/// <summary>
        /// Finds contours in given mat. Basically all found shapes.
        /// Uses RetrExternal to only provide outer bounds.
        /// </summary>
        /// <param name="mat"></param>
        /// <returns>List of contours and their hierarchy</returns>
        public (IList <MatOfPoint>, Mat) FindContours(Mat mat)
        {
            Mat ret = mat.Clone();

            IList <MatOfPoint> contours         = new JavaList <MatOfPoint>();
            List <MatOfPoint>  filteredContours = new List <MatOfPoint>();
            Mat hierachy = new Mat();

            Imgproc.FindContours(mat, contours, hierachy, Imgproc.RetrExternal, Imgproc.ChainApproxNone);

            return(contours, hierachy);
        }
示例#2
0
        public void Process(Mat rgbaImage)
        {
            Log.Info(TAG, "Process rgbaImages");

            Imgproc.PyrDown(rgbaImage, mPyrDownMat);
            Imgproc.PyrDown(mPyrDownMat, mPyrDownMat);

            Imgproc.CvtColor(mPyrDownMat, mHsvMat, Imgproc.ColorRgb2hsvFull);

            Core.InRange(mHsvMat, mLowerBound, mUpperBound, mMask);
            Imgproc.Dilate(mMask, mDilatedMask, new Mat());

            IList <MatOfPoint> contours = new JavaList <MatOfPoint>();

            Imgproc.FindContours(mDilatedMask, contours, mHierarchy, Imgproc.RetrExternal, Imgproc.ChainApproxSimple);

            // Find max contour area
            double maxArea = 0;

            foreach (var each in contours)
            {
                MatOfPoint wrapper = each;
                double     area    = Imgproc.ContourArea(wrapper);
                if (area > maxArea)
                {
                    maxArea = area;
                }
                Log.Info(TAG, "Process rgbaImages\t-- Imgproc.ContourArea(wrapper)");
            }

            // Filter contours by area and resize to fit the original image size
            mContours.Clear();
            foreach (var each in contours)
            {
                MatOfPoint contour = each;
                if (Imgproc.ContourArea(contour) > mMinContourArea * maxArea)
                {
                    Core.Multiply(contour, new Scalar(4, 4), contour);
                    mContours.Add(contour);
                    Log.Info(TAG, "Process rgbaImages\t-- mContours.Add(contour)");
                }
            }
        }
示例#3
0
        private bool Detect(Mat bin)
        {
            // Reset
            mRects.Clear();

            // Find contours
            Mat hierarchy = new Mat();
            IList <MatOfPoint> contoursList = new JavaList <MatOfPoint>();

            Imgproc.FindContours(bin.Clone(), contoursList, hierarchy, Imgproc.RetrTree, Imgproc.ChainApproxSimple);

            // Filter contours
            bool detected = false;

            for (int iContour = 0; iContour < contoursList.Count(); iContour++)
            {
                // Areas
                Core.Rect rect        = Imgproc.BoundingRect(contoursList[iContour]);
                double    ellipseArea = PI * (rect.Width / 2) * (rect.Height / 2);
                double    area        = Imgproc.ContourArea(contoursList[iContour]);

                // Ratios
                double boundWidthPerHeight = (double)rect.Width / rect.Height;
                double areaPerEllipse      = (double)(area) / ellipseArea;
                double rectPerFrame        = (double)(rect.Area()) / (bin.Size().Width *bin.Size().Height);

                // Check constraints
                if (rectPerFrame > MIN_SIGN_SIZE_PER_FRAME)
                {
                    if (1 - LIMIT_DIF_SIGN_SIZE < boundWidthPerHeight && boundWidthPerHeight < 1 + LIMIT_DIF_SIGN_SIZE)
                    {
                        if (1 - LIMIT_DIF_SIGN_AREA < areaPerEllipse && areaPerEllipse < 1 + LIMIT_DIF_SIGN_AREA)
                        {
                            mRects.Add(rect);
                            detected = true;
                        }
                    }
                }
            }

            return(detected);
        }
示例#4
0
        private IList <MatOfPoint> ProcessImage()
        {
            Mat grayMat  = new Mat();
            Mat blurMat  = new Mat();
            Mat edgesMat = new Mat();
            Mat final    = new Mat();
            Mat h        = new Mat();

            IList <MatOfPoint> contours = new JavaList <MatOfPoint>();

            OpenCV.Android.Utils.BitmapToMat(originalImage, originalMat);
            originalImage.Dispose();
            Imgproc.CvtColor(originalMat, grayMat, Imgproc.ColorBgr2gray);
            Imgproc.GaussianBlur(grayMat, blurMat, new OpenCV.Core.Size(3, 3), 0);
            Imgproc.Canny(blurMat, edgesMat, 10, 250);


            Mat kernel = Imgproc.GetStructuringElement(Imgproc.MorphRect, new Size(3, 3));

            Imgproc.MorphologyEx(edgesMat, final, Imgproc.MorphClose, kernel);

            Imgproc.FindContours(final, contours, h, Imgproc.RetrExternal, Imgproc.ChainApproxSimple);
            return(contours);
        }
示例#5
0
        public override bool OnOptionsItemSelected(IMenuItem item)
        {
            Log.Info(Tag, "Menu Item selected " + item);

            if (item == _itemPickPhoto)
            {
                var imageIntent = new Intent();
                imageIntent.SetType("image/*");
                imageIntent.SetAction(Intent.ActionGetContent);
                StartActivityForResult(Intent.CreateChooser(imageIntent, "Select photo"), 0);
            }
            else if (item == _itemGray)
            {
                // 灰度图
                _gray = new Mat(_raw.Width(), _raw.Height(), CvType.Cv8uc1);
                Imgproc.CvtColor(_raw, _gray, Imgproc.ColorRgb2gray);
                ShowImage(_gray);
            }
            else if (item == _itemThreshold)
            {
                // 二值化
                _threshold = new Mat(_image.Width, _image.Height, CvType.Cv8uc1);
                Imgproc.Threshold(_gray, _threshold, 168, 255, Imgproc.ThreshBinary);
                ShowImage(_threshold);
            }
            else if (item == _itemFindContours)
            {
                // 查找最大连通区域
                IList <MatOfPoint> contours = new JavaList <MatOfPoint>();
                Mat hierarchy = new Mat();
                var target    = _threshold.Clone();
                Imgproc.FindContours(target, contours, hierarchy, Imgproc.RetrExternal, Imgproc.ChainApproxNone);

                MatOfPoint max = new MatOfPoint();
                double     contour_area_max = 0;
                if (contours.Any())
                {
                    foreach (var contour in contours)
                    {
                        var contour_area_temp = Math.Abs(Imgproc.ContourArea(contour));
                        if (contour_area_temp > contour_area_max)
                        {
                            contour_area_max = contour_area_temp;
                            max = contour;
                        }
                    }
                }

                var last = new JavaList <MatOfPoint>();
                last.Add(max);

                Imgproc.DrawContours(_raw, last, -1, new Scalar(255, 0, 0));

                ShowImage(_raw);
            }
            else if (item == _itemCreateTrimap)
            {
                // 生成三元图  暂时先用生成的图替代
                var imageIntent = new Intent();
                imageIntent.SetType("image/*");
                imageIntent.SetAction(Intent.ActionGetContent);
                StartActivityForResult(Intent.CreateChooser(imageIntent, "Select photo"), 1);
            }
            else if (item == _itemSharedMatting)
            {
                // 扣图
                var sharedMatting = new SharedMatting();
                sharedMatting.SetImage(_raw);
                sharedMatting.SetTrimap(_trimap);
                sharedMatting.SolveAlpha();
            }

            return(base.OnOptionsItemSelected(item));
        }
示例#6
0
        public static async Task <string> detectAndExtractText(Bitmap img)
        {
            //Matrix für die Bilder
            Mat large = new Mat();
            Mat small = new Mat();
            Mat rgb   = new Mat();

            //Bild zu Matrix umwandeln
            Utils.BitmapToMat(img, large);

            // downsample and use it for processing
            Imgproc.PyrDown(large, rgb);

            //Grey
            Imgproc.CvtColor(rgb, small, Imgproc.ColorBgr2gray);

            //Gradiant
            Mat  grad        = new Mat();
            Size morphsize   = new Size(3.0, 3.0);
            Mat  morphKernel = Imgproc.GetStructuringElement(Imgproc.MorphEllipse, morphsize);

            Imgproc.MorphologyEx(small, grad, Imgproc.MorphGradient, morphKernel);

            //Binarize
            Mat bw = new Mat();

            Imgproc.Threshold(grad, bw, 0.0, 255.0, Imgproc.ThreshBinary | Imgproc.ThreshOtsu);

            // connect horizontally oriented regions
            Mat  connected   = new Mat();
            Size connectsize = new Size(9.0, 1.0);

            morphKernel = Imgproc.GetStructuringElement(Imgproc.MorphRect, connectsize);
            Imgproc.MorphologyEx(bw, connected, Imgproc.MorphClose, morphKernel);

            // find contours
            Mat mask = Mat.Zeros(bw.Size(), CvType.Cv8uc1);

            JavaList <MatOfPoint> contours = new JavaList <MatOfPoint>();
            Mat hierarchy = new Mat();

            OpenCV.Core.Point contourPoint = new OpenCV.Core.Point(0, 0);

            Imgproc.FindContours(connected, contours, hierarchy, Imgproc.RetrCcomp, Imgproc.ChainApproxSimple, contourPoint);

            Scalar zero        = new Scalar(0, 0, 0);
            Scalar contourscal = new Scalar(255, 255, 255);

            Scalar rectScalar = new Scalar(0, 255, 0);


            OpenCV.Core.Rect rect;
            Mat    maskROI;
            double r;

            double[] contourInfo;

            string resulttext = "";
            string part;

            Bitmap bmpOcr;
            Mat    croppedPart;


            for (int i = 0; i >= 0;)
            {
                rect = Imgproc.BoundingRect(contours[i]);

                maskROI = new Mat(mask, rect);
                maskROI.SetTo(zero);

                //fill the contour
                Imgproc.DrawContours(mask, contours, i, contourscal, Core.Filled);

                // ratio of non-zero pixels in the filled region
                r = (double)Core.CountNonZero(maskROI) / (rect.Width * rect.Height);

                /* assume at least 45% of the area is filled if it contains text */
                /* constraints on region size */

                /* these two conditions alone are not very robust. better to use something
                 * like the number of significant peaks in a horizontal projection as a third condition */
                if (r > .45 && (rect.Height > 8 && rect.Width > 8))
                {
                    //Imgproc.Rectangle(rgb, rect.Br(), rect.Tl(), rectScalar, 2);
                    try
                    {
                        croppedPart = rgb.Submat(rect);

                        bmpOcr = Bitmap.CreateBitmap(croppedPart.Width(), croppedPart.Height(), Bitmap.Config.Argb8888);
                        Utils.MatToBitmap(croppedPart, bmpOcr);

                        part = await OCR.getText(bmpOcr);

                        resulttext = resulttext + part;
                        Console.WriteLine("------------------Durchlauf-------------");
                    }
                    catch (Exception e)
                    {
                        Android.Util.Log.Debug("Fehler", "cropped part data error " + e.Message);
                    }
                }


                //Nächste Element bestimmen
                contourInfo = hierarchy.Get(0, i);
                i           = (int)contourInfo[0];
            }


            return(resulttext);
        }