示例#1
0
        /// <summary>
        /// Calculate Ehlers' Zero Lag Exponential Moving Average, as described here:
        /// <see href="https://en.wikipedia.org/wiki/Zero_lag_exponential_moving_average"/>
        /// </summary>
        /// <param name="series">input time series</param>
        /// <param name="period">averaging length</param>
        /// <param name="parentId">caller cache id, optional</param>
        /// <param name="memberName">caller's member name, optional</param>
        /// <param name="lineNumber">caller line number, optional</param>
        /// <returns>ZLEMA as time series</returns>
        public static ITimeSeries <double> ZLEMA(this ITimeSeries <double> series, int period,
                                                 CacheId parentId = null, [CallerMemberName] string memberName = "", [CallerLineNumber] int lineNumber = 0)
        {
            var cacheId = new CacheId(parentId, memberName, lineNumber,
                                      series.GetHashCode(), period);

            int lag = (int)Math.Round((period - 1.0) / 2.0);

            return(series
                   .Add(
                       series
                       .Subtract(
                           series
                           .Delay(lag, cacheId),
                           cacheId),
                       cacheId)
                   .EMA(period, cacheId));
        }
示例#2
0
        override public void Run()
        {
            //---------- initialization

            // set simulation time frame
            StartTime = DateTime.Parse("01/01/2015");
            EndTime   = DateTime.Parse("12/31/2016");

            // add instruments
            AddDataSource(_instrumentNick);

            //---------- simulation

            foreach (DateTime simTime in SimTimes)
            {
                // find our instrument. if we have only one instrument,
                // we could also just use Instruments.Values.First()
                Instrument instrument = FindInstrument(_instrumentNick);

                // calculate simple indicators
                // the output of an indicator is a time series
                ITimeSeries <double> ema26 = instrument.Close.EMA(26);
                ITimeSeries <double> ema12 = instrument.Close.EMA(12);

                // therefore, indicators can be calculated on top of indicators
                ITimeSeries <double> macd   = ema12.Subtract(ema26);
                ITimeSeries <double> signal = macd.EMA(9);

                // plot our data
                _plotter.SelectChart("indicators vs time", "date");
                _plotter.SetX(simTime.Date);
                _plotter.Plot(instrument.Symbol, instrument.Close[0] + _offsetPrice);
                _plotter.Plot("ema26", ema26[0] + _offsetPrice);
                _plotter.Plot("ema12", ema12[0] + _offsetPrice);
                _plotter.Plot("macd", macd[0]);
                _plotter.Plot("signal", signal[0]);
            }
        }
示例#3
0
        /// <summary>
        /// Calculate Commodity Channel Index of input time series, as described here:
        /// <see href="https://en.wikipedia.org/wiki/Commodity_channel_index"/>
        /// </summary>
        /// <param name="series">input time series</param>
        /// <param name="n">averaging length</param>
        /// <param name="parentId">caller cache id, optional</param>
        /// <param name="memberName">caller's member name, optional</param>
        /// <param name="lineNumber">caller line number, optional</param>
        /// <returns>CCI time series</returns>
        public static ITimeSeries <double> CCI(this ITimeSeries <double> series, int n = 20,
                                               CacheId parentId = null, [CallerMemberName] string memberName = "", [CallerLineNumber] int lineNumber = 0)
        {
            var cacheId = new CacheId(parentId, memberName, lineNumber,
                                      series.GetHashCode(), n);

            return(IndicatorsBasic.BufferedLambda(
                       (v) =>
            {
                ITimeSeries <double> delta = series
                                             .Subtract(
                    series
                    .SMA(n, cacheId),
                    cacheId);

                ITimeSeries <double> meanDeviation = delta
                                                     .AbsValue(cacheId)
                                                     .SMA(n, cacheId);

                return delta[0] / Math.Max(1e-10, 0.015 * meanDeviation[0]);
            },
                       0.5,
                       cacheId));
        }