示例#1
0
        private static void SampleHutter()
        {
            const long timeWindowSize = 10L;

            SigmaEnvironment sigma = SigmaEnvironment.Create("recurrent");

            IDataSource      source    = new MultiSource(new FileSource("enwik8"), new CompressedSource(new MultiSource(new FileSource("enwik8.zip"), new UrlSource("http://mattmahoney.net/dc/enwik8.zip"))));
            IRecordExtractor extractor = new CharacterRecordReader(source, (int)(timeWindowSize + 1), Encoding.ASCII)
                                         .Extractor(new ArrayRecordExtractor <short>(ArrayRecordExtractor <short>
                                                                                     .ParseExtractorParameters("inputs", new[] { 0L }, new[] { timeWindowSize }, "targets", new[] { 0L }, new[] { timeWindowSize }))
                                                    .Offset("targets", 1L))
                                         .Preprocess(new PermutePreprocessor(0, 2, 1))
                                         .Preprocess(new OneHotPreprocessor(0, 255));
            IDataset dataset = new ExtractedDataset("hutter", ExtractedDataset.BlockSizeAuto, false, extractor);

            ITrainer trainer = sigma.CreateTrainer("hutter");

            trainer.Network.Architecture = InputLayer.Construct(256) + RecurrentLayer.Construct(256) + OutputLayer.Construct(256) + SoftMaxCrossEntropyCostLayer.Construct();
            trainer.TrainingDataIterator = new MinibatchIterator(32, dataset);
            trainer.AddNamedDataIterator("validation", new MinibatchIterator(100, dataset));
            trainer.Optimiser = new AdagradOptimiser(baseLearningRate: 0.07);
            trainer.Operator  = new CudaSinglethreadedOperator();

            trainer.AddInitialiser("*.*", new GaussianInitialiser(standardDeviation: 0.05));

            trainer.AddLocalHook(new AccumulatedValueReporter("optimiser.cost_total", TimeStep.Every(1, TimeScale.Iteration), averageValues: true));
            trainer.AddLocalHook(new RunningTimeReporter(TimeStep.Every(10, TimeScale.Iteration)));

            sigma.PrepareAndRun();
        }
示例#2
0
        /// <summary>
        /// Create a MNIST trainer (writing recognition) that will be added to an environemnt.
        /// </summary>
        /// <param name="sigma">The sigma environemnt this trainer will be assigned to.</param>
        /// <returns>The newly created trainer.</returns>
        private static ITrainer CreateMnistTrainer(SigmaEnvironment sigma)
        {
            IDataset dataset = Defaults.Datasets.Mnist();

            ITrainer trainer = sigma.CreateTrainer("mnist-trainer");

            trainer.Network = new Network();
            trainer.Network.Architecture = InputLayer.Construct(28, 28)
                                           + DropoutLayer.Construct(0.2)
                                           + FullyConnectedLayer.Construct(1000, activation: "rel")
                                           + DropoutLayer.Construct(0.4)
                                           + FullyConnectedLayer.Construct(800, activation: "rel")
                                           + DropoutLayer.Construct(0.4)
                                           + FullyConnectedLayer.Construct(10, activation: "sigmoid")
                                           + OutputLayer.Construct(10)
                                           + SoftMaxCrossEntropyCostLayer.Construct();
            trainer.TrainingDataIterator = new MinibatchIterator(100, dataset);
            trainer.AddNamedDataIterator("validation", new UndividedIterator(Defaults.Datasets.MnistValidation()));
            trainer.Optimiser = new AdagradOptimiser(baseLearningRate: 0.02);
            trainer.Operator  = new CudaSinglethreadedOperator();

            trainer.AddInitialiser("*.weights", new GaussianInitialiser(standardDeviation: 0.1));
            trainer.AddInitialiser("*.bias*", new GaussianInitialiser(standardDeviation: 0.05));

            trainer.AddLocalHook(new ValueReporter("optimiser.cost_total", TimeStep.Every(1, TimeScale.Iteration), reportEpochIteration: true)
                                 .On(new ExtremaCriteria("optimiser.cost_total", ExtremaTarget.Min)));

            trainer.AddLocalHook(new RunningTimeReporter(TimeStep.Every(1, TimeScale.Epoch), 4));

            return(trainer);
        }
示例#3
0
        private static void SampleIris()
        {
            SigmaEnvironment sigma = SigmaEnvironment.Create("iris");

            sigma.SetRandomSeed(0);

            sigma.Prepare();

            IDataset dataset = Defaults.Datasets.Iris();

            ITrainer trainer = sigma.CreateGhostTrainer("iris-trainer");

            trainer.Network.Architecture = InputLayer.Construct(4)
                                           + FullyConnectedLayer.Construct(12)
                                           + FullyConnectedLayer.Construct(3)
                                           + OutputLayer.Construct(3)
                                           + SquaredDifferenceCostLayer.Construct();
            //trainer.Network = Serialisation.ReadBinaryFileIfExists("iris.sgnet", trainer.Network);

            trainer.TrainingDataIterator = new MinibatchIterator(50, dataset);
            trainer.AddNamedDataIterator("validation", new UndividedIterator(dataset));
            trainer.Optimiser = new GradientDescentOptimiser(learningRate: 0.06);
            trainer.Operator  = new CudaSinglethreadedOperator();

            trainer.AddInitialiser("*.*", new GaussianInitialiser(standardDeviation: 0.1));

            //trainer.AddGlobalHook(new StopTrainingHook(atEpoch: 100));
            //trainer.AddLocalHook(new EarlyStopperHook("optimiser.cost_total", 20, target: ExtremaTarget.Min));

            trainer.AddLocalHook(new AccumulatedValueReporter("optimiser.cost_total", TimeStep.Every(1, TimeScale.Epoch), reportEpochIteration: true));
            //.On(new ExtremaCriteria("optimiser.cost_total", ExtremaTarget.Min)));
            //trainer.AddLocalHook(new DiskSaviorHook<INetwork>("network.self", Namers.Dynamic("iris_epoch{0}.sgnet", "epoch"), verbose: true)
            //    .On(new ExtremaCriteria("optimiser.cost_total", ExtremaTarget.Min)));

            trainer.AddHook(new MultiClassificationAccuracyReporter("validation", TimeStep.Every(1, TimeScale.Epoch), tops: 1));
            trainer.AddHook(new StopTrainingHook(new ThresholdCriteria("shared.classification_accuracy_top1", ComparisonTarget.GreaterThanEquals, 0.98)));

            trainer.AddLocalHook(new RunningTimeReporter(TimeStep.Every(599, TimeScale.Iteration), 128));
            trainer.AddLocalHook(new RunningTimeReporter(TimeStep.Every(1, TimeScale.Epoch), 4));

            //Serialisation.WriteBinaryFile(trainer, "trainer.sgtrainer");
            //trainer = Serialisation.ReadBinaryFile<ITrainer>("trainer.sgtrainer");

            sigma.AddTrainer(trainer);

            sigma.AddMonitor(new HttpMonitor("http://+:8080/sigma/"));

            sigma.PrepareAndRun();
        }
示例#4
0
        private static void SampleMnist()
        {
            SigmaEnvironment sigma = SigmaEnvironment.Create("mnist");

            sigma.SetRandomSeed(0);

            IDataset dataset = Defaults.Datasets.Mnist();

            ITrainer trainer = sigma.CreateTrainer("mnist-trainer");

            trainer.Network = new Network();
            trainer.Network.Architecture = InputLayer.Construct(28, 28)
                                           + DropoutLayer.Construct(0.2)
                                           + FullyConnectedLayer.Construct(1000, activation: "rel")
                                           + DropoutLayer.Construct(0.4)
                                           + FullyConnectedLayer.Construct(800, activation: "rel")
                                           + DropoutLayer.Construct(0.4)
                                           + FullyConnectedLayer.Construct(10, activation: "sigmoid")
                                           + OutputLayer.Construct(10)
                                           + SoftMaxCrossEntropyCostLayer.Construct();
            trainer.TrainingDataIterator = new MinibatchIterator(100, dataset);
            trainer.AddNamedDataIterator("validation", new UndividedIterator(Defaults.Datasets.MnistValidation()));
            //trainer.Optimiser = new GradientDescentOptimiser(learningRate: 0.01);
            //trainer.Optimiser = new MomentumGradientOptimiser(learningRate: 0.01, momentum: 0.9);
            trainer.Optimiser = new AdagradOptimiser(baseLearningRate: 0.02);
            trainer.Operator  = new CudaSinglethreadedOperator();

            trainer.AddInitialiser("*.weights", new GaussianInitialiser(standardDeviation: 0.1));
            trainer.AddInitialiser("*.bias*", new GaussianInitialiser(standardDeviation: 0.05));

            trainer.AddLocalHook(new ValueReporter("optimiser.cost_total", TimeStep.Every(1, TimeScale.Iteration), reportEpochIteration: true)
                                 .On(new ExtremaCriteria("optimiser.cost_total", ExtremaTarget.Min)));

            var validationTimeStep = TimeStep.Every(1, TimeScale.Epoch);

            trainer.AddHook(new MultiClassificationAccuracyReporter("validation", validationTimeStep, tops: new[] { 1, 2, 3 }));

            for (int i = 0; i < 10; i++)
            {
                trainer.AddGlobalHook(new TargetMaximisationReporter(trainer.Operator.Handler.NDArray(ArrayUtils.OneHot(i, 10), 10), TimeStep.Every(1, TimeScale.Epoch)));
            }

            trainer.AddLocalHook(new RunningTimeReporter(TimeStep.Every(10, TimeScale.Iteration), 32));
            trainer.AddLocalHook(new RunningTimeReporter(TimeStep.Every(1, TimeScale.Epoch), 4));
            trainer.AddHook(new StopTrainingHook(atEpoch: 10));

            sigma.PrepareAndRun();
        }
示例#5
0
        public static ITrainer CreateTicTacToeTrainer(SigmaEnvironment sigma)
        {
            IDataset dataset = Defaults.Datasets.TicTacToe();

            ITrainer trainer = sigma.CreateTrainer("tictactoe-trainer");

            trainer.Network = new Network();
            trainer.Network.Architecture = InputLayer.Construct(9)
                                           + FullyConnectedLayer.Construct(72, "tanh")
                                           + FullyConnectedLayer.Construct(99, "tanh")
                                           + FullyConnectedLayer.Construct(3, "tanh")
                                           + OutputLayer.Construct(3)
                                           + SoftMaxCrossEntropyCostLayer.Construct();

            trainer.TrainingDataIterator = new MinibatchIterator(21, dataset);
            trainer.AddNamedDataIterator("validation", new UndividedIterator(dataset));
            trainer.Optimiser = new MomentumGradientOptimiser(learningRate: 0.01, momentum: 0.9);
            trainer.Operator  = new CpuSinglethreadedOperator();

            trainer.AddInitialiser("*.*", new GaussianInitialiser(standardDeviation: 0.1));

            trainer.AddLocalHook(new AccumulatedValueReporter("optimiser.cost_total", TimeStep.Every(1, TimeScale.Epoch)));
            trainer.AddHook(new MultiClassificationAccuracyReporter("validation", TimeStep.Every(1, TimeScale.Epoch), tops: new[] { 1, 2 }));

            trainer.AddGlobalHook(new DiskSaviorHook <INetwork>(TimeStep.Every(1, TimeScale.Epoch), "network.self", Namers.Static("tictactoe.sgnet"), verbose: true)
                                  .On(new ExtremaCriteria("shared.classification_accuracy_top1", ExtremaTarget.Max)));

            return(trainer);
        }
示例#6
0
        private static ITrainer CreateParkinsonsTrainer(SigmaEnvironment sigma)
        {
            IDataset dataset = Defaults.Datasets.Parkinsons();

            ITrainer trainer = sigma.CreateTrainer("parkinsons-trainer");

            trainer.Network = new Network
            {
                Architecture = InputLayer.Construct(22)
                               + FullyConnectedLayer.Construct(140)
                               + FullyConnectedLayer.Construct(20)
                               + FullyConnectedLayer.Construct(1)
                               + OutputLayer.Construct(1)
                               + SquaredDifferenceCostLayer.Construct()
            };

            trainer.TrainingDataIterator = new MinibatchIterator(10, dataset);
            trainer.AddNamedDataIterator("validation", new UndividedIterator(dataset));
            trainer.Optimiser = new AdagradOptimiser(baseLearningRate: 0.01);
            trainer.Operator  = new CpuSinglethreadedOperator(new DebugHandler(new CpuFloat32Handler()));

            trainer.AddInitialiser("*.*", new GaussianInitialiser(standardDeviation: 0.1));

            trainer.AddLocalHook(new AccumulatedValueReporter("optimiser.cost_total", TimeStep.Every(1, TimeScale.Epoch)));
            trainer.AddHook(new UniClassificationAccuracyReporter("validation", 0.5, TimeStep.Every(1, TimeScale.Epoch)));

            return(trainer);
        }
示例#7
0
        private static ITrainer CreateIrisTrainer(SigmaEnvironment sigma)
        {
            IDataset dataset = Defaults.Datasets.Iris();

            ITrainer trainer = sigma.CreateTrainer("iris-trainer");

            trainer.Network = new Network();
            trainer.Network.Architecture = InputLayer.Construct(4)
                                           + FullyConnectedLayer.Construct(12)
                                           + FullyConnectedLayer.Construct(3)
                                           + OutputLayer.Construct(3)
                                           + SquaredDifferenceCostLayer.Construct();
            //trainer.Network = Serialisation.ReadBinaryFileIfExists("iris.sgnet", trainer.Network);

            trainer.TrainingDataIterator = new MinibatchIterator(50, dataset);
            trainer.AddNamedDataIterator("validation", new UndividedIterator(dataset));
            trainer.Optimiser = new GradientDescentOptimiser(learningRate: 0.06);
            trainer.Operator  = new CpuSinglethreadedOperator();

            trainer.AddInitialiser("*.*", new GaussianInitialiser(standardDeviation: 0.1));

            //trainer.AddGlobalHook(new StopTrainingHook(atEpoch: 100));
            //trainer.AddLocalHook(new EarlyStopperHook("optimiser.cost_total", 20, target: ExtremaTarget.Min));

            trainer.AddLocalHook(new AccumulatedValueReporter("optimiser.cost_total", TimeStep.Every(1, TimeScale.Epoch), reportEpochIteration: true));
            //.On(new ExtremaCriteria("optimiser.cost_total", ExtremaTarget.Min)));
            //trainer.AddLocalHook(new DiskSaviorHook<INetwork>("network.self", Namers.Dynamic("iris_epoch{0}.sgnet", "epoch"), verbose: true)
            //    .On(new ExtremaCriteria("optimiser.cost_total", ExtremaTarget.Min)));

            trainer.AddHook(new MultiClassificationAccuracyReporter("validation", TimeStep.Every(1, TimeScale.Epoch), tops: 1));

            return(trainer);
        }
示例#8
0
        private static void SampleParkinsons()
        {
            SigmaEnvironment sigma = SigmaEnvironment.Create("parkinsons");

            IDataset dataset = Defaults.Datasets.Parkinsons();

            ITrainer trainer = sigma.CreateGhostTrainer("parkinsons-trainer");

            trainer.Network.Architecture = InputLayer.Construct(22)
                                           + FullyConnectedLayer.Construct(140)
                                           + FullyConnectedLayer.Construct(20)
                                           + FullyConnectedLayer.Construct(1)
                                           + OutputLayer.Construct(1)
                                           + SquaredDifferenceCostLayer.Construct();

            trainer.TrainingDataIterator = new MinibatchIterator(10, dataset);
            trainer.AddNamedDataIterator("validation", new UndividedIterator(dataset));
            trainer.Optimiser = new AdagradOptimiser(baseLearningRate: 0.01);

            trainer.AddInitialiser("*.*", new GaussianInitialiser(standardDeviation: 0.1));

            trainer.AddLocalHook(new AccumulatedValueReporter("optimiser.cost_total", TimeStep.Every(1, TimeScale.Epoch)));
            trainer.AddHook(new UniClassificationAccuracyReporter("validation", 0.5, TimeStep.Every(1, TimeScale.Epoch)));

            sigma.AddTrainer(trainer);

            sigma.PrepareAndRun();
        }
示例#9
0
        private static void SampleWdbc()
        {
            SigmaEnvironment sigma = SigmaEnvironment.Create("wdbc");

            IDataset dataset = Defaults.Datasets.Wdbc();

            ITrainer trainer = sigma.CreateGhostTrainer("wdbc-trainer");

            trainer.Network.Architecture = InputLayer.Construct(30)
                                           + FullyConnectedLayer.Construct(42)
                                           + FullyConnectedLayer.Construct(24)
                                           + FullyConnectedLayer.Construct(1)
                                           + OutputLayer.Construct(1)
                                           + SquaredDifferenceCostLayer.Construct();

            trainer.TrainingDataIterator = new MinibatchIterator(72, dataset);
            trainer.AddNamedDataIterator("validation", new UndividedIterator(dataset));
            trainer.Optimiser = new GradientDescentOptimiser(learningRate: 0.005);

            trainer.AddInitialiser("*.*", new GaussianInitialiser(standardDeviation: 0.1));

            trainer.AddLocalHook(new AccumulatedValueReporter("optimiser.cost_total", TimeStep.Every(1, TimeScale.Epoch)));
            trainer.AddHook(new UniClassificationAccuracyReporter("validation", 0.5, TimeStep.Every(1, TimeScale.Epoch)));

            sigma.AddTrainer(trainer);

            sigma.AddMonitor(new HttpMonitor("http://+:8080/sigma/"));

            sigma.PrepareAndRun();
        }
示例#10
0
        /// <summary>
        /// This method will be called after the panel has been added (window, monitor set...)
        /// </summary>
        protected override void OnInitialise(SigmaWindow window)
        {
            if (!Trainers.Contains(Trainer))
            {
                ValueSourceReporter valueHook = new ValueSourceReporter(TimeStep.Every(1, TimeScale.Epoch), "runtime_millis");
                _trainer.AddGlobalHook(valueHook);
                Monitor.Sigma.SynchronisationHandler.AddSynchronisationSource(valueHook);
                Trainers.Add(Trainer);

                valueHook = new ValueSourceReporter(TimeStep.Every(1, TimeScale.Iteration), "iteration");
                _trainer.AddLocalHook(valueHook);
                Monitor.Sigma.SynchronisationHandler.AddSynchronisationSource(valueHook);
            }

            //TODO: style?
            _playbackControl = new SigmaPlaybackControl {
                Trainer = Trainer, Margin = new Thickness(0, 0, 0, 20), HorizontalAlignment = HorizontalAlignment.Center
            };

            Content.Children.Add(_playbackControl);

            _parameterView = new ParameterView(Monitor.Sigma, window);

            SigmaTextBlock timeBox = (SigmaTextBlock)_parameterView.Add(Properties.Resources.RunningTime, typeof(object), _trainer.Operator.Registry, "runtime_millis");

            timeBox.AutoPollValues(_trainer, TimeStep.Every(1, TimeScale.Epoch));
            timeBox.Postfix = " ms";

            UserControlParameterVisualiser epochBox = (UserControlParameterVisualiser)_parameterView.Add(Properties.Resources.CurrentEpoch, typeof(object), _trainer.Operator.Registry, "epoch");

            epochBox.AutoPollValues(_trainer, TimeStep.Every(1, TimeScale.Epoch));

            UserControlParameterVisualiser iterationBox = (UserControlParameterVisualiser)_parameterView.Add(Properties.Resources.CurrentIteration, typeof(object), _trainer.Operator.Registry, "iteration");

            iterationBox.AutoPollValues(_trainer, TimeStep.Every(1, TimeScale.Iteration));

            IRegistry registry = new Registry
            {
                { "operator", Trainer.Operator.GetType().Name },
                { "optimiser", Trainer.Optimiser.GetType().Name }
            };

            _parameterView.Add(Properties.Resources.CurrentOperator, typeof(object), registry, "operator");
            _parameterView.Add(Properties.Resources.CurrentOptimiser, typeof(object), registry, "optimiser");
            //TODO: completely hardcoded activation function
            UserControlParameterVisualiser activationBox = (UserControlParameterVisualiser)_parameterView.Add(Properties.Resources.CurrentActivationFunction, typeof(object), _trainer.Operator.Registry, "network.layers.2-fullyconnected.activation");

            activationBox.AutoPollValues(_trainer, TimeStep.Every(1, TimeScale.Start));

            Trainer.AddGlobalHook(new LambdaHook(TimeStep.Every(1, TimeScale.Reset), (registry1, resolver) =>
            {
                epochBox.Read();
                iterationBox.Read();
            }));

            Content.Children.Add(_parameterView);
        }
示例#11
0
        private static void SampleXor()
        {
            SigmaEnvironment sigma = SigmaEnvironment.Create("logical");

            sigma.SetRandomSeed(0);
            sigma.Prepare();

            RawDataset dataset = new RawDataset("xor");

            dataset.AddRecords("inputs", new[] { 0, 0 }, new[] { 0, 1 }, new[] { 1, 0 }, new[] { 1, 1 });
            dataset.AddRecords("targets", new[] { 0 }, new[] { 0 }, new[] { 0 }, new[] { 1 });

            ITrainer trainer = sigma.CreateTrainer("xor-trainer");

            trainer.Network.Architecture = InputLayer.Construct(2) + FullyConnectedLayer.Construct(2) + FullyConnectedLayer.Construct(1) + OutputLayer.Construct(1) + SquaredDifferenceCostLayer.Construct();
            trainer.TrainingDataIterator = new MinibatchIterator(1, dataset);
            trainer.AddNamedDataIterator("validation", new UndividedIterator(dataset));
            trainer.Optimiser = new GradientDescentOptimiser(learningRate: 0.1);
            trainer.Operator  = new CudaSinglethreadedOperator();

            trainer.AddInitialiser("*.*", new GaussianInitialiser(standardDeviation: 0.05));

            trainer.AddLocalHook(new StopTrainingHook(atEpoch: 10000));
            trainer.AddLocalHook(new AccumulatedValueReporter("optimiser.cost_total", TimeStep.Every(1, TimeScale.Epoch), averageValues: true));
            trainer.AddLocalHook(new AccumulatedValueReporter("optimiser.cost_total", TimeStep.Every(1, TimeScale.Stop), averageValues: true));
            trainer.AddLocalHook(new ValueReporter("network.layers.*<external_output>._outputs.default.activations", TimeStep.Every(1, TimeScale.Stop)));
            trainer.AddLocalHook(new ValueReporter("network.layers.*-fullyconnected.weights", TimeStep.Every(1, TimeScale.Stop)));
            trainer.AddLocalHook(new ValueReporter("network.layers.*-fullyconnected.biases", TimeStep.Every(1, TimeScale.Stop)));

            sigma.Run();
        }
示例#12
0
        private static ITrainer CreateXorTrainer(SigmaEnvironment sigma)
        {
            RawDataset dataset = new RawDataset("xor");

            dataset.AddRecords("inputs", new[] { 0, 0 }, new[] { 0, 1 }, new[] { 1, 0 }, new[] { 1, 1 });
            dataset.AddRecords("targets", new[] { 0 }, new[] { 1 }, new[] { 1 }, new[] { 0 });

            ITrainer trainer = sigma.CreateTrainer("xor-trainer");

            trainer.Network = new Network();
            trainer.Network.Architecture = InputLayer.Construct(2) + FullyConnectedLayer.Construct(1) + OutputLayer.Construct(1) + SquaredDifferenceCostLayer.Construct();
            trainer.TrainingDataIterator = new UndividedIterator(dataset);
            trainer.AddNamedDataIterator("validation", new UndividedIterator(dataset));
            trainer.Operator  = new CpuSinglethreadedOperator();
            trainer.Optimiser = new GradientDescentOptimiser(learningRate: 0.01);

            trainer.AddInitialiser("*.*", new GaussianInitialiser(standardDeviation: 0.1));

            trainer.AddLocalHook(new AccumulatedValueReporter("optimiser.cost_total", TimeStep.Every(1, TimeScale.Epoch), reportEpochIteration: true));
            trainer.AddLocalHook(new ValueReporter("network.layers.1-fullyconnected._outputs.default.activations", TimeStep.Every(1, TimeScale.Epoch)));

            return(trainer);
        }
示例#13
0
        /// <summary>
        /// Create an IRIS trainer that observers the current epoch and iteration
        /// </summary>
        /// <param name="sigma">The sigma environemnt.</param>
        /// <returns>The newly created trainer that can be added to the environemnt.</returns>
        private static ITrainer CreateIrisTrainer(SigmaEnvironment sigma)
        {
            CsvRecordReader  irisReader    = new CsvRecordReader(new MultiSource(new FileSource("iris.data"), new UrlSource("http://archive.ics.uci.edu/ml/machine-learning-databases/iris/iris.data")));
            IRecordExtractor irisExtractor = irisReader.Extractor("inputs", new[] { 0, 3 }, "targets", 4).AddValueMapping(4, "Iris-setosa", "Iris-versicolor", "Iris-virginica");

            irisExtractor = irisExtractor.Preprocess(new OneHotPreprocessor(sectionName: "targets", minValue: 0, maxValue: 2));
            irisExtractor = irisExtractor.Preprocess(new PerIndexNormalisingPreprocessor(0, 1, "inputs", 0, 4.3, 7.9, 1, 2.0, 4.4, 2, 1.0, 6.9, 3, 0.1, 2.5));

            Dataset  dataset           = new Dataset("iris", Dataset.BlockSizeAuto, irisExtractor);
            IDataset trainingDataset   = dataset;
            IDataset validationDataset = dataset;

            ITrainer trainer = sigma.CreateTrainer("test");

            trainer.Network = new Network
            {
                Architecture = InputLayer.Construct(4)
                               + FullyConnectedLayer.Construct(10)
                               + FullyConnectedLayer.Construct(20)
                               + FullyConnectedLayer.Construct(10)
                               + FullyConnectedLayer.Construct(3)
                               + OutputLayer.Construct(3)
                               + SquaredDifferenceCostLayer.Construct()
            };
            trainer.TrainingDataIterator = new MinibatchIterator(4, trainingDataset);
            trainer.AddNamedDataIterator("validation", new UndividedIterator(validationDataset));
            trainer.Optimiser = new GradientDescentOptimiser(learningRate: 0.002);
            trainer.Operator  = new CpuSinglethreadedOperator();

            trainer.AddInitialiser("*.weights", new GaussianInitialiser(standardDeviation: 0.4));
            trainer.AddInitialiser("*.bias*", new GaussianInitialiser(standardDeviation: 0.01, mean: 0.05));

            trainer.AddHook(new ValueReporterHook("optimiser.cost_total", TimeStep.Every(1, TimeScale.Epoch)));
            trainer.AddHook(new ValidationAccuracyReporter("validation", TimeStep.Every(1, TimeScale.Epoch), tops: 1));
            trainer.AddLocalHook(new CurrentEpochIterationReporter(TimeStep.Every(1, TimeScale.Epoch)));

            return(trainer);
        }
示例#14
0
        private static void Main()
        {
            SigmaEnvironment.EnableLogging();
            SigmaEnvironment sigma = SigmaEnvironment.Create("sigma_demo");

            // create a new mnist trainer
            string   name    = DemoMode.Name;
            ITrainer trainer = DemoMode.CreateTrainer(sigma);

            trainer.AddLocalHook(new MetricProcessorHook <INDArray>("network.layers.*.weights", (a, h) => h.Divide(h.Sum(a), a.Length), "shared.network_weights_average"));
            trainer.AddLocalHook(new MetricProcessorHook <INDArray>("network.layers.*.weights", (a, h) => h.StandardDeviation(a), "shared.network_weights_stddev"));
            trainer.AddLocalHook(new MetricProcessorHook <INDArray>("network.layers.*.biases", (a, h) => h.Divide(h.Sum(a), a.Length), "shared.network_biases_average"));
            trainer.AddLocalHook(new MetricProcessorHook <INDArray>("network.layers.*.biases", (a, h) => h.StandardDeviation(a), "shared.network_biases_stddev"));
            trainer.AddLocalHook(new MetricProcessorHook <INDArray>("optimiser.updates", (a, h) => h.Divide(h.Sum(a), a.Length), "shared.optimiser_updates_average"));
            trainer.AddLocalHook(new MetricProcessorHook <INDArray>("optimiser.updates", (a, h) => h.StandardDeviation(a), "shared.optimiser_updates_stddev"));
            trainer.AddLocalHook(new MetricProcessorHook <INDArray>("network.layers.*<external_output>._outputs.default.activations", (a, h) => h.Divide(h.Sum(a), a.Length), "shared.network_activations_mean"));

            // create and attach a new UI framework
            WPFMonitor gui = sigma.AddMonitor(new WPFMonitor(name, DemoMode.Language));

            gui.ColourManager.Dark         = DemoMode.Dark;
            gui.ColourManager.PrimaryColor = DemoMode.PrimarySwatch;

            StatusBarLegendInfo iris    = new StatusBarLegendInfo(name, MaterialColour.Blue);
            StatusBarLegendInfo general = new StatusBarLegendInfo("General", MaterialColour.Grey);

            gui.AddLegend(iris);
            gui.AddLegend(general);

            // create a tab
            gui.AddTabs("Overview", "Metrics", "Validation", "Maximisation", "Reproduction", "Update");

            // access the window inside the ui thread
            gui.WindowDispatcher(window =>
            {
                // enable initialisation
                window.IsInitializing = true;

                window.TabControl["Metrics"].GridSize      = new GridSize(2, 4);
                window.TabControl["Validation"].GridSize   = new GridSize(2, 5);
                window.TabControl["Maximisation"].GridSize = new GridSize(2, 5);
                window.TabControl["Reproduction"].GridSize = new GridSize(2, 5);
                window.TabControl["Update"].GridSize       = new GridSize(1, 1);

                window.TabControl["Overview"].GridSize.Rows    -= 1;
                window.TabControl["Overview"].GridSize.Columns -= 1;

                // add a panel that controls the learning process
                window.TabControl["Overview"].AddCumulativePanel(new ControlPanel("Control", trainer), legend: iris);

                ITimeStep reportTimeStep = DemoMode.Slow ? TimeStep.Every(1, TimeScale.Iteration) : TimeStep.Every(10, TimeScale.Epoch);

                var cost1 = CreateChartPanel <CartesianChart, GLineSeries, GearedValues <double>, double>("Cost / Epoch", trainer, "optimiser.cost_total", TimeStep.Every(1, TimeScale.Epoch)).Linearify();
                var cost2 = CreateChartPanel <CartesianChart, GLineSeries, GearedValues <double>, double>("Cost / Epoch", trainer, "optimiser.cost_total", reportTimeStep);

                var weightAverage = CreateChartPanel <CartesianChart, GLineSeries, GearedValues <double>, double>("Mean of Weights / Epoch", trainer, "shared.network_weights_average", reportTimeStep, averageMode: true).Linearify();
                var weightStddev  = CreateChartPanel <CartesianChart, GLineSeries, GearedValues <double>, double>("Standard Deviation of Weights / Epoch", trainer, "shared.network_weights_stddev", reportTimeStep, averageMode: true).Linearify();
                var biasesAverage = CreateChartPanel <CartesianChart, GLineSeries, GearedValues <double>, double>("Mean of Biases / Epoch", trainer, "shared.network_biases_average", reportTimeStep, averageMode: true).Linearify();
                var biasesStddev  = CreateChartPanel <CartesianChart, GLineSeries, GearedValues <double>, double>("Standard Deviation of Biases / Epoch", trainer, "shared.network_biases_stddev", reportTimeStep, averageMode: true).Linearify();
                var updateAverage = CreateChartPanel <CartesianChart, GLineSeries, GearedValues <double>, double>("Mean of Parameter Updates / Epoch", trainer, "shared.optimiser_updates_average", reportTimeStep, averageMode: true).Linearify();
                var updateStddev  = CreateChartPanel <CartesianChart, GLineSeries, GearedValues <double>, double>("Standard Deviation of Parameter Updates / Epoch", trainer, "shared.optimiser_updates_stddev", reportTimeStep, averageMode: true).Linearify();

                var outputActivationsMean = CreateChartPanel <CartesianChart, GLineSeries, GearedValues <double>, double>("Mean of Output Activations", trainer, "shared.network_activations_mean", reportTimeStep, averageMode: true).Linearify();

                AccuracyPanel accuracy1 = null, accuracy2 = null;
                if (DemoMode != DemoType.Wdbc && DemoMode != DemoType.Parkinsons)
                {
                    accuracy1 = new AccuracyPanel("Validation Accuracy", trainer, DemoMode.Slow ? TimeStep.Every(1, TimeScale.Epoch) : reportTimeStep, null, 1, 2);
                    accuracy1.Fast().Linearify();
                    accuracy2 = new AccuracyPanel("Validation Accuracy", trainer, DemoMode.Slow ? TimeStep.Every(1, TimeScale.Epoch) : reportTimeStep, null, 1, 2);
                    accuracy2.Fast().Linearify();
                }

                IRegistry regTest = new Registry();
                regTest.Add("test", DateTime.Now);

                var parameter = new ParameterPanel("Parameters", sigma, window);
                parameter.Add("Time", typeof(DateTime), regTest, "test");

                ValueSourceReporter valueHook = new ValueSourceReporter(TimeStep.Every(1, TimeScale.Epoch), "optimiser.cost_total");
                trainer.AddGlobalHook(valueHook);
                sigma.SynchronisationHandler.AddSynchronisationSource(valueHook);

                var costBlock = (UserControlParameterVisualiser)parameter.Content.Add("Cost", typeof(double), trainer.Operator.Registry, "optimiser.cost_total");
                costBlock.AutoPollValues(trainer, TimeStep.Every(1, TimeScale.Epoch));

                var learningBlock = (UserControlParameterVisualiser)parameter.Content.Add("Learning rate", typeof(double), trainer.Operator.Registry, "optimiser.learning_rate");
                learningBlock.AutoPollValues(trainer, TimeStep.Every(1, TimeScale.Epoch));

                var paramCount = (UserControlParameterVisualiser)parameter.Content.Add("Parameter count", typeof(long), trainer.Operator.Registry, "network.parameter_count");
                paramCount.AutoPollValues(trainer, TimeStep.Every(1, TimeScale.Start));

                window.TabControl["Overview"].AddCumulativePanel(cost1, 1, 2, legend: iris);
                window.TabControl["Overview"].AddCumulativePanel(parameter);
                //window.TabControl["Overview"].AddCumulativePanel(accuracy1, 1, 2, legend: iris);

                //window.TabControl["Metrics"].AddCumulativePanel(cost2, legend: iris);
                //window.TabControl["Metrics"].AddCumulativePanel(weightAverage, legend: iris);
                //window.TabControl["Metrics"].AddCumulativePanel(biasesAverage, legend: iris);
                window.TabControl["Update"].AddCumulativePanel(updateAverage, legend: iris);
                if (accuracy2 != null)
                {
                    window.TabControl["Metrics"].AddCumulativePanel(accuracy2, legend: iris);
                }

                window.TabControl["Metrics"].AddCumulativePanel(weightStddev, legend: iris);
                window.TabControl["Metrics"].AddCumulativePanel(biasesStddev, legend: iris);
                window.TabControl["Metrics"].AddCumulativePanel(updateStddev, legend: iris);
                window.TabControl["Metrics"].AddCumulativePanel(outputActivationsMean, legend: iris);

                if (DemoMode == DemoType.Mnist)
                {
                    NumberPanel outputpanel = new NumberPanel("Numbers", trainer);
                    DrawPanel drawPanel     = new DrawPanel("Draw", trainer, 560, 560, 20, outputpanel);

                    window.TabControl["Validation"].AddCumulativePanel(drawPanel, 2, 3);
                    window.TabControl["Validation"].AddCumulativePanel(outputpanel, 2);

                    window.TabControl["Validation"].AddCumulativePanel(weightAverage);
                    window.TabControl["Validation"].AddCumulativePanel(biasesAverage);

                    for (int i = 0; i < 10; i++)
                    {
                        window.TabControl["Maximisation"].AddCumulativePanel(new MnistBitmapHookPanel($"Target Maximisation {i}", i, trainer, TimeStep.Every(1, TimeScale.Epoch)));
                    }
                }

                if (DemoMode == DemoType.TicTacToe)
                {
                    window.TabControl["Overview"].AddCumulativePanel(new TicTacToePanel("Play TicTacToe!", trainer));
                }

                //for (int i = 0; i < 10; i++)
                //{
                //	window.TabControl["Reproduction"].AddCumulativePanel(new MnistBitmapHookPanel($"Target Maximisation 7-{i}", 8, 28, 28, trainer, TimeStep.Every(1, TimeScale.Start)));
                //}
            });

            if (DemoMode == DemoType.Mnist)
            {
                sigma.AddMonitor(new HttpMonitor("http://+:8080/sigma/"));
            }

            // the operators should not run instantly but when the user clicks play
            sigma.StartOperatorsOnRun = false;

            sigma.Prepare();

            sigma.RunAsync();

            gui.WindowDispatcher(window => window.IsInitializing = false);
        }