public static async Task Run(IHastlayer hastlayer, IHardwareRepresentation hardwareRepresentation)
        {
            var monteCarloAlgorithm = await hastlayer
                                      .GenerateProxy(hardwareRepresentation, new MonteCarloAlgorithm());

            var monteCarloResult = monteCarloAlgorithm.CalculateTorusSectionValues(5000000);
        }
        public static async Task Run(IHastlayer hastlayer, IHardwareRepresentation hardwareRepresentation)
        {
            var ooShowcase = await hastlayer
                             .GenerateProxy(hardwareRepresentation, new ObjectOrientedShowcase());

            var sum = ooShowcase.Run(93); // 293
        }
        public static async Task Run(IHastlayer hastlayer, IHardwareRepresentation hardwareRepresentation)
        {
            var recursiveAlgorithms = await hastlayer.GenerateProxy(hardwareRepresentation, new RecursiveAlgorithms());

            var fibonacci = recursiveAlgorithms.CalculateFibonacchiSeries(13); // 233
            var factorial = recursiveAlgorithms.CalculateFactorial(6);         // 720
        }
        public static async Task Run(IHastlayer hastlayer, IHardwareRepresentation hardwareRepresentation)
        {
            var loopback = await hastlayer.GenerateProxy(hardwareRepresentation, new Loopback());

            var output1 = loopback.Run(123);
            var output2 = loopback.Run(1234);
            var output3 = loopback.Run(-9);
            var output4 = loopback.Run(0);
            var output5 = loopback.Run(-19);
            var output6 = loopback.Run(1);
        }
        public static async Task Run(IHastlayer hastlayer, IHardwareRepresentation hardwareRepresentation)
        {
            // Starting with 1 not to have a divide by zero.
            var vector = Enumerable.Range(1, SimdCalculator.MaxDegreeOfParallelism * 4).ToArray();

            var simdCalculator = await hastlayer.GenerateProxy(hardwareRepresentation, new SimdCalculator());

            var sumVector        = ThrowIfNotCorrect(simdCalculator, calculator => calculator.AddVectors(vector, vector));
            var differenceVector = ThrowIfNotCorrect(simdCalculator, calculator => calculator.SubtractVectors(vector, vector));
            var productVector    = ThrowIfNotCorrect(simdCalculator, calculator => calculator.MultiplyVectors(vector, vector));
            var quotientVector   = ThrowIfNotCorrect(simdCalculator, calculator => calculator.DivideVectors(vector, vector));
        }
示例#6
0
        public static async Task Run(IHastlayer hastlayer, IHardwareRepresentation hardwareRepresentation)
        {
            var memoryTest = await hastlayer.GenerateProxy(hardwareRepresentation, new MemoryTest());

            var output1 = memoryTest.Run(0, 1);
            var output2 = memoryTest.Run(0, 3);
            var output3 = memoryTest.Run(0, 7);
            var output4 = memoryTest.Run(0, 50);
            var output5 = memoryTest.Run(1, 1);
            var output6 = memoryTest.Run(3, 7);
            var output7 = memoryTest.Run(47, 100);
        }
 public BasicExecutionContext(IHastlayer hastlayer,
                              string deviceName,
                              string communicationChannelName,
                              Dictionary <string, object> customConfiguration = null)
 {
     HardwareRepresentation = hastlayer.GenerateHardware(new Assembly[] { Assembly.GetExecutingAssembly() },
                                                         new HardwareGenerationConfiguration(deviceName)).Result;
     ProxyGenerationConfiguration = new ProxyGenerationConfiguration()
     {
         CommunicationChannelName = communicationChannelName,
         CustomConfiguration      = customConfiguration ?? new Dictionary <string, object>(),
         VerifyHardwareResults    = false
     };
 }
        public static async Task Run(IHastlayer hastlayer, IHardwareRepresentation hardwareRepresentation)
        {
            var cpuOjutput        = new FSharpParallelAlgorithmContainer.FSharpParallelAlgorithm().Run(234234);
            var parallelAlgorithm = await hastlayer.GenerateProxy(hardwareRepresentation, new FSharpParallelAlgorithmContainer.FSharpParallelAlgorithm());

            var output1 = parallelAlgorithm.Run(234234);
            var output2 = parallelAlgorithm.Run(123);
            var output3 = parallelAlgorithm.Run(9999);

            var sw        = System.Diagnostics.Stopwatch.StartNew();
            var cpuOutput = new FSharpParallelAlgorithmContainer.FSharpParallelAlgorithm().Run(234234);

            sw.Stop();
            System.Console.WriteLine("On CPU it took " + sw.ElapsedMilliseconds + "ms.");
        }
        public static async Task Run(IHastlayer hastlayer, IHardwareRepresentation hardwareRepresentation)
        {
            using (var bitmap = new Bitmap("fpga.jpg"))
            {
                var imageContrastModifier = await hastlayer
                                            .GenerateProxy(hardwareRepresentation, new ImageContrastModifier());

                // This takes about 160ms on an i7 CPU and net 150ms on an FPGA.
                var modifiedImage = imageContrastModifier.ChangeImageContrast(bitmap, -50);
                modifiedImage.Save("contrast.bmp");

                // ImageFilter disabled until it's improved.
                //var imageFilter = await hastlayer.GenerateProxy(hardwareRepresentation, new ImageFilter());
                //var filteredImage = imageFilter.DetectHorizontalEdges(bitmap);
            }
        }
示例#10
0
        public static async Task Run(IHastlayer hastlayer, IHardwareRepresentation hardwareRepresentation)
        {
            var hastlayerOptimizedAlgorithm = await hastlayer.GenerateProxy(hardwareRepresentation, new ParallelAlgorithm());

            // This takes about 1900ms on an i7 processor with 4 physical (8 logical) cores and 300ms on an FPGA (with
            // a MaxDegreeOfParallelism of 280 while the device is about 80% utilized). With a higher degree of
            // parallelism it won't fit on the Nexys 4 DDR board's FPGA.
            var output1 = hastlayerOptimizedAlgorithm.Run(234234);
            var output2 = hastlayerOptimizedAlgorithm.Run(123);
            var output3 = hastlayerOptimizedAlgorithm.Run(9999);

            var sw        = System.Diagnostics.Stopwatch.StartNew();
            var cpuOutput = new ParallelAlgorithm().Run(234234);

            sw.Stop();
            System.Console.WriteLine("On CPU it took " + sw.ElapsedMilliseconds + "ms.");
        }
示例#11
0
        public static async Task Run(IHastlayer hastlayer, IHardwareRepresentation hardwareRepresentation)
        {
            var primeCalculator = await hastlayer.GenerateProxy(hardwareRepresentation, new PrimeCalculator());

            var isPrime  = primeCalculator.IsPrimeNumber(15);
            var isPrime2 = primeCalculator.IsPrimeNumber(13);
            var isPrime3 = await primeCalculator.IsPrimeNumberAsync(21);

            // Only 2341 is prime.
            var arePrimes  = primeCalculator.ArePrimeNumbers(new uint[] { 15, 493, 2341, 99237 });
            var arePrimes2 = primeCalculator.ArePrimeNumbers(new uint[] { 13, 493 });

            // You can also launch hardware-executed method calls in parallel. If there are multiple boards
            // connected then all of them will be utilized. If the whole device pool is utilized calls will
            // wait for their turn.
            // Uncomment if you have multiple boards connected.
            //var parallelLaunchedIsPrimeTasks = new List<Task<bool>>();
            //for (uint i = 100; i < 110; i++)
            //{
            //    parallelLaunchedIsPrimeTasks
            //        .Add(Task.Factory.StartNew(indexObject => primeCalculator.IsPrimeNumber((uint)indexObject), i));
            //}
            //var parallelLaunchedArePrimes = await Task.WhenAll(parallelLaunchedIsPrimeTasks);


            // In-algorithm parallelization:
            // Note that if the amount of numbers used here can't be divided by PrimeCalculator.MaxDegreeOfParallelism
            // then for ParallelizedArePrimeNumbers the input and output will be padded to a divisible amount (see
            // comments in the method). Thus the communication round-trip will be slower for ParallelizedArePrimeNumbers.
            // Because of this since PrimeCalculator.MaxDegreeOfParallelism is 30 we use 30 numbers here.
            // All of these numbers except for 9999 are primes.
            var numbers = new uint[]
            {
                9749, 9999, 902119, 907469, 915851,
                9749, 9973, 902119, 907469, 915851,
                9749, 9999, 902119, 907469, 915851,
                9749, 9973, 902119, 907469, 915851,
                9749, 9999, 902119, 907469, 915851,
                9749, 9973, 902119, 907469, 915851
            };

            var arePrimes3 = primeCalculator.ArePrimeNumbers(numbers);
            var arePrimes4 = primeCalculator.ParallelizedArePrimeNumbers(numbers);
        }
        public static async Task Run(IHastlayer hastlayer, IHardwareRepresentation hardwareRepresentation)
        {
            var fixed64Calculator = await hastlayer.GenerateProxy(hardwareRepresentation, new Fix64Calculator());

            var sum = fixed64Calculator.CalculateIntegerSumUpToNumber(10000000);

            // This takes about 274ms on an i7 processor with 4 physical (8 logical) cores and 1300ms on an FPGA (with
            // a MaxDegreeOfParallelism of 13 while the device is about 76% utilized).
            // Since this basically does what the single-threaded sample but in multiple copies on multiple threads
            // the single-threaded sample takes the same amount of time on the FPGA.

            // Creating an array of numbers alternating between 9999999 and 10000001 so we can also see that threads
            // don't step on each other's feet.
            var numbers = new int[Fix64Calculator.MaxDegreeOfParallelism];

            for (int i = 0; i < Fix64Calculator.MaxDegreeOfParallelism; i++)
            {
                numbers[i] = 10000000 + (i % 2 == 0 ? -1 : 1);
            }
            var sums = fixed64Calculator.ParallelizedCalculateIntegerSumUpToNumbers(numbers);
        }
示例#13
0
        public static async Task Run(IHastlayer hastlayer, IHardwareRepresentation hardwareRepresentation)
        {
            var genomeMatcher = await hastlayer.GenerateProxy(hardwareRepresentation, new GenomeMatcher());

            // Sample from IBM.
            var inputOne = "GCCCTAGCG";
            var inputTwo = "GCGCAATG";

            var result = genomeMatcher.CalculateLongestCommonSubsequence(inputOne, inputTwo);

            // Sample from Wikipedia.
            inputOne = "ACACACTA";
            inputTwo = "AGCACACA";

            result = genomeMatcher.CalculateLongestCommonSubsequence(inputOne, inputTwo);

            inputOne = "lombiqtech";
            inputTwo = "coulombtech";

            result = genomeMatcher.CalculateLongestCommonSubsequence(inputOne, inputTwo);
        }
        public static async Task Run(IHastlayer hastlayer, IHardwareRepresentation hardwareRepresentation)
        {
            var parallelAlgorithm = await hastlayer.GenerateProxy(hardwareRepresentation, new ParallelAlgorithm());

            // This takes about 1900ms on an i7 processor with 4 physical (8 logical) cores and 300ms on an FPGA (with
            // a MaxDegreeOfParallelism of 280 while the device is about 80% utilized). With a higher degree of
            // parallelism it won't fit on the Nexys A7 board's FPGA.
            // On Catapult a MaxDegreeOfParallelism of 700 will fit as well (70% resource utilization) and run in about
            // 200ms (including communication latency) vs about 5s on the previous reference PC. Compiling that
            // hardware design will take about 14.5 hours though (with MaxDegreeOfParallelism of 600 it'll take about
            // 4).
            var output1 = parallelAlgorithm.Run(234234);
            var output2 = parallelAlgorithm.Run(123);
            var output3 = parallelAlgorithm.Run(9999);

            var sw        = System.Diagnostics.Stopwatch.StartNew();
            var cpuOutput = new ParallelAlgorithm().Run(234234);

            sw.Stop();
            System.Console.WriteLine("On CPU it took " + sw.ElapsedMilliseconds + "ms.");
        }
        public static async Task Run(IHastlayer hastlayer, IHardwareRepresentation hardwareRepresentation)
        {
            uint iterationsCount = MonteCarloPiEstimator.MaxDegreeOfParallelism * 500000;

            // On a Nexys A7 this takes about 34ms with a 76 degree of parallelism and method inlining. It takes
            // about 120ms on an i7 processor with 4 physical (8 logical) cores.
            // On Catapult with a 350 degree of parallelism it takes 26ms on hardware and 160ms on the (2*32 logical
            // core) CPU.

            var monteCarloPiEstimator = await hastlayer.GenerateProxy(hardwareRepresentation, new MonteCarloPiEstimator());

            var piEstimateHardware = monteCarloPiEstimator.EstimatePi(iterationsCount);

            Console.WriteLine("Estimate for Pi on hardware: " + piEstimateHardware);

            var sw = System.Diagnostics.Stopwatch.StartNew();
            var piEstimateSoftware = new MonteCarloPiEstimator().EstimatePi(iterationsCount);

            sw.Stop();
            Console.WriteLine("Estimate for Pi on software: " + piEstimateSoftware);
            Console.WriteLine("On CPU it took " + sw.ElapsedMilliseconds + "ms.");
        }
示例#16
0
 /// <summary>
 /// Generates a proxy for the given object that will transfer suitable calls to the hardware implementation using the default proxy generation configuration.
 /// </summary>
 /// <typeparam name="T">Type of the object to generate a proxy for.</typeparam>
 /// <param name="hardwareRepresentation">The representation of the assemblies implemented as hardware.</param>
 /// <param name="hardwareObject">The object to generate the proxy for.</param>
 /// <returns>The generated proxy object.</returns>
 /// <exception cref="HastlayerException">
 /// Thrown if any lower-level exception or other error happens during proxy generation.
 /// </exception>
 public static Task <T> GenerateProxy <T>(
     this IHastlayer hastlayer,
     IHardwareRepresentation hardwareRepresentation,
     T hardwareObject) where T : class =>
 hastlayer.GenerateProxy(hardwareRepresentation, hardwareObject, ProxyGenerationConfiguration.Default);
示例#17
0
 /// <summary>
 /// Generates and implements a hardware representation of the given assemblies.
 /// </summary>
 /// <param name="assemblies">The assemblies that should be implemented as hardware.</param>
 /// <param name="configuration">Configuration for how the hardware generation should happen.</param>
 /// <returns>The representation of the assemblies implemented as hardware.</returns>
 /// <exception cref="HastlayerException">
 /// Thrown if any lower-level exception or other error happens during hardware generation.
 /// </exception>
 public static Task <IHardwareRepresentation> GenerateHardware(
     this IHastlayer hastlayer,
     IEnumerable <Assembly> assemblies,
     IHardwareGenerationConfiguration configuration) =>
 hastlayer.GenerateHardware(assemblies.Select(assembly => assembly.Location), configuration);
示例#18
0
        /// <summary>
        /// This is the function that is ran in the background by <see cref="BackgroundWorker"/>.
        /// </summary>
        private void RunKpz(BackgroundWorker bw)
        {
            AsyncLogIt("Creating KPZ data structure...");
            _kpz = new Kpz(_kpzWidth, _kpzHeight, 0.5, 0.5, _showInspector, ComputationTarget);
            AsyncLogIt("Filling grid with initial data...");
            _kpz.InitializeGrid();

            IHastlayer hastlayer = null;

            if (ComputationTarget != KpzTarget.Cpu)
            {
                AsyncLogIt("Initializing Hastlayer...");
                _kpz.LogItFunction = AsyncLogIt;
                var hastlayerInitializationTask = _kpz.InitializeHastlayer(_verifyOutput, _randomSeedEnable);
                hastlayer = hastlayerInitializationTask.Result;
            }

            try
            {
                if (ComputationTarget == KpzTarget.PrngTest)
                {
                    return;                                          // Already done test inside InitializeHastlayer
                }
                var sw = System.Diagnostics.Stopwatch.StartNew();
                AsyncLogIt("Starting KPZ iterations...");

                if (!ComputationTarget.HastlayerParallelizedAlgorithm())
                {
                    for (int currentIteration = 0; currentIteration < _numKpzIterations; currentIteration++)
                    {
                        if (ComputationTarget == KpzTarget.Cpu)
                        {
                            _kpz.DoIteration();
                        }
                        else
                        {
                            if (_stepByStep)
                            {
                                _kpz.DoHastIterationDebug();
                            }
                            else
                            {
                                _kpz.DoHastIterations((uint)_numKpzIterations); break;
                            }
                        }
                        AsyncUpdateProgressBar(currentIteration);
                        AsyncUpdateChart(currentIteration);
                        if (bw.CancellationPending)
                        {
                            return;
                        }
                    }
                }
                else
                {
                    int currentIteration = 1;
                    int lastIteration    = 0;
                    for (; ;)
                    {
                        int iterationsToDo = currentIteration - lastIteration;
                        AsyncLogIt(String.Format("Doing {0} iterations at once...", iterationsToDo));
                        _kpz.DoHastIterations((uint)iterationsToDo);
                        AsyncUpdateProgressBar(currentIteration);
                        // Force update if current iteration is the last:
                        AsyncUpdateChart(currentIteration - 1, currentIteration == _numKpzIterations);
                        if (currentIteration >= _numKpzIterations)
                        {
                            break;
                        }
                        lastIteration     = currentIteration;
                        currentIteration *= 10;
                        if (currentIteration > _numKpzIterations)
                        {
                            currentIteration = _numKpzIterations;
                        }
                    }
                }
                sw.Stop();
                AsyncLogIt("Done. Total time measured: " + sw.ElapsedMilliseconds + " ms");
            }
            finally
            {
                hastlayer?.Dispose();
            }
        }