/// <summary> /// Finds contours in given mat. Basically all found shapes. /// Uses RetrExternal to only provide outer bounds. /// </summary> /// <param name="mat"></param> /// <returns>List of contours and their hierarchy</returns> public (IList <MatOfPoint>, Mat) FindContours(Mat mat) { Mat ret = mat.Clone(); IList <MatOfPoint> contours = new JavaList <MatOfPoint>(); List <MatOfPoint> filteredContours = new List <MatOfPoint>(); Mat hierachy = new Mat(); Imgproc.FindContours(mat, contours, hierachy, Imgproc.RetrExternal, Imgproc.ChainApproxNone); return(contours, hierachy); }
public void Process(Mat rgbaImage) { Log.Info(TAG, "Process rgbaImages"); Imgproc.PyrDown(rgbaImage, mPyrDownMat); Imgproc.PyrDown(mPyrDownMat, mPyrDownMat); Imgproc.CvtColor(mPyrDownMat, mHsvMat, Imgproc.ColorRgb2hsvFull); Core.InRange(mHsvMat, mLowerBound, mUpperBound, mMask); Imgproc.Dilate(mMask, mDilatedMask, new Mat()); IList <MatOfPoint> contours = new JavaList <MatOfPoint>(); Imgproc.FindContours(mDilatedMask, contours, mHierarchy, Imgproc.RetrExternal, Imgproc.ChainApproxSimple); // Find max contour area double maxArea = 0; foreach (var each in contours) { MatOfPoint wrapper = each; double area = Imgproc.ContourArea(wrapper); if (area > maxArea) { maxArea = area; } Log.Info(TAG, "Process rgbaImages\t-- Imgproc.ContourArea(wrapper)"); } // Filter contours by area and resize to fit the original image size mContours.Clear(); foreach (var each in contours) { MatOfPoint contour = each; if (Imgproc.ContourArea(contour) > mMinContourArea * maxArea) { Core.Multiply(contour, new Scalar(4, 4), contour); mContours.Add(contour); Log.Info(TAG, "Process rgbaImages\t-- mContours.Add(contour)"); } } }
private bool Detect(Mat bin) { // Reset mRects.Clear(); // Find contours Mat hierarchy = new Mat(); IList <MatOfPoint> contoursList = new JavaList <MatOfPoint>(); Imgproc.FindContours(bin.Clone(), contoursList, hierarchy, Imgproc.RetrTree, Imgproc.ChainApproxSimple); // Filter contours bool detected = false; for (int iContour = 0; iContour < contoursList.Count(); iContour++) { // Areas Core.Rect rect = Imgproc.BoundingRect(contoursList[iContour]); double ellipseArea = PI * (rect.Width / 2) * (rect.Height / 2); double area = Imgproc.ContourArea(contoursList[iContour]); // Ratios double boundWidthPerHeight = (double)rect.Width / rect.Height; double areaPerEllipse = (double)(area) / ellipseArea; double rectPerFrame = (double)(rect.Area()) / (bin.Size().Width *bin.Size().Height); // Check constraints if (rectPerFrame > MIN_SIGN_SIZE_PER_FRAME) { if (1 - LIMIT_DIF_SIGN_SIZE < boundWidthPerHeight && boundWidthPerHeight < 1 + LIMIT_DIF_SIGN_SIZE) { if (1 - LIMIT_DIF_SIGN_AREA < areaPerEllipse && areaPerEllipse < 1 + LIMIT_DIF_SIGN_AREA) { mRects.Add(rect); detected = true; } } } } return(detected); }
private IList <MatOfPoint> ProcessImage() { Mat grayMat = new Mat(); Mat blurMat = new Mat(); Mat edgesMat = new Mat(); Mat final = new Mat(); Mat h = new Mat(); IList <MatOfPoint> contours = new JavaList <MatOfPoint>(); OpenCV.Android.Utils.BitmapToMat(originalImage, originalMat); originalImage.Dispose(); Imgproc.CvtColor(originalMat, grayMat, Imgproc.ColorBgr2gray); Imgproc.GaussianBlur(grayMat, blurMat, new OpenCV.Core.Size(3, 3), 0); Imgproc.Canny(blurMat, edgesMat, 10, 250); Mat kernel = Imgproc.GetStructuringElement(Imgproc.MorphRect, new Size(3, 3)); Imgproc.MorphologyEx(edgesMat, final, Imgproc.MorphClose, kernel); Imgproc.FindContours(final, contours, h, Imgproc.RetrExternal, Imgproc.ChainApproxSimple); return(contours); }
public override bool OnOptionsItemSelected(IMenuItem item) { Log.Info(Tag, "Menu Item selected " + item); if (item == _itemPickPhoto) { var imageIntent = new Intent(); imageIntent.SetType("image/*"); imageIntent.SetAction(Intent.ActionGetContent); StartActivityForResult(Intent.CreateChooser(imageIntent, "Select photo"), 0); } else if (item == _itemGray) { // 灰度图 _gray = new Mat(_raw.Width(), _raw.Height(), CvType.Cv8uc1); Imgproc.CvtColor(_raw, _gray, Imgproc.ColorRgb2gray); ShowImage(_gray); } else if (item == _itemThreshold) { // 二值化 _threshold = new Mat(_image.Width, _image.Height, CvType.Cv8uc1); Imgproc.Threshold(_gray, _threshold, 168, 255, Imgproc.ThreshBinary); ShowImage(_threshold); } else if (item == _itemFindContours) { // 查找最大连通区域 IList <MatOfPoint> contours = new JavaList <MatOfPoint>(); Mat hierarchy = new Mat(); var target = _threshold.Clone(); Imgproc.FindContours(target, contours, hierarchy, Imgproc.RetrExternal, Imgproc.ChainApproxNone); MatOfPoint max = new MatOfPoint(); double contour_area_max = 0; if (contours.Any()) { foreach (var contour in contours) { var contour_area_temp = Math.Abs(Imgproc.ContourArea(contour)); if (contour_area_temp > contour_area_max) { contour_area_max = contour_area_temp; max = contour; } } } var last = new JavaList <MatOfPoint>(); last.Add(max); Imgproc.DrawContours(_raw, last, -1, new Scalar(255, 0, 0)); ShowImage(_raw); } else if (item == _itemCreateTrimap) { // 生成三元图 暂时先用生成的图替代 var imageIntent = new Intent(); imageIntent.SetType("image/*"); imageIntent.SetAction(Intent.ActionGetContent); StartActivityForResult(Intent.CreateChooser(imageIntent, "Select photo"), 1); } else if (item == _itemSharedMatting) { // 扣图 var sharedMatting = new SharedMatting(); sharedMatting.SetImage(_raw); sharedMatting.SetTrimap(_trimap); sharedMatting.SolveAlpha(); } return(base.OnOptionsItemSelected(item)); }
public static async Task <string> detectAndExtractText(Bitmap img) { //Matrix für die Bilder Mat large = new Mat(); Mat small = new Mat(); Mat rgb = new Mat(); //Bild zu Matrix umwandeln Utils.BitmapToMat(img, large); // downsample and use it for processing Imgproc.PyrDown(large, rgb); //Grey Imgproc.CvtColor(rgb, small, Imgproc.ColorBgr2gray); //Gradiant Mat grad = new Mat(); Size morphsize = new Size(3.0, 3.0); Mat morphKernel = Imgproc.GetStructuringElement(Imgproc.MorphEllipse, morphsize); Imgproc.MorphologyEx(small, grad, Imgproc.MorphGradient, morphKernel); //Binarize Mat bw = new Mat(); Imgproc.Threshold(grad, bw, 0.0, 255.0, Imgproc.ThreshBinary | Imgproc.ThreshOtsu); // connect horizontally oriented regions Mat connected = new Mat(); Size connectsize = new Size(9.0, 1.0); morphKernel = Imgproc.GetStructuringElement(Imgproc.MorphRect, connectsize); Imgproc.MorphologyEx(bw, connected, Imgproc.MorphClose, morphKernel); // find contours Mat mask = Mat.Zeros(bw.Size(), CvType.Cv8uc1); JavaList <MatOfPoint> contours = new JavaList <MatOfPoint>(); Mat hierarchy = new Mat(); OpenCV.Core.Point contourPoint = new OpenCV.Core.Point(0, 0); Imgproc.FindContours(connected, contours, hierarchy, Imgproc.RetrCcomp, Imgproc.ChainApproxSimple, contourPoint); Scalar zero = new Scalar(0, 0, 0); Scalar contourscal = new Scalar(255, 255, 255); Scalar rectScalar = new Scalar(0, 255, 0); OpenCV.Core.Rect rect; Mat maskROI; double r; double[] contourInfo; string resulttext = ""; string part; Bitmap bmpOcr; Mat croppedPart; for (int i = 0; i >= 0;) { rect = Imgproc.BoundingRect(contours[i]); maskROI = new Mat(mask, rect); maskROI.SetTo(zero); //fill the contour Imgproc.DrawContours(mask, contours, i, contourscal, Core.Filled); // ratio of non-zero pixels in the filled region r = (double)Core.CountNonZero(maskROI) / (rect.Width * rect.Height); /* assume at least 45% of the area is filled if it contains text */ /* constraints on region size */ /* these two conditions alone are not very robust. better to use something * like the number of significant peaks in a horizontal projection as a third condition */ if (r > .45 && (rect.Height > 8 && rect.Width > 8)) { //Imgproc.Rectangle(rgb, rect.Br(), rect.Tl(), rectScalar, 2); try { croppedPart = rgb.Submat(rect); bmpOcr = Bitmap.CreateBitmap(croppedPart.Width(), croppedPart.Height(), Bitmap.Config.Argb8888); Utils.MatToBitmap(croppedPart, bmpOcr); part = await OCR.getText(bmpOcr); resulttext = resulttext + part; Console.WriteLine("------------------Durchlauf-------------"); } catch (Exception e) { Android.Util.Log.Debug("Fehler", "cropped part data error " + e.Message); } } //Nächste Element bestimmen contourInfo = hierarchy.Get(0, i); i = (int)contourInfo[0]; } return(resulttext); }