/// <summary>
        /// Process the file and output to the target file.
        /// </summary>
        /// <param name="target">The target file to write to.</param>
        public void Process(string target)
        {
            var        csv = new ReadCSV(InputFilename.ToString(), ExpectInputHeaders, InputFormat);
            TextWriter tw  = new StreamWriter(target);

            ResetStatus();
            while (csv.Next())
            {
                var line = new StringBuilder();
                UpdateStatus(false);
                line.Append(GetColumnData(FileData.Date, csv));
                line.Append(" ");
                line.Append(GetColumnData(FileData.Time, csv));
                line.Append(";");
                line.Append(InputFormat.Format(double.Parse(GetColumnData(FileData.Open, csv)), Precision));
                line.Append(";");
                line.Append(InputFormat.Format(double.Parse(GetColumnData(FileData.High, csv)), Precision));
                line.Append(";");
                line.Append(InputFormat.Format(double.Parse(GetColumnData(FileData.Low, csv)), Precision));
                line.Append(";");
                line.Append(InputFormat.Format(double.Parse(GetColumnData(FileData.Close, csv)), Precision));
                line.Append(";");
                line.Append(InputFormat.Format(double.Parse(GetColumnData(FileData.Volume, csv)), Precision));

                tw.WriteLine(line.ToString());
            }
            ReportDone(false);
            csv.Close();
            tw.Close();
        }
示例#2
0
        /// <summary>
        /// Process the file.
        /// </summary>
        ///
        /// <param name="outputFile">The output file.</param>
        /// <param name="method">The method to use.</param>
        public void Process(FileInfo outputFile, IMLRegression method)
        {
            var csv = new ReadCSV(InputFilename.ToString(),
                                  ExpectInputHeaders, InputFormat);

            if (method.InputCount > _inputCount)
            {
                throw new AnalystError("This machine learning method has "
                                       + method.InputCount
                                       + " inputs, however, the data has " + _inputCount
                                       + " inputs.");
            }

            IMLData input = new BasicMLData(method.InputCount);

            StreamWriter tw = AnalystPrepareOutputFile(outputFile);

            ResetStatus();
            while (csv.Next())
            {
                UpdateStatus(false);
                var row = new LoadedRow(csv, _idealCount);

                int dataIndex = 0;
                // load the input data
                for (int i = 0; i < _inputCount; i++)
                {
                    String str = row.Data[i];
                    double d   = InputFormat.Parse(str);
                    input[i] = d;
                    dataIndex++;
                }

                // do we need to skip the ideal values?
                dataIndex += _idealCount;

                // compute the result
                IMLData output = method.Compute(input);

                // display the computed result
                for (int i = 0; i < _outputCount; i++)
                {
                    double d = output[i];
                    row.Data[dataIndex++] = InputFormat.Format(d, Precision);
                }

                WriteRow(tw, row);
            }
            ReportDone(false);
            tw.Close();
            csv.Close();
        }
        /// <summary>
        /// Process the file.
        /// </summary>
        ///
        /// <param name="outputFile">The output file.</param>
        /// <param name="method">THe method to use.</param>
        public void Process(FileInfo outputFile, IMLMethod method)
        {
            var csv = new ReadCSV(InputFilename.ToString(),
                                  ExpectInputHeaders, InputFormat);

            IMLData output;

            int outputLength = _analyst.DetermineTotalInputFieldCount();

            StreamWriter tw = PrepareOutputFile(outputFile);

            ResetStatus();
            while (csv.Next())
            {
                UpdateStatus(false);
                var row = new LoadedRow(csv, _outputColumns);

                double[] inputArray = AnalystNormalizeCSV.ExtractFields(_analyst,
                                                                        _analystHeaders, csv, outputLength, true);
                if (_series.TotalDepth > 1)
                {
                    inputArray = _series.Process(inputArray);
                }

                if (inputArray != null)
                {
                    IMLData input = new BasicMLData(inputArray);

                    // evaluation data
                    if ((method is IMLClassification) &&
                        !(method is IMLRegression))
                    {
                        // classification only?
                        output    = new BasicMLData(1);
                        output[0] =
                            ((IMLClassification)method).Classify(input);
                    }
                    else
                    {
                        // regression
                        output = ((IMLRegression)method).Compute(input);
                    }

                    // skip file data
                    int index       = _fileColumns;
                    int outputIndex = 0;


                    // display output
                    foreach (AnalystField field  in  _analyst.Script.Normalize.NormalizedFields)
                    {
                        if (_analystHeaders.Find(field.Name) != -1)
                        {
                            if (field.Output)
                            {
                                if (field.Classify)
                                {
                                    // classification
                                    ClassItem cls = field.DetermineClass(
                                        outputIndex, output.Data);
                                    outputIndex += field.ColumnsNeeded;
                                    if (cls == null)
                                    {
                                        row.Data[index++] = "?Unknown?";
                                    }
                                    else
                                    {
                                        row.Data[index++] = cls.Name;
                                    }
                                }
                                else
                                {
                                    // regression
                                    double n = output[outputIndex++];
                                    n = field.DeNormalize(n);
                                    row.Data[index++] = InputFormat
                                                        .Format(n, Precision);
                                }
                            }
                        }
                    }
                }

                WriteRow(tw, row);
            }
            ReportDone(false);
            tw.Close();
            csv.Close();
        }
        /// <summary>
        /// Write the CSV.
        /// </summary>
        ///
        /// <param name="filename">The target filename.</param>
        private void WriteCSV(FileInfo filename)
        {
            StreamWriter tw = null;

            try
            {
                ResetStatus();
                tw = new StreamWriter(filename.Create());

                // write the headers
                if (ExpectInputHeaders)
                {
                    var line = new StringBuilder();


                    foreach (BaseCachedColumn column  in  Columns)
                    {
                        if (column.Output)
                        {
                            if (line.Length > 0)
                            {
                                line.Append(InputFormat.Separator);
                            }
                            line.Append("\"");
                            line.Append(column.Name);
                            line.Append("\"");
                        }
                    }

                    tw.WriteLine(line.ToString());
                }

                // starting and ending index
                int beginningIndex = BeginningIndex;
                int endingIndex    = EndingIndex;

                // write the file data
                for (int row = beginningIndex; row <= endingIndex; row++)
                {
                    UpdateStatus("Writing data");
                    var line_0 = new StringBuilder();


                    foreach (BaseCachedColumn column_1  in  Columns)
                    {
                        if (column_1.Output)
                        {
                            if (line_0.Length > 0)
                            {
                                line_0.Append(InputFormat.Separator);
                            }
                            double d = column_1.Data[row];
                            line_0.Append(InputFormat.Format(d, Precision));
                        }
                    }

                    tw.WriteLine(line_0.ToString());
                }
            }
            catch (IOException e)
            {
                throw (new QuantError(e));
            }
            finally
            {
                if (tw != null)
                {
                    tw.Close();
                }
            }
        }