, pt2, CvColor.Red, 1, LineType.AntiAlias, 0);
         *
         *      LinePoints.Add(pt1);
         *      LinePoints.Add(pt2);
         *  }
         *  srcImgStd.Dispose();
         *  srcImgGray.Dispose();
         *  houghLines.Dispose();
         *  storage.Dispose();
         *  return srcImgStd;
         * }
         */

        public IplImage HoughLines_Point08(IplImage src, int canny1, int canny2, int thresh, int sideData)
        {
            List <CvPoint> LinePoints    = new List <CvPoint>();
            int            lineMinLength = 0;

            if (sideData == 0 && sideData == 2)
            {
                lineMinLength = src.Width / 2;
            }
            else
            {
                lineMinLength = src.Height / 2;
            }

            // cvHoughLines2
            // 확률적 허프 변환을 지정해 선분의 검출을 실시한다

            // (1) 화상 읽기
            using (IplImage srcImgStd = src.Clone())
                using (IplImage srcImgGray = new IplImage(src.Size, BitDepth.U8, 1))
                {
                    Cv.CvtColor(srcImgStd, srcImgGray, ColorConversion.BgrToGray);

                    // (2) 허프변환을 위한 캐니엣지 처리
                    //Cv.Canny(srcImgGray, srcImgGray, 50, 200, ApertureSize.Size3);
                    Cv.Canny(srcImgGray, srcImgGray, canny1, canny2, ApertureSize.Size3);

                    houghLine = srcImgGray.Clone();

                    using (CvMemStorage storage = new CvMemStorage())
                    {
                        LinePoints.Clear();
                        // (3) 표준적 허프 변환에 의한 선의 검출과 검출된 선 그리기
                        CvSeq lines = srcImgGray.HoughLines2(storage, HoughLinesMethod.Probabilistic, 1, Math.PI / 180, thresh, 5, 0);
                        int   limit = Math.Min(lines.Total, 6);
                        for (int i = 0; i < limit; i++)
                        {
                            CvLineSegmentPolar elem = lines.GetSeqElem <CvLineSegmentPolar>(i).Value;
                            CvPoint            pt1  = lines.GetSeqElem <CvLineSegmentPoint>(i).Value.P1;
                            CvPoint            pt2  = lines.GetSeqElem <CvLineSegmentPoint>(i).Value.P2;

                            //Trace.WriteLine(pt1.X.ToString("000.00000  ") + pt1.Y.ToString("000.00000  ") + pt2.X.ToString("000.00000  ")+ pt2.Y.ToString("000.00000"));

                            srcImgStd.Line(pt1, pt2, CvColor.Red, 1, LineType.AntiAlias, 0);

                            LinePoints.Add(pt1);
                            LinePoints.Add(pt2);

                            houghLine = srcImgStd.Clone();
                        }
                    }
                }
            return(houghLine);
        }
示例#2
0
        public IplImage PostProcess(IplImage preProcessedImage, IplImage postProcessedImage)
        {
            using (CvMemStorage storage = new CvMemStorage())
            {
                CvSeq seq   = preProcessedImage.HoughLines2(storage, HoughLinesMethod.Probabilistic, 1, Math.PI / 180, 30, 40, 15);
                var   lines = new List <CvLineSegmentPoint>();
                for (int i = 0; i < seq.Total; i++)
                {
                    var cvLineSegmentPoint = seq.GetSeqElem <CvLineSegmentPoint>(i);
                    if (cvLineSegmentPoint != null)
                    {
                        lines.Add(cvLineSegmentPoint.Value);
                    }
                }

                var groupedLines = RectangleFinder.GroupSegments(lines);

                var rects = RectangleFinder.Convert(groupedLines);
                RectangleFinder.Filter(rects);

                foreach (var cvRect in rects)
                {
                    postProcessedImage.Rectangle(cvRect, CvColor.Red, 3, LineType.AntiAlias);
                }

                //for (int i = 0; i < groupedLines.Count; i++)
                //{
                //    var color = new CvColor(i*255/max,i*255/max,i*255/max);
                //    var group = groupedLines[i];
                //    for (int j = 0; j < group.Lines.Count; j++)
                //    {
                //        CvLineSegmentPoint elem = group.Lines[j];
                //        imgHough.Line(elem.P1, elem.P2, color, 3, LineType.AntiAlias, 0);
                //    }

                //}


                //Console.WriteLine(groupedLines.Count);

                CvSeq <CvCircleSegment> seq1 = preProcessedImage.HoughCircles(storage,
                                                                              HoughCirclesMethod.Gradient, 1,
                                                                              //imgGray.Size.Height / 8, 150, 55, 0, 50);
                                                                              15, 100, 30, 9, 51);

                foreach (CvCircleSegment item in seq1)
                {
                    postProcessedImage.Circle(item.Center, (int)item.Radius, CvColor.Red, 3);
                }
            }
            return(postProcessedImage);
        }
示例#3
0
        public IplImage HoughLines(IplImage src)
        {
            houline = new IplImage(src.Size, BitDepth.U8, 3);
            bin     = this.Binary(src, 150);

            Cv.Dilate(bin, bin, null, 1);
            Cv.Erode(bin, bin, null, 3);
            Cv.Dilate(bin, bin, null, 2);
            Cv.Canny(bin, bin, 0, 255);

            Cv.CvtColor(bin, houline, ColorConversion.GrayToBgr);

            CvMemStorage Storage = new CvMemStorage();

            CvSeq lines = canny.HoughLines2(Storage, HoughLinesMethod.Probabilistic, 1, Math.PI / 180, 140, 50, 10);

            //for (int i = 0; i < Math.Min(lines.Total, 20); i++)
            //{
            //    CvLineSegmentPolar element = lines.GetSeqElem<CvLineSegmentPolar>(i).Value;

            //    float r = element.Rho;
            //    float theta = element.Theta;

            //    double a = Math.Cos(theta);
            //    double b = Math.Sin(theta);
            //    double x0 = r * a;
            //    double y0 = r * b;

            //    int scale = src.Size.Width + src.Size.Height;

            //    CvPoint pt1 = new CvPoint(Convert.ToInt32(x0 - scale * b), Convert.ToInt32(y0 + scale * a));
            //    CvPoint pt2 = new CvPoint(Convert.ToInt32(x0 + scale * b), Convert.ToInt32(y0 - scale * a));

            //    houline.Line(pt1, pt2, CvColor.Red, 1, LineType.AntiAlias);
            //}
            for (int i = 0; i < Math.Min(lines.Total, 20); i++)
            {
                CvLineSegmentPoint element = lines.GetSeqElem <CvLineSegmentPoint>(i).Value;
                houline.Line(element.P1, element.P2, CvColor.Yellow, 1, LineType.AntiAlias);
            }
            return(houline);
        }
示例#4
0
        /// <summary>
        /// sample of C style wrapper
        /// </summary>
        private void SampleC()
        {
            // cvHoughLines2

            using (IplImage srcImgGray = new IplImage(FilePath.Image.Goryokaku, LoadMode.GrayScale))
                using (IplImage srcImgStd = new IplImage(FilePath.Image.Goryokaku, LoadMode.Color))
                    using (IplImage srcImgProb = srcImgStd.Clone())
                    {
                        Cv.Canny(srcImgGray, srcImgGray, 50, 200, ApertureSize.Size3);
                        using (CvMemStorage storage = new CvMemStorage())
                        {
                            // Standard algorithm
                            CvSeq lines = srcImgGray.HoughLines2(storage, HoughLinesMethod.Standard, 1, Math.PI / 180, 50, 0, 0);
                            // wrapper style
                            //CvLineSegmentPolar[] lines = src_img_gray.HoughLinesStandard(1, Math.PI / 180, 50, 0, 0);

                            int limit = Math.Min(lines.Total, 10);
                            for (int i = 0; i < limit; i++)
                            {
                                // native code style

                                /*
                                 * unsafe
                                 * {
                                 *  float* line = (float*)lines.GetElem<IntPtr>(i).Value.ToPointer();
                                 *  float rho = line[0];
                                 *  float theta = line[1];
                                 * }
                                 * //*/

                                // wrapper style
                                CvLineSegmentPolar elem = lines.GetSeqElem <CvLineSegmentPolar>(i).Value;
                                float rho   = elem.Rho;
                                float theta = elem.Theta;

                                double  a   = Math.Cos(theta);
                                double  b   = Math.Sin(theta);
                                double  x0  = a * rho;
                                double  y0  = b * rho;
                                CvPoint pt1 = new CvPoint {
                                    X = Cv.Round(x0 + 1000 * (-b)), Y = Cv.Round(y0 + 1000 * (a))
                                };
                                CvPoint pt2 = new CvPoint {
                                    X = Cv.Round(x0 - 1000 * (-b)), Y = Cv.Round(y0 - 1000 * (a))
                                };
                                srcImgStd.Line(pt1, pt2, CvColor.Red, 3, LineType.AntiAlias, 0);
                            }

                            // Probabilistic algorithm
                            lines = srcImgGray.HoughLines2(storage, HoughLinesMethod.Probabilistic, 1, Math.PI / 180, 50, 50, 10);
                            // wrapper style
                            //CvLineSegmentPoint[] lines = src_img_gray.HoughLinesProbabilistic(1, Math.PI / 180, 50, 0, 0);

                            for (int i = 0; i < lines.Total; i++)
                            {
                                // native code style

                                /*
                                 * unsafe
                                 * {
                                 *  CvPoint* point = (CvPoint*)lines.GetElem<IntPtr>(i).Value.ToPointer();
                                 *  src_img_prob.Line(point[0], point[1], CvColor.Red, 3, LineType.AntiAlias, 0);
                                 * }
                                 * //*/

                                // wrapper style
                                CvLineSegmentPoint elem = lines.GetSeqElem <CvLineSegmentPoint>(i).Value;
                                srcImgProb.Line(elem.P1, elem.P2, CvColor.Red, 3, LineType.AntiAlias, 0);
                            }
                        }

                        using (new CvWindow("Hough_line_standard", WindowMode.AutoSize, srcImgStd))
                            using (new CvWindow("Hough_line_probabilistic", WindowMode.AutoSize, srcImgProb))
                            {
                                CvWindow.WaitKey(0);
                            }
                    }
        }
示例#5
0
        //HoughLines2()
        //확률적 허프 변환을 지정해 선분의 검출을 실시한다
        //1. CvArr* image : 변환을 할 이미지가 들어간다.
        //2. void* line_storage : 라인을 저장할 공간
        //3. int method : 허프변환에는 3개의 방법이 있다 . 이 방법을 설정하는 인자
        //4. double rho / double theta : 이 둘은 얼마나 조밀한 단위(?)를 사용할 것인가를 정하는 인자 이다. (예로 rho=1이라면 1픽셀단위로 조사를 하고 theta = PI/180 이라면 1도 단위로 조사를 하겠다는 뜻)
        //5. int threshold : 허프 공간상에 그려지는 곡선들이 중첩되는 부분을 이용해서 직선을 검출하는데 threshold 값보다 중첩되는 갯수가 많으면 직선으로 간주한다는 뜻이다. 숫자가 커지면 당연히 더 직선의 기준이 엄격하게 된다.
        //6.double param1 : probabilistic  일 경우  직선의 최소 길이를 설정할 수 있다.
        //7.double param2 : probabilistic  일 경우 직선의 최대 길이를 설정할 수 있다.
        public IplImage HoughLines(IplImage src, IplImage boxImage, ref IplImage resultImage)
        {
            // cvHoughLines2
            // 확률적 허프 변환을 지정해 선분의 검출을 실시한다
            IplImage orImage = boxImage.Clone();

            // (1) 화상 읽기
            using (IplImage srcImgStd = src.Clone())
                using (IplImage srcImgGray = new IplImage(src.Size, BitDepth.U8, 1))
                {
                    Cv.CvtColor(srcImgStd, srcImgGray, ColorConversion.BgrToGray);

                    // (2) 허프변환을 위한 캐니엣지 처리
                    Cv.Canny(srcImgGray, srcImgGray, 50, 200, ApertureSize.Size3);

                    houghLine = srcImgGray.Clone();
                    int lineMinLength = srcImgStd.Width / 2;
                    int lineMaxLength = srcImgStd.Width;

                    using (CvMemStorage storage = new CvMemStorage())
                    {
                        // (3) 표준적 허프 변환에 의한 선의 검출과 검출된 선 그리기
                        CvSeq lines = srcImgGray.HoughLines2(storage, HoughLinesMethod.Standard, 1, Math.PI / 180, 50, 0, 0);
                        int   limit = Math.Min(lines.Total, 10);
                        for (int i = 0; i < limit; i++)
                        {
                            CvLineSegmentPolar elem = lines.GetSeqElem <CvLineSegmentPolar>(i).Value;
                            float rho   = elem.Rho;
                            float theta = elem.Theta;

                            double a  = Math.Cos(theta);
                            double b  = Math.Sin(theta);
                            double x0 = a * rho;
                            double y0 = b * rho;

                            CvPoint pt1 = new CvPoint {
                                X = Cv.Round(x0 + src.Width * (-b)), Y = Cv.Round(y0 + src.Height * (a))
                            };
                            CvPoint pt2 = new CvPoint {
                                X = Cv.Round(x0 - src.Width * (-b)), Y = Cv.Round(y0 - src.Height * (a))
                            };

                            if (pt1.X < 1)
                            {
                                pt1.X = 0;
                                pt2.X = src.Width;
                            }

                            if (pt2.X < 1)
                            {
                                pt1.X = src.Width;
                                pt2.X = 0;
                            }

                            if (pt1.Y < 1)
                            {
                                pt1.Y = 0;
                                pt2.Y = src.Height;
                            }

                            if (pt2.Y < 1)
                            {
                                pt1.Y = src.Height;
                                pt2.Y = 0;
                            }

                            srcImgStd.Line(pt1, pt2, CvColor.Red, 1, LineType.AntiAlias, 0);
                            houghLine = srcImgStd.Clone();

                            orImage.Line(pt1, pt2, CvColor.Red, 1, LineType.AntiAlias, 0);
                            houghLine = orImage.Clone();

                            return(houghLine);
                        }
                    }
                }
            return(houghLine);
        }
示例#6
0
        public IplImage HoughLines_Line(IplImage src, int canny1, int canny2, int thresh)
        {
            // cvHoughLines2
            // 확률적 허프 변환을 지정해 선분의 검출을 실시한다
            List <CvPoint> LinePoints = new List <CvPoint>();

            // (1) 화상 읽기
            using (IplImage srcImgStd = src.Clone())
                using (IplImage srcImgGray = new IplImage(src.Size, BitDepth.U8, 1))
                {
                    Cv.CvtColor(srcImgStd, srcImgGray, ColorConversion.BgrToGray);

                    // (2) 허프변환을 위한 캐니엣지 처리
                    //Cv.Canny(srcImgGray, srcImgGray, 50, 200, ApertureSize.Size3);
                    Cv.Canny(srcImgGray, srcImgGray, canny1, canny2, ApertureSize.Size3);

                    houghLine = srcImgGray.Clone();

                    using (CvMemStorage storage = new CvMemStorage())
                    {
                        LinePoints.Clear();
                        // (3) 표준적 허프 변환에 의한 선의 검출과 검출된 선 그리기
                        CvSeq lines = srcImgGray.HoughLines2(storage, HoughLinesMethod.Standard, 1, Math.PI / 180, thresh, 0, 0);
                        //int limit = Math.Min(lines.Total, 10);
                        for (int i = 0; i < Math.Min(lines.Total, 3); i++)
                        {
                            CvLineSegmentPolar elem = lines.GetSeqElem <CvLineSegmentPolar>(i).Value;



                            float rho   = elem.Rho;
                            float theta = elem.Theta;

                            double a = Math.Cos(theta), b = Math.Sin(theta);
                            double x0 = a * rho, y0 = b * rho;

                            CvPoint pt1, pt2;

                            //pt1.X = Cv.Round(x0 + 1000*(-b));
                            //pt1.Y = Cv.Round(y0 + 1000*(a));
                            //pt2.X = Cv.Round(x0 - 1000*(-b));
                            //pt2.Y = Cv.Round(y0 - 1000*(a));

                            pt1.X = Cv.Round(x0 + srcImgStd.Width * (-b));
                            pt1.Y = Cv.Round(y0 + srcImgStd.Height * (a));
                            pt2.X = Cv.Round(x0 - srcImgStd.Width * (-b));
                            pt2.Y = Cv.Round(y0 - srcImgStd.Height * (a));

                            if (pt1.X < 0)
                            {
                                pt1.X = 0;
                                pt2.X = src.Width;
                            }
                            else if (pt2.X < 0)
                            {
                                pt1.X = src.Width;
                                pt2.X = 0;
                            }

                            if (pt1.Y < 0)
                            {
                                pt1.Y = 0;
                                pt2.Y = src.Height;
                            }
                            else if (pt2.Y < 0)
                            {
                                pt1.Y = src.Height;
                                pt2.Y = 0;
                            }

                            //Trace.WriteLine(pt1.X.ToString("000.00000  ") + pt1.Y.ToString("000.00000  ") + pt2.X.ToString("000.00000  ") + pt2.Y.ToString("000.00000"));
                            srcImgStd.Line(pt1, pt2, CvColor.Red, 1, LineType.AntiAlias, 0);

                            LinePoints.Add(pt1);
                            LinePoints.Add(pt2);

                            houghLine = srcImgStd.Clone();
                        }
                    }
                }
            return(houghLine);
        }
示例#7
0
        //private CvSeq houghLines;
        //public IplImage srcImgGray = new IplImage();
        //public IplImage srcImgStd = new IplImage();
        //public CvMemStorage storage = new CvMemStorage();
        public List <CvPoint> HoughLines_Point(IplImage src, int edge1, int edge2, int line1, int line2, int line3)
        {
            try
            {
                // 확률적 허프 변환을 지정해 선분의 검출을 실시한다
                List <CvPoint> LinePoints = new List <CvPoint>();
                IplImage       srcImgStd  = new IplImage(src.ROI.Size, BitDepth.U8, 3);
                Cv.Copy(src, srcImgStd);
                IplImage srcImgGray = new IplImage(src.ROI.Size, BitDepth.U8, 1);
                Cv.CvtColor(srcImgStd, srcImgGray, ColorConversion.BgrToGray);
                Cv.Canny(srcImgGray, srcImgGray, edge1, edge2, ApertureSize.Size3);
                CvMemStorage storage    = new CvMemStorage();
                CvSeq        houghLines = srcImgGray.HoughLines2(storage, HoughLinesMethod.Probabilistic, 1, Math.PI / 180, line1, line2, line3);
                //CvWindow.ShowImages(src);

                //Hough_Lines_Point LinesFinder = new Hough_Lines_Point();
                //LinesFinder.srcImgGray = new IplImage(src.Size, BitDepth.U8, 1);
                //Cv.CvtColor(src, LinesFinder.srcImgGray, ColorConversion.BgrToGray);
                //Cv.Canny(LinesFinder.srcImgGray, LinesFinder.srcImgGray, edge1, edge2, ApertureSize.Size3);
                //CvMemStorage storage = new CvMemStorage();
                //CvSeq houghLines = LinesFinder.srcImgGray.HoughLines2(storage, HoughLinesMethod.Probabilistic, 1, Math.PI / 180, line1, line2, line3);

                //CvWindow.ShowImages(LinesFinder.srcImgGray);
                //bool tmpFalg = true;

                //             for(int i = 1; i < 256;i++)
                //             {
                //                 if (houghLines.Total >= 10)
                //                 {
                //                     break;
                //                 }
                //                 houghLines = LinesFinder.srcImgGray.HoughLines2(LinesFinder.storage, HoughLinesMethod.Probabilistic, 1, Math.PI / 180, 2, line2, line3);
                //             }

                //LinePoints = new List<CvPoint>();
                LinePoints.Clear();
                int limit = Math.Min(houghLines.Total, 10);
                for (int i = 0; i < limit; i++)
                {
                    CvLineSegmentPolar elem = houghLines.GetSeqElem <CvLineSegmentPolar>(i).Value;
                    CvPoint            pt1  = houghLines.GetSeqElem <CvLineSegmentPoint>(i).Value.P1;
                    CvPoint            pt2  = houghLines.GetSeqElem <CvLineSegmentPoint>(i).Value.P2;

                    //Trace.WriteLine(pt1.X.ToString("000.00000  ") + pt1.Y.ToString("000.00000  ") + pt2.X.ToString("000.00000  ")+ pt2.Y.ToString("000.00000"));

                    //LinesFinder.srcImgStd.Line(LinesFinder.pt1, LinesFinder.pt2, CvColor.LawnGreen, 3, LineType.AntiAlias, 0);
                    //TestImage = LinesFinder.srcImgStd.Clone();

                    //src.Line(pt1, pt2, CvColor.LawnGreen, 3, LineType.AntiAlias, 0);
                    //CvWindow.ShowImages(src);
                    //TestImage = src.Clone();

                    LinePoints.Add(pt1);
                    LinePoints.Add(pt2);
                }

                srcImgStd.Dispose();
                srcImgGray.Dispose();
                houghLines.Dispose();
                storage.Dispose();

                return(LinePoints);
            }
            catch (Exception e)
            {
                MessageBox.Show(MethodBase.GetCurrentMethod().Name + " " + e.Message);
                throw;
            }
        }
示例#8
0
        public IplImage HoughLines(IplImage src) //허프를 통한 차선 검출
        {
            flag_yellow = 0;
            flag_white  = 0;

            slice = this.SliceImage(src);
            hsv   = this.YellowTransform(slice);
            hls   = this.WhiteTransform(slice);

            blur = this.BlurImage(hsv);
            bin  = this.Binary(hsv, 50); //Adaptive Thresholding로 변환
            Cv.Canny(bin, bin, 50, 200, ApertureSize.Size3);

            CvMemStorage Storage = new CvMemStorage();

            /* Probabilistic 검출*/
            CvSeq lines = bin.HoughLines2(Storage, HoughLinesMethod.Probabilistic, 1, Math.PI / 180, 50, 100, 100);

            double[] LineAngle   = new double[lines.Total];
            double[] LineAngle_q = new double[lines.Total];

            if (lines != null)
            {
                for (int i = 0; i < lines.Total; i++)                                         //검출된 모든 라인을 검사
                {
                    CvLineSegmentPoint elem = lines.GetSeqElem <CvLineSegmentPoint>(i).Value; // 해당 라인의 데이터를 가져옴

                    int    dx    = elem.P2.X - elem.P1.X;                                     //x좌표의 차
                    int    dy    = elem.P2.Y - elem.P1.Y;                                     //y좌표의 차
                    double angle = Math.Atan2(dy, dx) * 180 / Math.PI;                        //기울기 구하기

                    LineAngle[i]   = angle;
                    LineAngle_q[i] = angle;
                }

                if (lines.Total != 0)
                {
                    Quick_Sort(LineAngle_q, lines.Total);
                }

                for (int i = 0; i < lines.Total; i++)
                {
                    CvLineSegmentPoint elem = lines.GetSeqElem <CvLineSegmentPoint>(i).Value; // 해당 라인의 데이터를 가져옴

                    int    dx    = elem.P2.X - elem.P1.X;                                     //x좌표의 차
                    int    dy    = elem.P2.Y - elem.P1.Y;                                     //y좌표의 차
                    double angle = Math.Atan2(dy, dx) * 180 / Math.PI;                        //기울기 구하기

                    if (LineAngle_q[lines.Total - 1] == LineAngle[i] || LineAngle_q[0] == LineAngle[i])
                    {
                        //P2에 50을 더해도 P1보다 작거나, P2에 50을 빼도 P1보다 큰경우
                        if (elem.P1.Y > elem.P2.Y || elem.P1.Y < elem.P2.Y) //P1 :시작점, P2 : 도착점
                        {
                            if (Math.Abs(angle) >= 14 && Math.Abs(angle) <= 80)
                            {
                                Cv.PutText(src, "Yellow angle : " + angle.ToString(), new CvPoint(100, 50), new CvFont(FontFace.HersheyComplex, 1, 1), CvColor.Yellow);
                                P1   = elem.P1;
                                P2   = elem.P2;
                                d_dx = Math.Abs(P2.X - P1.X);
                                d_dy = Math.Abs(P2.Y - P1.Y);

                                while (true)
                                {
                                    if (P1.Y > P2.Y)
                                    {
                                        if (P1.Y < src.Height)
                                        {
                                            if (P1.X < P2.X)
                                            {
                                                P1.X -= d_dx / 100;
                                                P1.Y += d_dy / 100;
                                            }
                                            else
                                            {
                                                P1.X += d_dx / 100;
                                                P1.Y += d_dy / 100;
                                            }
                                        }
                                        else if (P2.Y > src.Height * 5 / 8)
                                        {
                                            if (P1.X > P2.X)
                                            {
                                                P2.X -= d_dx / 100;
                                                P2.Y -= d_dy / 100;
                                            }
                                            else
                                            {
                                                P2.X += d_dx / 100;
                                                P2.Y -= d_dy / 100;
                                            }
                                        }
                                        else
                                        {
                                            break;
                                        }
                                    }
                                    else
                                    {
                                        if (P2.Y < src.Height)
                                        {
                                            if (P1.X > P2.X)
                                            {
                                                P2.X -= d_dx / 100;
                                                P2.Y += d_dy / 100;
                                            }
                                            else
                                            {
                                                P2.X += d_dx / 100;
                                                P2.Y += d_dy / 100;
                                            }
                                        }
                                        else if (P1.Y > src.Height * 5 / 8)
                                        {
                                            if (P1.X < P2.X)
                                            {
                                                P1.X -= d_dx / 100;
                                                P1.Y -= d_dy / 100;
                                            }
                                            else
                                            {
                                                P1.X += d_dx / 100;
                                                P1.Y -= d_dy / 100;
                                            }
                                        }
                                        else
                                        {
                                            break;
                                        }
                                    }

                                    d_dx = Math.Abs(P2.X - P1.X);
                                    d_dy = Math.Abs(P2.Y - P1.Y);
                                }
                                flag_yellow      = 1;
                                prev_elemLeft.P1 = P1;
                                prev_elemLeft.P2 = P2;

                                src.Line(P1, P2, CvColor.Yellow, 10, LineType.AntiAlias, 0); //P1,P2의 좌표를 가지고 사용자에게 정보를 줄수있음(ex) angle이 심하게 올라가면 차선이탈
                                break;
                            }
                        }
                    }
                }
            }

            blur = this.BlurImage(hls);
            bin  = this.Binary(hls, 50); //Adaptive Thresholding로 변환
            Cv.Canny(bin, bin, 50, 150, ApertureSize.Size3);

            /* Probabilistic 검출*/
            lines       = bin.HoughLines2(Storage, HoughLinesMethod.Probabilistic, 1, Math.PI / 180, 50, 100, 100);
            LineAngle   = new double[lines.Total];
            LineAngle_q = new double[lines.Total];

            if (lines != null)
            {
                for (int i = 0; i < lines.Total; i++)                                         //검출된 모든 라인을 검사
                {
                    CvLineSegmentPoint elem = lines.GetSeqElem <CvLineSegmentPoint>(i).Value; // 해당 라인의 데이터를 가져옴

                    int    dx    = elem.P2.X - elem.P1.X;                                     //x좌표의 차
                    int    dy    = elem.P2.Y - elem.P1.Y;                                     //y좌표의 차
                    double angle = Math.Atan2(dy, dx) * 180 / Math.PI;                        //기울기 구하기

                    LineAngle[i]   = angle;
                    LineAngle_q[i] = angle;
                }

                if (lines.Total != 0)
                {
                    Quick_Sort(LineAngle_q, lines.Total);
                }

                for (int i = 0; i < lines.Total; i++)
                {
                    CvLineSegmentPoint elem = lines.GetSeqElem <CvLineSegmentPoint>(i).Value; // 해당 라인의 데이터를 가져옴

                    int    dx    = elem.P2.X - elem.P1.X;                                     //x좌표의 차
                    int    dy    = elem.P2.Y - elem.P1.Y;                                     //y좌표의 차
                    double angle = Math.Atan2(dy, dx) * 180 / Math.PI;                        //기울기 구하기

                    if (LineAngle_q[lines.Total - 1] == LineAngle[i] || LineAngle_q[0] == LineAngle[i])
                    {
                        //P2에 50을 더해도 P1보다 작거나, P2에 50을 빼도 P1보다 큰경우
                        if (elem.P1.Y > elem.P2.Y || elem.P1.Y < elem.P2.Y) //P1 :시작점, P2 : 도착점
                        {
                            if (Math.Abs(angle) >= 14 && Math.Abs(angle) <= 80)
                            {
                                Cv.PutText(src, "Whtie angle : " + angle.ToString(), new CvPoint(100, 100), new CvFont(FontFace.HersheyComplex, 1, 1), CvColor.White);

                                P1   = elem.P1;
                                P2   = elem.P2;
                                d_dx = Math.Abs(P2.X - P1.X);
                                d_dy = Math.Abs(P2.Y - P1.Y);
                                while (true)
                                {
                                    if (P1.Y > P2.Y)
                                    {
                                        if (P1.Y < src.Height)
                                        {
                                            if (P1.X < P2.X)
                                            {
                                                P1.X -= d_dx / 100;
                                                P1.Y += d_dy / 100;
                                            }
                                            else
                                            {
                                                P1.X += d_dx / 100;
                                                P1.Y += d_dy / 100;
                                            }
                                        }
                                        else if (P2.Y > src.Height * 5 / 8)
                                        {
                                            if (P1.X > P2.X)
                                            {
                                                P2.X -= d_dx / 100;
                                                P2.Y -= d_dy / 100;
                                            }
                                            else
                                            {
                                                P2.X += d_dx / 100;
                                                P2.Y -= d_dy / 100;
                                            }
                                        }
                                        else
                                        {
                                            break;
                                        }
                                    }
                                    else
                                    {
                                        if (P2.Y < src.Height)
                                        {
                                            if (P1.X > P2.X)
                                            {
                                                P2.X -= d_dx / 100;
                                                P2.Y += d_dy / 100;
                                            }
                                            else
                                            {
                                                P2.X += d_dx / 100;
                                                P2.Y += d_dy / 100;
                                            }
                                        }
                                        else if (P1.Y > src.Height * 5 / 8)
                                        {
                                            if (P1.X < P2.X)
                                            {
                                                P1.X -= d_dx / 100;
                                                P1.Y -= d_dy / 100;
                                            }
                                            else
                                            {
                                                P1.X += d_dx / 100;
                                                P1.Y -= d_dy / 100;
                                            }
                                        }
                                        else
                                        {
                                            break;
                                        }
                                    }
                                    d_dx = Math.Abs(P2.X - P1.X);
                                    d_dy = Math.Abs(P2.Y - P1.Y);
                                }
                                flag_white        = 1;
                                prev_elemRight.P1 = P1;
                                prev_elemRight.P2 = P2;

                                src.Line(P1, P2, CvColor.White, 10, LineType.AntiAlias, 0); //P1,P2의 좌표를 가지고 사용자에게 정보를 줄수있음(ex) angle이 심하게 올라가면 차선이탈
                                break;
                            }
                        }
                    }
                }
            }
            if (flag_yellow == 0)
            {
                src.Line(prev_elemLeft.P1, prev_elemLeft.P2, CvColor.Yellow, 10, LineType.AntiAlias, 0);
            }

            if (flag_white == 0)
            {
                src.Line(prev_elemRight.P1, prev_elemRight.P2, CvColor.White, 10, LineType.AntiAlias, 0);
            }

            Cv.ReleaseMemStorage(Storage);

            //vehicle_detection = this.VDConvert.VehicleDetect(src);
            Dispose();
            return(src);
        }
示例#9
0
        /// <summary>
        /// sample of C style wrapper
        /// </summary>
        private void SampleC()
        {
            // cvHoughLines2
            // 標準的ハフ変換と確率的ハフ変換を指定して線(線分)の検出を行なう.サンプルコード内の各パラメータ値は処理例の画像に対してチューニングされている.

            // (1)画像の読み込み
            using (IplImage srcImgGray = new IplImage(Const.ImageGoryokaku, LoadMode.GrayScale))
                using (IplImage srcImgStd = new IplImage(Const.ImageGoryokaku, LoadMode.Color))
                    using (IplImage srcImgProb = srcImgStd.Clone())
                    {
                        // (2)ハフ変換のための前処理
                        Cv.Canny(srcImgGray, srcImgGray, 50, 200, ApertureSize.Size3);
                        using (CvMemStorage storage = new CvMemStorage())
                        {
                            // (3)標準的ハフ変換による線の検出と検出した線の描画
                            CvSeq lines = srcImgGray.HoughLines2(storage, HoughLinesMethod.Standard, 1, Math.PI / 180, 50, 0, 0);
                            // wrapper style
                            //CvLineSegmentPolar[] lines = src_img_gray.HoughLinesStandard(1, Math.PI / 180, 50, 0, 0);

                            int limit = Math.Min(lines.Total, 10);
                            for (int i = 0; i < limit; i++)
                            {
                                // native code style

                                /*
                                 * unsafe
                                 * {
                                 *  float* line = (float*)lines.GetElem<IntPtr>(i).Value.ToPointer();
                                 *  float rho = line[0];
                                 *  float theta = line[1];
                                 * }
                                 * //*/

                                // wrapper style
                                CvLineSegmentPolar elem = lines.GetSeqElem <CvLineSegmentPolar>(i).Value;
                                float rho   = elem.Rho;
                                float theta = elem.Theta;

                                double  a   = Math.Cos(theta);
                                double  b   = Math.Sin(theta);
                                double  x0  = a * rho;
                                double  y0  = b * rho;
                                CvPoint pt1 = new CvPoint {
                                    X = Cv.Round(x0 + 1000 * (-b)), Y = Cv.Round(y0 + 1000 * (a))
                                };
                                CvPoint pt2 = new CvPoint {
                                    X = Cv.Round(x0 - 1000 * (-b)), Y = Cv.Round(y0 - 1000 * (a))
                                };
                                srcImgStd.Line(pt1, pt2, CvColor.Red, 3, LineType.AntiAlias, 0);
                            }

                            // (4)確率的ハフ変換による線分の検出と検出した線分の描画
                            lines = srcImgGray.HoughLines2(storage, HoughLinesMethod.Probabilistic, 1, Math.PI / 180, 50, 50, 10);
                            // wrapper style
                            //CvLineSegmentPoint[] lines = src_img_gray.HoughLinesProbabilistic(1, Math.PI / 180, 50, 0, 0);

                            for (int i = 0; i < lines.Total; i++)
                            {
                                // native code style

                                /*
                                 * unsafe
                                 * {
                                 *  CvPoint* point = (CvPoint*)lines.GetElem<IntPtr>(i).Value.ToPointer();
                                 *  src_img_prob.Line(point[0], point[1], CvColor.Red, 3, LineType.AntiAlias, 0);
                                 * }
                                 * //*/

                                // wrapper style
                                CvLineSegmentPoint elem = lines.GetSeqElem <CvLineSegmentPoint>(i).Value;
                                srcImgProb.Line(elem.P1, elem.P2, CvColor.Red, 3, LineType.AntiAlias, 0);
                            }
                        }

                        // (5)検出結果表示用のウィンドウを確保し表示する
                        using (new CvWindow("Hough_line_standard", WindowMode.AutoSize, srcImgStd))
                            using (new CvWindow("Hough_line_probabilistic", WindowMode.AutoSize, srcImgProb))
                            {
                                CvWindow.WaitKey(0);
                            }
                    }
        }
示例#10
0
        static void Main()
        {
            // CvCapture cap = CvCapture.FromFile("video.avi");
            CvCapture cap = CvCapture.FromFile("road_3.avi");

            CvWindow w     = new CvWindow("Lane Detection");
            CvWindow canny = new CvWindow("Lane Detection_2");
            CvWindow hough = new CvWindow("Lane Detection");
            //   CvWindow smoothing = new CvWindow("Lane Detection_3");


            IplImage                src, gray, dstCanny, halfFrame, smallImg;
            CvMemStorage            storage = new CvMemStorage();
            CvSeq                   lines;
            CvHaarClassifierCascade cascade = CvHaarClassifierCascade.FromFile("haarcascade_cars3.xml");

            const double Scale        = 2.0;
            const double ScaleFactor  = 1.05;
            const int    MinNeighbors = 3;
            double       min_range    = 70;
            double       max_range    = 120;


            CvSeq <CvAvgComp> cars;

            while (CvWindow.WaitKey(10) < 0)
            {
                src       = cap.QueryFrame();
                halfFrame = new IplImage(new CvSize(src.Size.Width / 2, src.Size.Height / 2), BitDepth.U8, 3);
                Cv.PyrDown(src, halfFrame, CvFilter.Gaussian5x5);


                gray = new IplImage(src.Size, BitDepth.U8, 1);

                dstCanny = new IplImage(src.Size, BitDepth.U8, 1);

                /*
                 *
                 * smallImg = new IplImage(new CvSize(Cv.Round(src.Width / Scale), Cv.Round(src.Height / Scale)), BitDepth.U8, 1);
                 * using (IplImage grey = new IplImage(src.Size, BitDepth.U8, 1))
                 * {
                 * Cv.CvtColor(src, grey, ColorConversion.BgrToGray);
                 * Cv.Resize(grey, smallImg, Interpolation.Linear);
                 * Cv.EqualizeHist(smallImg, smallImg);
                 * }
                 *
                 * cars = Cv.HaarDetectObjects(smallImg, cascade, storage, ScaleFactor, MinNeighbors, HaarDetectionType.DoCannyPruning, new CvSize(30, 30));
                 *
                 * for (int i = 0; i < cars.Total; i++)
                 * {
                 * CvRect r = cars[i].Value.Rect;
                 * CvPoint center = new CvPoint
                 * {
                 *     X = Cv.Round((r.X + r.Width * 0.5) * Scale),
                 *     Y = Cv.Round((r.Y + r.Height * 0.5) * Scale)
                 * };
                 * int radius = Cv.Round((r.Width + r.Height) * 0.25 * Scale);
                 * src.Circle(center, radius, CvColor.Blue, 2, LineType.AntiAlias, 0);
                 * } */

                // Crop off top half of image since we're only interested in the lower portion of the video
                int halfWidth  = src.Width / 2;
                int halfHeight = src.Height / 2;
                int startX     = halfWidth - (halfWidth / 2);
                src.SetROI(new CvRect(0, halfHeight - 0, src.Width - 1, src.Height - 1));

                gray.SetROI(src.GetROI());
                dstCanny.SetROI(src.GetROI());

                src.CvtColor(gray, ColorConversion.BgrToGray);
                Cv.Smooth(gray, gray, SmoothType.Gaussian, 5, 5);
                Cv.Canny(gray, dstCanny, 50, 200, ApertureSize.Size3);

                storage.Clear();
                lines = dstCanny.HoughLines2(storage, HoughLinesMethod.Probabilistic, 1, Math.PI / 180, 50, 50, 100);

                for (int i = 0; i < lines.Total; i++)
                {
                    CvLineSegmentPoint elem = lines.GetSeqElem <CvLineSegmentPoint>(i).Value;

                    int    dx    = elem.P2.X - elem.P1.X;
                    int    dy    = elem.P2.Y - elem.P1.Y;
                    double angle = Math.Atan2(dy, dx) * 180 / Math.PI;

                    //   if (Math.Abs(angle) <= 10)
                    //     continue;

                    if (elem.P1.Y > elem.P2.Y + 50 || elem.P1.Y < elem.P2.Y - 50)
                    {
                        src.Line(elem.P1, elem.P2, CvColor.Green, 9, LineType.Link8, 0);
                    }
                }

                src.ResetROI();


                storage.Clear();
                w.Image = src;
                // canny.Image = dstCanny;
                // smoothing.Image = gray;
                //    w.Image = dstCanny;
                //  w.Image = dstCanny;
            }
        }