public void RealiseEvolution() { // Initialisation ReferenceList referenceList = new ReferenceList("tsp.riesenia"); Initialisation initialisation = new Initialisation(initialPopulationCount, referenceList); List <Individual> population = initialisation.InitialisePopulation(); // Evaluation Evaluation evaluation = new Evaluation(referenceList); foreach (Individual individual in population) { evaluation.EvaluateIndividual(individual); } // Validation foreach (Individual individual in population) { if (StaticOperations.ValidateIndividual(individual) == false) { throw new NotSupportedException(); } } // Evolution cycles for (int i = 0; i < evolutionCycles; i++) { Console.Write("Epoch #" + i); // Selection Selection selection = new Selection(population, population.Count); List <Individual> parents = selection.SelectParents(2); // Genetic operators GeneticOperators geneticOperators = new GeneticOperators(); List <Individual> descendants = new List <Individual>(); for (int j = 0; j < parents.Count; j = j + 2) { descendants.AddRange(geneticOperators.GenerateDescendants(parents[j], parents[j + 1])); } // Validation foreach (Individual individual in descendants) { if (StaticOperations.ValidateIndividual(individual) == false) { throw new NotSupportedException(); } } // Evaluation foreach (Individual individual in descendants) { evaluation.EvaluateIndividual(individual); } // Replacement Replacement replacement = new Replacement(population, descendants, population.Count); population = replacement.NextGeneration(); // Save best individual List <Individual> orderedPopulation = population.OrderBy(item => item.Fitness).ToList(); bestIndividualPerGeneration.Add(orderedPopulation[0]); Console.WriteLine(" Minimum fitness: " + orderedPopulation[0].Fitness); } SaveBestIndividualsToFile(referenceList); }
public void RealiseEvolution() { // Initialise population Initialisation initialisation = new Initialisation(initialPopulationCount, goldFieldCount); List <Individual> population = initialisation.InitialisePopulation(); // Validate population for (int i = 0; i < population.Count; i++) { if (StaticOperations.ValidateIndividual(population[i]) == false) { throw new NotSupportedException(); } } // Evaluate population Evaluation evaluation = new Evaluation(); for (int i = 0; i < population.Count; i++) { evaluation.EvaluateIndividual(population[i]); } // Evolution cycle for (int i = 0; i < evolutionCycles; i++) { Console.Write("# Epoch " + (i + 1)); // Selection Selection selection = new Selection(population, population.Count); // Q tournament List <Individual> parents = selection.SelectParents(4); // Genetic operators List <Individual> descendants = new List <Individual>(); GeneticOperators geneticOperators = new GeneticOperators(); for (int j = 0; j < parents.Count; j = j + 2) { descendants.AddRange(geneticOperators.GenerateDescendants(parents[j], parents[j + 1])); } // Evaluation for (int j = 0; j < descendants.Count; j++) { evaluation.EvaluateIndividual(descendants[j]); } // Replacement Replacement replacement = new Replacement(population, descendants, population.Count); if (i - bestFitnessEpoch < 100) { population = replacement.NextGeneration(); } else { population = replacement.KillBestIndividuals(); bestFitness = double.MaxValue; } foreach (Individual individual in population) { if (StaticOperations.ValidateIndividual(individual) == false) { throw new NotSupportedException(); } } // Save best member List <Individual> orderedPopulation = population.OrderBy(ind => ind.Fitness).ToList(); bestIndividualsPerGeneration.Add(orderedPopulation[0]); Console.WriteLine(" Minimum fitness: " + orderedPopulation[0].Fitness + "."); if (orderedPopulation[0].Fitness < bestFitness) { bestFitness = orderedPopulation[0].Fitness; bestFitnessEpoch = i; } if (orderedPopulation[0].Fitness == 0) { break; } } SaveDataToFile(); }