示例#1
0
        /// <summary>
        /// Cuts a hole into a shape.
        /// </summary>
        /// <param name="shapeVerts">An array of vertices for the primary shape.</param>
        /// <param name="holeVerts">An array of vertices for the hole to be cut. It is assumed that these vertices lie completely within the shape verts.</param>
        /// <returns>The new array of vertices that can be passed to Triangulate to properly triangulate the shape with the hole.</returns>
        public static TSVector2[] CutHoleInShape(TSVector2[] shapeVerts, TSVector2[] holeVerts)
        {
            Log("\nCutting hole into shape...");

            //make sure the shape vertices are wound counter clockwise and the hole vertices clockwise
            shapeVerts = EnsureWindingOrder(shapeVerts, WindingOrder.CounterClockwise);
            holeVerts  = EnsureWindingOrder(holeVerts, WindingOrder.Clockwise);

            //clear all of the lists
            polygonVertices.Clear();
            earVertices.Clear();
            convexVertices.Clear();
            reflexVertices.Clear();

            //generate the cyclical list of vertices in the polygon
            for (int i = 0; i < shapeVerts.Length; i++)
            {
                polygonVertices.AddLast(new Vertex(shapeVerts[i], (short)i));
            }

            CyclicalList <Vertex> holePolygon = new CyclicalList <Vertex>();

            for (int i = 0; i < holeVerts.Length; i++)
            {
                holePolygon.Add(new Vertex(holeVerts[i], (short)(i + polygonVertices.Count)));
            }

#if DEBUG
            StringBuilder vString = new StringBuilder();
            foreach (Vertex v in polygonVertices)
            {
                vString.Append(string.Format("{0}, ", v));
            }
            Log("Shape Vertices: {0}", vString);

            vString = new StringBuilder();
            foreach (Vertex v in holePolygon)
            {
                vString.Append(string.Format("{0}, ", v));
            }
            Log("Hole Vertices: {0}", vString);
#endif

            FindConvexAndReflexVertices();
            FindEarVertices();

            //find the hole vertex with the largest X value
            Vertex rightMostHoleVertex = holePolygon[0];
            foreach (Vertex v in holePolygon)
            {
                if (v.Position.x > rightMostHoleVertex.Position.x)
                {
                    rightMostHoleVertex = v;
                }
            }

            //construct a list of all line segments where at least one vertex
            //is to the right of the rightmost hole vertex with one vertex
            //above the hole vertex and one below
            List <LineSegment> segmentsToTest = new List <LineSegment>();
            for (int i = 0; i < polygonVertices.Count; i++)
            {
                Vertex a = polygonVertices[i].Value;
                Vertex b = polygonVertices[i + 1].Value;

                if ((a.Position.x > rightMostHoleVertex.Position.x || b.Position.x > rightMostHoleVertex.Position.x) &&
                    ((a.Position.y >= rightMostHoleVertex.Position.y && b.Position.y <= rightMostHoleVertex.Position.y) ||
                     (a.Position.y <= rightMostHoleVertex.Position.y && b.Position.y >= rightMostHoleVertex.Position.y)))
                {
                    segmentsToTest.Add(new LineSegment(a, b));
                }
            }

            //now we try to find the closest intersection point heading to the right from
            //our hole vertex.
            FP?         closestPoint   = null;
            LineSegment closestSegment = new LineSegment();
            foreach (LineSegment segment in segmentsToTest)
            {
                FP?intersection = segment.IntersectsWithRay(rightMostHoleVertex.Position, TSVector2.right);
                if (intersection != null)
                {
                    if (closestPoint == null || closestPoint.Value > intersection.Value)
                    {
                        closestPoint   = intersection;
                        closestSegment = segment;
                    }
                }
            }

            //if closestPoint is null, there were no collisions (likely from improper input data),
            //but we'll just return without doing anything else
            if (closestPoint == null)
            {
                return(shapeVerts);
            }

            //otherwise we can find our mutually visible vertex to split the polygon
            TSVector2 I = rightMostHoleVertex.Position + TSVector2.right * closestPoint.Value;
            Vertex    P = (closestSegment.A.Position.x > closestSegment.B.Position.x)
                ? closestSegment.A
                : closestSegment.B;

            //construct triangle MIP
            Triangle mip = new Triangle(rightMostHoleVertex, new Vertex(I, 1), P);

            //see if any of the reflex vertices lie inside of the MIP triangle
            List <Vertex> interiorReflexVertices = new List <Vertex>();
            foreach (Vertex v in reflexVertices)
            {
                if (mip.ContainsPoint(v))
                {
                    interiorReflexVertices.Add(v);
                }
            }

            //if there are any interior reflex vertices, find the one that, when connected
            //to our rightMostHoleVertex, forms the line closest to Vector2.UnitX
            if (interiorReflexVertices.Count > 0)
            {
                FP closestDot = -1f;
                foreach (Vertex v in interiorReflexVertices)
                {
                    //compute the dot product of the vector against the UnitX
                    TSVector2 d   = TSVector2.Normalize(v.Position - rightMostHoleVertex.Position);
                    FP        dot = TSVector2.Dot(TSVector2.right, d);

                    //if this line is the closest we've found
                    if (dot > closestDot)
                    {
                        //save the value and save the vertex as P
                        closestDot = dot;
                        P          = v;
                    }
                }
            }

            //now we just form our output array by injecting the hole vertices into place
            //we know we have to inject the hole into the main array after point P going from
            //rightMostHoleVertex around and then back to P.
            int mIndex      = holePolygon.IndexOf(rightMostHoleVertex);
            int injectPoint = polygonVertices.IndexOf(P);

            Log("Inserting hole at injection point {0} starting at hole vertex {1}.",
                P,
                rightMostHoleVertex);
            for (int i = mIndex; i <= mIndex + holePolygon.Count; i++)
            {
                Log("Inserting vertex {0} after vertex {1}.", holePolygon[i], polygonVertices[injectPoint].Value);
                polygonVertices.AddAfter(polygonVertices[injectPoint++], holePolygon[i]);
            }
            polygonVertices.AddAfter(polygonVertices[injectPoint], P);

#if DEBUG
            vString = new StringBuilder();
            foreach (Vertex v in polygonVertices)
            {
                vString.Append(string.Format("{0}, ", v));
            }
            Log("New Shape Vertices: {0}\n", vString);
#endif

            //finally we write out the new polygon vertices and return them out
            TSVector2[] newShapeVerts = new TSVector2[polygonVertices.Count];
            for (int i = 0; i < polygonVertices.Count; i++)
            {
                newShapeVerts[i] = polygonVertices[i].Value.Position;
            }

            return(newShapeVerts);
        }
示例#2
0
    /// <summary>
    /// Cuts a hole into a shape.
    /// </summary>
    /// <param name="shapeVerts">An array of vertices for the primary shape.</param>
    /// <param name="holeVerts">An array of vertices for the hole to be cut. It is assumed that these vertices lie completely within the shape verts.</param>
    /// <returns>The new array of vertices that can be passed to Triangulate to properly triangulate the shape with the hole.</returns>
    public static Vector2[] CutHoleInShape(Vector2[] shapeVerts, Vector2[] holeVerts)
    {
        //make sure the shape vertices are wound counter clockwise and the hole vertices clockwise
        shapeVerts = EnsureWindingOrder(shapeVerts, WindingOrder.CounterClockwise);
        holeVerts  = EnsureWindingOrder(holeVerts, WindingOrder.Clockwise);

        //clear all of the lists
        polygonVertices.Clear();
        earVertices.Clear();
        convexVertices.Clear();
        reflexVertices.Clear();

        //generate the cyclical list of vertices in the polygon
        for (int i = 0; i < shapeVerts.Length; i++)
        {
            polygonVertices.AddLast(new Vertex(shapeVerts[i], i));
        }

        CyclicalList <Vertex> holePolygon = new CyclicalList <Vertex>();

        for (int i = 0; i < holeVerts.Length; i++)
        {
            holePolygon.Add(new Vertex(holeVerts[i], i + polygonVertices.Count));
        }



        FindConvexAndReflexVertices();
        FindEarVertices();

        //find the hole vertex with the largest X value
        Vertex rightMostHoleVertex = holePolygon[0];

        foreach (Vertex v in holePolygon)
        {
            if (v.Position.x > rightMostHoleVertex.Position.x)
            {
                rightMostHoleVertex = v;
            }
        }

        Debug.Log("rightMost to cut out is " + rightMostHoleVertex);
        Debug.Log("rightMost to cut out isdskdl;skdl;ksal;dkl;sakd;lksa;ldk;sakd;lsakdl;ksa;ldfdgdfgfdsgfdgfdgdgfd\n \n\n\n ");

        //construct a list of all line segments where at least one vertex
        //is to the right of the rightmost hole vertex with one vertex
        //above the hole vertex and one below
        List <LineSegment> segmentsToTest = new List <LineSegment>();

        for (int i = 0; i < polygonVertices.Count; i++)
        {
            Vertex a = polygonVertices[i].Value;
            Vertex b = polygonVertices[i + 1].Value;

            if ((a.Position.x > rightMostHoleVertex.Position.x || b.Position.x > rightMostHoleVertex.Position.x) &&
                ((a.Position.y >= rightMostHoleVertex.Position.y && b.Position.y <= rightMostHoleVertex.Position.y) ||
                 (a.Position.y <= rightMostHoleVertex.Position.y && b.Position.y >= rightMostHoleVertex.Position.y)))
            {
                segmentsToTest.Add(new LineSegment(a, b));
            }
        }

        //now we try to find the closest intersection point heading to the right from
        //our hole vertex.
        float?      closestPoint   = null;
        LineSegment closestSegment = new LineSegment();

        foreach (LineSegment segment in segmentsToTest)
        {
            float?intersection = segment.IntersectsWithRay(rightMostHoleVertex.Position, new Vector2(1f, 0f));
            if (intersection != null)
            {
                if (closestPoint == null || closestPoint.Value > intersection.Value)
                {
                    closestPoint   = intersection;
                    closestSegment = segment;
                }
            }
        }

        //if closestPoint is null, there were no collisions (likely from improper input data),
        //but we'll just return without doing anything else
        if (closestPoint == null)
        {
            return(shapeVerts);
        }

        //otherwise we can find our mutually visible vertex to split the polygon
        Vector2 I = rightMostHoleVertex.Position + new Vector2(1f, 0f) * closestPoint.Value;
        Vertex  P = (closestSegment.A.Position.x > closestSegment.B.Position.x)
            ? closestSegment.A
            : closestSegment.B;

        //construct triangle MIP
        Triangle mip = new Triangle(rightMostHoleVertex, new Vertex(I, 1), P);

        //see if any of the reflex vertices lie inside of the MIP triangle
        List <Vertex> interiorReflexVertices = new List <Vertex>();

        foreach (Vertex v in reflexVertices)
        {
            if (mip.ContainsPoint(v))
            {
                interiorReflexVertices.Add(v);
            }
        }

        //if there are any interior reflex vertices, find the one that, when connected
        //to our rightMostHoleVertex, forms the line closest to Vector2.UnitX
        if (interiorReflexVertices.Count > 0)
        {
            float closestDot = -1f;
            foreach (Vertex v in interiorReflexVertices)
            {
                //compute the dot product of the vector against the UnitX
                Vector2 d = v.Position - rightMostHoleVertex.Position;
                d.Normalize();
                float dot = Vector2.Dot(new Vector2(1f, 0), d);

                //if this line is the closest we've found
                if (dot > closestDot)
                {
                    //save the value and save the vertex as P
                    closestDot = dot;
                    P          = v;
                }
            }
        }

        //now we just form our output array by injecting the hole vertices into place
        //we know we have to inject the hole into the main array after point P going from
        //rightMostHoleVertex around and then back to P.
        int mIndex      = holePolygon.IndexOf(rightMostHoleVertex);
        int injectPoint = polygonVertices.IndexOf(P);


        for (int i = mIndex; i <= mIndex + holePolygon.Count; i++)
        {
            polygonVertices.AddAfter(polygonVertices[injectPoint++], holePolygon[i]);
        }
        polygonVertices.AddAfter(polygonVertices[injectPoint], P);



        //finally we write out the new polygon vertices and return them out
        Vector2[] newShapeVerts = new Vector2[polygonVertices.Count];
        for (int i = 0; i < polygonVertices.Count; i++)
        {
            newShapeVerts[i] = polygonVertices[i].Value.Position;
        }

        return(newShapeVerts);
    }