/// <inheritdoc/> Tensor IOps.Elu(Tensor X, float alpha) { LogLayerSummary(X.shape + " () a=" + alpha); var O = m_Ops.Elu(X, alpha); LogOutputTensorSummary(O, Prefix + "Elu"); return O; }
/// <inheritdoc/> Tensor IOps.Elu(Tensor X, float alpha) { var Y = m_Ops1.Elu(X, alpha); var Z = m_Ops2.Elu(X, alpha); CheckSame(Y, Z, Layer.Type.Activation + " " + Layer.Activation.Elu); return(Y); }
/// <inheritdoc/> Tensor IOps.Elu(Tensor X, float alpha) { D.Log(X.shape + " () a=" + alpha); var O = m_Ops.Elu(X, alpha); O.PrintDataPart(32, Prefix + "Elu"); return(O); }
public virtual IEnumerator StartManualSchedule() { Profiler.BeginSample("Barracuda.Execute"); ResetAllocatorIfRequested(); m_Vars.PrepareStorage(m_Model, m_Ops, m_InputShapes); if (m_ModelCompiler != null) { m_ModelCompiler.PrepareModel(m_Model, m_InputShapes); } int idx = 0; foreach (var l in m_Model.layers) { idx++; m_Progress = idx / (float)m_Model.layers.Count; Profiler.BeginSample(l.name); var inputs = m_Vars.GatherInputs(l); Tensor X = inputs.Length > 0 ? inputs[0] : new Tensor(); if (m_Verbose) { D.Log("Layer: " + l.type + ((l.type == Layer.Type.Activation) ? ("." + l.activation) : "") + " " + l.name); } m_Vars.PrepareStorage(l); if (m_ModelCompiler != null) { m_ModelCompiler.PreExecuteLayer(l, inputs); } // No operation, identity if (l.type == Layer.Type.Nop) { Profiler.BeginSample("Barracuda.Nop"); X = m_Ops.Copy(X); } // Load const else if (l.type == Layer.Type.Load) { Profiler.BeginSample("Barracuda.Load"); } // GEMM else if (l.type == Layer.Type.Dense) { Assert.AreEqual(inputs.Length, 3); Profiler.BeginSample("Barracuda.Dense"); X = m_Ops.Dense(X, inputs[1], inputs[2], GetAndVerifyFusedActivation(l)); } // 2D else if (l.type == Layer.Type.Conv2D) { Assert.AreEqual(inputs.Length, 3); Profiler.BeginSample("Barracuda.Conv2D"); var pad = X.AdjustPadToKernel(inputs[1], l.stride, l.pad); X = m_Ops.Conv2D(X, inputs[1], inputs[2], l.stride, pad, GetAndVerifyFusedActivation(l)); } else if (l.type == Layer.Type.DepthwiseConv2D) { Assert.AreEqual(inputs.Length, 3); Profiler.BeginSample("Barracuda.DepthwiseConv2D"); var pad = X.AdjustPadToKernel(inputs[1], l.stride, l.pad); X = m_Ops.DepthwiseConv2D(X, inputs[1], inputs[2], l.stride, pad, GetAndVerifyFusedActivation(l)); } else if (l.type == Layer.Type.Conv2DTrans) { Assert.AreEqual(inputs.Length, 3); Profiler.BeginSample("Barracuda.Conv2DTrans"); // pool size is treated as output_adjustment aka output_padding here var outputAdjustment = l.pool; var pad = X.AdjustPadToKernel(inputs[1], l.stride, l.pad); X = m_Ops.Conv2DTrans(X, inputs[1], inputs[2], l.stride, pad, outputAdjustment, GetAndVerifyFusedActivation(l)); } else if (l.type == Layer.Type.Upsample2D) { Profiler.BeginSample("Barracuda.Upsample2D"); // pool size is treated as upsample scale coefficient here var scale = l.pool; // axis is treated as upsample point/bilinear flag var bilinear = l.axis > 0; if (scale.Length == 0 && inputs.Length > 1) { var scaleTensor = inputs[1]; Assert.AreEqual(scaleTensor.length, 4); scale = new int[] { (int)scaleTensor[2], (int)scaleTensor[1] }; } X = m_Ops.Upsample2D(X, scale, bilinear); } else if (l.type == Layer.Type.Resample2D) { Profiler.BeginSample("Barracuda.Resample2D"); // pool size is treated as resample size here var size = l.pool; // axis is treated as upsample point/bilinear flag var bilinear = l.axis > 0; if (inputs.Length > 1) { var sizeTensor = inputs[1]; Assert.AreEqual(sizeTensor.length, 4); size = new int[] { (int)sizeTensor[2], (int)sizeTensor[1] }; } X = m_Ops.Resample2D(X, size, bilinear); } else if (l.type == Layer.Type.DepthToSpace) { Profiler.BeginSample("Barracuda.DepthToSpace"); // pool size is treated as blocksize var blocksize = l.pool; // axis is treated as mode enum var mode = (Layer.DepthToSpaceMode)l.axis; X = m_Ops.DepthToSpace(X, blocksize, mode); } else if (l.type == Layer.Type.SpaceToDepth) { Profiler.BeginSample("Barracuda.SpaceToDepth"); // pool size is treated as blocksize var blocksize = l.pool; X = m_Ops.SpaceToDepth(X, blocksize); } else if (l.type == Layer.Type.MaxPool2D) { Profiler.BeginSample("Barracuda.MaxPool2D"); var pad = X.AdjustPadToPool(l.pool, l.stride, l.pad); X = m_Ops.MaxPool2D(X, l.pool, l.stride, pad); } else if (l.type == Layer.Type.AvgPool2D) { Profiler.BeginSample("Barracuda.AvgPool2D"); var pad = X.AdjustPadToPool(l.pool, l.stride, l.pad); X = m_Ops.AvgPool2D(X, l.pool, l.stride, pad); } else if (l.type == Layer.Type.GlobalMaxPool2D) { Profiler.BeginSample("Barracuda.GlobalMaxPool2D"); X = m_Ops.GlobalMaxPool2D(X); } else if (l.type == Layer.Type.GlobalAvgPool2D) { Profiler.BeginSample("Barracuda.GlobalAvgPool2D"); X = m_Ops.GlobalAvgPool2D(X); } else if (l.type == Layer.Type.Border2D) { Profiler.BeginSample("Barracuda.Border2D"); Assert.IsNotNull(l.pad); // NOTE: beta is used to retrieve fillin value // because beta is 0 by default (while alpha is 1 by default) // 0 value is more inline with zero padding float fillValue = l.beta; X = m_Ops.Border2D(X, l.pad, fillValue); } else if (l.type == Layer.Type.Pad2DReflect) { Profiler.BeginSample("Barracuda.Pad2DReflect"); Assert.IsNotNull(l.pad); X = m_Ops.Pad2DReflect(X, l.pad); } else if (l.type == Layer.Type.Pad2DSymmetric) { Profiler.BeginSample("Barracuda.Pad2DSymmetric"); Assert.IsNotNull(l.pad); X = m_Ops.Pad2DSymmetric(X, l.pad); } else if (l.type == Layer.Type.Pad2DEdge) { Profiler.BeginSample("Barracuda.Pad2DEdge"); Assert.IsNotNull(l.pad); X = m_Ops.Pad2DEdge(X, l.pad); } // 3D else if (l.type == Layer.Type.Conv3D || l.type == Layer.Type.Conv3DTrans || l.type == Layer.Type.Upsample3D || l.type == Layer.Type.MaxPool3D || l.type == Layer.Type.AvgPool3D || l.type == Layer.Type.GlobalMaxPool3D || l.type == Layer.Type.GlobalAvgPool3D || l.type == Layer.Type.Border3D) { throw new NotImplementedException("3D operations are not implemented yet!"); } else if (l.type == Layer.Type.ScaleBias) { Assert.AreEqual(inputs.Length, 3); Profiler.BeginSample("Barracuda.ScaleBias"); X = m_Ops.ScaleBias(X, inputs[1], inputs[2]); } else if (l.type == Layer.Type.Normalization) { Assert.AreEqual(inputs.Length, 3); Profiler.BeginSample("Barracuda.Normalization"); // @TODO: support other types of Normalization at test time. // Currently supported only pool=1 (InstanceNormalization) // NOTE: beta is used to retrieve epsilon value // because beta is 0 by default (while alpha is 1 by default) // 0 value is more inline with very small epsilon var epsilon = l.beta; if (epsilon == 0) { epsilon = Mathf.Epsilon; // safety check to prevent division by zero } X = m_Ops.Normalization(X, inputs[1], inputs[2], 1, l.axis, epsilon, GetAndVerifyFusedActivation(l)); } else if (l.type == Layer.Type.LRN) { Profiler.BeginSample("Barracuda.LRN"); Assert.IsNotNull(l.pool); Assert.AreEqual(l.pool.Length, 1); int count = l.pool[0]; float bias = (l.weights.Length > 0) ? l.weights[0] : 1.0f; X = m_Ops.LRN(X, l.alpha, l.beta, bias, count); } // Stochastic layers else if (l.type == Layer.Type.Dropout) { Profiler.BeginSample("Barracuda.Dropout"); X = m_Ops.Dropout(X, l.alpha); } else if (l.type == Layer.Type.RandomNormal) { Profiler.BeginSample("Barracuda.RandomNormal"); Assert.IsNotNull(l.pool); // pool size is treated as shape constant, if not empty // otherwise shape of the previous tensor is used var shape = X.shape; if (l.pool.Length > 0) { shape = new TensorShape(l.pool); } int seed = (l.pad.Length > 0) ? l.pad[0] : 1337; float scale = l.alpha, mean = l.beta; X = m_Ops.RandomNormal(shape, mean, scale, seed); } else if (l.type == Layer.Type.RandomUniform) { Profiler.BeginSample("Barracuda.RandomUniform"); Assert.IsNotNull(l.pool); // pool size is treated as shape constant, if not empty // otherwise shape of the previous tensor is used var shape = X.shape; if (l.pool.Length > 0) { shape = new TensorShape(l.pool); } int seed = (l.pad.Length > 0) ? l.pad[0] : 1337; float scale = l.alpha, mean = l.beta; X = m_Ops.RandomUniform(shape, mean, scale, seed); } else if (l.type == Layer.Type.Multinomial) { Profiler.BeginSample("Barracuda.Multinomial"); Assert.IsNotNull(l.pool); Assert.AreEqual(l.pool.Length, 1); int count = l.pool[0]; int seed = (l.pad.Length > 0) ? l.pad[0] : 1337; X = m_Ops.Multinomial(X, count, seed); } else if (l.type == Layer.Type.OneHot) { Profiler.BeginSample("Barracuda.OneHot"); Assert.IsNotNull(l.pool); Assert.AreEqual(l.pool.Length, 1); int depth = l.pool[0]; float on = l.alpha, off = l.beta; X = m_Ops.OneHot(X, depth, on, off); } // Broadcast layers else if (l.type == Layer.Type.Add) { Profiler.BeginSample("Barracuda.Add"); X = m_Ops.Add(inputs); } else if (l.type == Layer.Type.Sub) { Profiler.BeginSample("Barracuda.Sub"); X = m_Ops.Sub(inputs); } else if (l.type == Layer.Type.Mul) { Profiler.BeginSample("Barracuda.Mul"); X = m_Ops.Mul(inputs); } else if (l.type == Layer.Type.Div) { Profiler.BeginSample("Barracuda.Div"); X = m_Ops.Div(inputs); } else if (l.type == Layer.Type.Pow) { Profiler.BeginSample("Barracuda.Pow"); X = m_Ops.Pow(inputs); } else if (l.type == Layer.Type.Min) { Profiler.BeginSample("Barracuda.Min"); X = m_Ops.Min(inputs); } else if (l.type == Layer.Type.Max) { Profiler.BeginSample("Barracuda.Max"); X = m_Ops.Max(inputs); } else if (l.type == Layer.Type.Mean) { Profiler.BeginSample("Barracuda.Mean"); X = m_Ops.Mean(inputs); } // Reduction layers else if (l.type == Layer.Type.ReduceMax) { Profiler.BeginSample("Barracuda.ReduceMax"); X = m_Ops.ReduceMax(X, l.axis); } else if (l.type == Layer.Type.ReduceMean) { Profiler.BeginSample("Barracuda.ReduceMean"); X = m_Ops.ReduceMean(X, l.axis); } else if (l.type == Layer.Type.ReduceMin) { Profiler.BeginSample("Barracuda.ReduceMin"); X = m_Ops.ReduceMin(X, l.axis); } else if (l.type == Layer.Type.ReduceProd) { Profiler.BeginSample("Barracuda.ReduceProd"); X = m_Ops.ReduceProd(X, l.axis); } else if (l.type == Layer.Type.ReduceSum) { Profiler.BeginSample("Barracuda.ReduceSum"); X = m_Ops.ReduceSum(X, l.axis); } else if ( l.type == Layer.Type.ReduceL1 || l.type == Layer.Type.ReduceL2 || l.type == Layer.Type.ReduceLogSum || l.type == Layer.Type.ReduceLogSumExp || l.type == Layer.Type.ReduceSumSquare) { throw new NotImplementedException("This reduction operation is not implemented yet!"); } // Logical operators with broadcast else if (l.type == Layer.Type.Greater) { Assert.AreEqual(inputs.Length, 2); Profiler.BeginSample("Barracuda.Greater"); X = m_Ops.Greater(X, inputs[1]); } else if (l.type == Layer.Type.GreaterEqual) { Assert.AreEqual(inputs.Length, 2); Profiler.BeginSample("Barracuda.GreaterEqual"); X = m_Ops.GreaterEqual(X, inputs[1]); } else if (l.type == Layer.Type.Less) { Assert.AreEqual(inputs.Length, 2); Profiler.BeginSample("Barracuda.Less"); X = m_Ops.Less(X, inputs[1]); } else if (l.type == Layer.Type.LessEqual) { Assert.AreEqual(inputs.Length, 2); Profiler.BeginSample("Barracuda.LessEqual"); X = m_Ops.LessEqual(X, inputs[1]); } else if (l.type == Layer.Type.Equal) { Assert.AreEqual(inputs.Length, 2); Profiler.BeginSample("Barracuda.Equal"); X = m_Ops.Equal(X, inputs[1]); } else if (l.type == Layer.Type.LogicalOr) { Assert.AreEqual(inputs.Length, 2); Profiler.BeginSample("Barracuda.LogicalOr"); X = m_Ops.LogicalOr(X, inputs[1]); } else if (l.type == Layer.Type.LogicalAnd) { Assert.AreEqual(inputs.Length, 2); Profiler.BeginSample("Barracuda.LogicalAnd"); X = m_Ops.LogicalAnd(X, inputs[1]); } else if (l.type == Layer.Type.LogicalXor) { Assert.AreEqual(inputs.Length, 2); Profiler.BeginSample("Barracuda.LogicalXor"); X = m_Ops.LogicalXor(X, inputs[1]); } else if (l.type == Layer.Type.LogicalNot) { Profiler.BeginSample("Barracuda.LogicalNot"); X = m_Ops.LogicalNot(X); } // Shape affecting layers else if (l.type == Layer.Type.Flatten) { Profiler.BeginSample("Barracuda.Flatten"); X = m_Ops.Flatten(X); } else if (l.type == Layer.Type.Reshape) { Profiler.BeginSample("Barracuda.Reshape"); // pool size is treated as reshape coefficient, if not empty // otherwise shape of the 2nd input tensor is used var size = l.pool; Assert.IsNotNull(size); if (size.Length == 0 && inputs.Length > 1) { size = inputs[1].shape.ToArray(); } var newShape = X.shape.Reshape(size); X = m_Ops.Reshape(X, newShape); } else if (l.type == Layer.Type.Expand) { Profiler.BeginSample("Barracuda.Expand"); // pool size is treated as new shape var newShape = l.pool; Assert.IsNotNull(newShape); Assert.AreEqual(newShape.Length, 4); X = m_Ops.Expand(X, new TensorShape(newShape)); } else if (l.type == Layer.Type.Transpose) { Profiler.BeginSample("Barracuda.Transpose"); X = m_Ops.Transpose(X); } else if (l.type == Layer.Type.Gather) { Profiler.BeginSample("Barracuda.Gather"); X = m_Ops.Gather(inputs, l.axis); } else if (l.type == Layer.Type.Squeeze || l.type == Layer.Type.Unsqueeze) { throw new NotImplementedException(); } else if (l.type == Layer.Type.Concat) { Profiler.BeginSample("Barracuda.Concat"); X = m_Ops.Concat(inputs, l.axis); } else if (l.type == Layer.Type.StridedSlice) { Profiler.BeginSample("Barracuda.StridedSlice"); Assert.IsNotNull(l.pad); Assert.IsNotNull(l.pool); Assert.IsNotNull(l.stride); X = m_Ops.StridedSlice(X, l.pad, l.pool, l.stride); } else if (l.type == Layer.Type.Tile) { throw new NotImplementedException(); } // Activations else if (l.type == Layer.Type.Activation) { Profiler.BeginSample("Barracuda.Activation"); if (l.activation == Layer.Activation.Relu) { X = m_Ops.Relu(X); } else if (l.activation == Layer.Activation.Softmax) { X = m_Ops.Softmax(X); } else if (l.activation == Layer.Activation.LogSoftmax) { X = m_Ops.LogSoftmax(X); } else if (l.activation == Layer.Activation.Tanh) { X = m_Ops.Tanh(X); } else if (l.activation == Layer.Activation.Sigmoid) { X = m_Ops.Sigmoid(X); } else if (l.activation == Layer.Activation.Relu6) { X = m_Ops.Relu6(X); } else if (l.activation == Layer.Activation.Elu) { X = m_Ops.Elu(X, l.alpha); } else if (l.activation == Layer.Activation.LeakyRelu) { X = m_Ops.LeakyRelu(X, l.alpha); } else if (l.activation == Layer.Activation.Selu) { X = m_Ops.Selu(X, l.alpha, l.beta); } else if (l.activation == Layer.Activation.Swish) { X = m_Ops.Swish(X); } else if (l.activation == Layer.Activation.PRelu) { Assert.AreEqual(inputs.Length, 2); X = m_Ops.PRelu(X, inputs[1]); } else if ( l.activation == Layer.Activation.Softplus || l.activation == Layer.Activation.Softsign || l.activation == Layer.Activation.Hardmax || l.activation == Layer.Activation.HardSigmoid) { throw new NotImplementedException("This activation function is not implemented yet!"); } else if (l.activation == Layer.Activation.Abs) { X = m_Ops.Abs(X); } else if (l.activation == Layer.Activation.Neg) { X = m_Ops.Neg(X); } else if (l.activation == Layer.Activation.Ceil) { X = m_Ops.Ceil(X); } else if (l.activation == Layer.Activation.Clip) { X = m_Ops.Clip(X, l.alpha, l.beta); } else if (l.activation == Layer.Activation.Floor) { X = m_Ops.Floor(X); } else if (l.activation == Layer.Activation.Reciprocal) { X = m_Ops.Reciprocal(X); } else if (l.activation == Layer.Activation.Pow) { X = m_Ops.Pow(X, l.alpha); } else if (l.activation == Layer.Activation.Exp) { X = m_Ops.Exp(X); } else if (l.activation == Layer.Activation.Log) { X = m_Ops.Log(X); } else if (l.activation == Layer.Activation.Sqrt) { X = m_Ops.Sqrt(X); } else if ((int)l.activation >= (int)Layer.Activation.Acos && (int)l.activation <= (int)Layer.Activation.Tan) { throw new NotImplementedException("Trig functions are not implemented yet!"); } else { X = m_Ops.Copy(X); } } else { Profiler.BeginSample("Barracuda.Dummy"); Assert.AreEqual(l.activation, Layer.Activation.None); } m_Vars.Store(l, X); m_SyncTensor = X; // optype Profiler.EndSample(); // layer.name Profiler.EndSample(); yield return(null); } // request ResetAllocator before next Execute() starts m_RequestResetAllocator = true; Profiler.EndSample(); if (m_Verbose) { D.Log(m_Vars.GetAllocator()); } }
Tensor IOps.Elu(Tensor X, float alpha) { Elementwise(X, Transcendental.Exponent); return(m_Ops.Elu(X, alpha)); }
/// <inheritdoc/> Tensor IOps.Elu(Tensor X, float alpha) { Elementwise(X, Transcendental.Exponent); RegisterLayerStats(); return(m_Ops.Elu(X, alpha)); }