示例#1
0
        /*
         * Writes the result database to a file, to make it faster to re-initialize the
         * software
         */
        //public static void writeResultDatabaseToFile(String file_path, ResultDatabase rd)
        //{
        //    log.Debug("Writing Result Database to a file...");
        //    try
        //    {
        //        StreamWriter writer = new StreamWriter(file_path);
        //        log.Debug("File name: " + file_path);
        //        // Get all IDs
        //        List<IDs> ids = new List<IDs>(rd.getIDs());
        //        // Sort by scan number
        //        ids.Sort((IDs x, IDs y) => (x.getScanNum()).CompareTo(y.getScanNum()));

        //        // Write header
        //        String[] header = new String[] { "scan", "scan_t", "peptide_mass", "peptide_sequence", "parent_proteins",
        //            "peptide_evidence", "peptide_reference", "database_sequence_id", "xCorr", "deltaCN", "deltaCNStar",
        //            "spscore", "sprank", "evalue" };
        //        writer.Write(String.Join("\t", header));
        //        foreach (IDs id in ids)
        //        {
        //            writer.Write("\n" + outputIDToTSVFormat(id));
        //            writer.Flush();
        //        }
        //        writer.Flush();
        //        writer.Close();
        //    }
        //    catch (Exception e)
        //    {
        //        Console.WriteLine(e.ToString());
        //        log.Error("Writing file unsuccessful!!!");
        //        Environment.Exit(0);
        //    }
        //    log.Debug("Writing file successful.");
        //}

        /*
         * Write the identification features used for training the logistic regression
         * classifier
         */
        //public static void writeIdentificationFeaturesFile(String file_path,
        //        List<IdentificationFeatures> positiveTrainingSet,
        //        List<IdentificationFeatures> negativeTrainingSet)
        //{
        //    log.Debug("Writing Identification Features to a file...");
        //    try
        //    {
        //        StreamWriter writer = new StreamWriter(file_path);
        //        log.Debug("File name: " + file_path);

        //        // Write header TODO remove
        //        String header = "label," + IdentificationFeatures.getHeader();
        //        writer.Write(header);

        //        // in the first column, 1 indicates positive training set
        //        foreach (IdentificationFeatures i in positiveTrainingSet)
        //        {
        //            writer.Write("\n" + "1," + i.WriteToFile());
        //            writer.Flush();
        //        }
        //        // in the first column, 0 indicates negative training set
        //        foreach (IdentificationFeatures i in negativeTrainingSet)
        //        {
        //            writer.Write("\n" + "0," + i.WriteToFile());
        //            writer.Flush();
        //        }
        //        writer.Flush();
        //        writer.Close();
        //    }
        //    catch (Exception e)
        //    {
        //        e.printStackTrace();
        //        log.Error("Writing file unsuccessful!!!");
        //        System.exit(0);
        //    }
        //    log.Debug("Writing file successful.");
        //}

        /*
         * Useful for outputting the IDs object in the correct order for
         * writeResultDatabaseToFile
         */
        private static String outputIDToTSVFormat(IDs id)
        {
            return(id.getScanNum() + "\t" + id.getScanTime() + "\t" + id.getPeptideMass() + "\t" + id.getPeptideSequence()
                   + "\t" + id.getParentProteinAccessions() + "\t" + id.getPepEvid() + "\t" + id.getPepRef() + "\t"
                   + id.getDBSeqID() + "\t" + id.getXCorr() + "\t" + id.getDeltaCN() + "\t" + id.getDeltaCNStar() + "\t"
                   + id.getSPScore() + "\t" + id.getSPRank() + "\t" + id.getEValue());
        }
示例#2
0
        protected void evaluateIdentification(IDs id)
        {
            // check if the peptide is identified or not
            if (id == null)
            {
                performanceEvaluator.countMS2UnidentifiedAnalyzed();
                return;
            }

            Peptide pep = getPeptideFromIdentification(id);     // if it was going to be null, it already returned
            // is fragmented

            // add decoy or non-existent protein connections
            // database.addProteinFromIdentification(pep, id.getParentProteinAccessions());

            Double xCorr = id.getXCorr();
            Double dCN   = id.getDeltaCN();

            pep.addScore(xCorr, xCorrThreshold, dCN);
            performanceEvaluator.evaluateAnalysis(exclusionList, pep);

            // add the peptide to the exclusion list if it is over the xCorr threshold
            if ((xCorr > xCorrThreshold))
            {
                performanceEvaluator.countPeptidesExcluded();
                log.Debug("xCorrThreshold passed. Peptide added to the exclusion list.");
                exclusionList.addPeptide(pep);

                // calibrates our retention time alignment if the observed time is different
                // from the predicted only if it passes this threshold
                calibrateRetentionTime(pep);
            }
            // add all of the other peptides belonging to the parent protein(s) if numDB
            // threshold is passed
            foreach (Protein parentProtein in pep.getProteins())
            {
                if ((parentProtein.getNumDB() >= numDBThreshold) && (!parentProtein.IsExcluded()))
                {
                    parentProtein.setExcluded(true);
                    log.Debug("Parent protein " + parentProtein.getAccession() + " is identified confidently "
                              + parentProtein.getNumDB() + " times!");
                    performanceEvaluator.countProteinsExcluded();
                    exclusionList.addProtein(parentProtein);
                }
                log.Debug(parentProtein);
            }
            log.Debug(pep);
        }
示例#3
0
        protected void evaluateIdentification(IDs id)
        {
            log.Debug("NoExclusion. Scores added, but nothing added to the exclusion list");

            // check if the peptide is identified or not
            if (id == null)
            {
                performanceEvaluator.countMS2UnidentifiedAnalyzed();
                return;
            }

            Peptide pep = getPeptideFromIdentification(id);             // if it was going to be null, it already returned
            // is fragmented

            // add decoy or non-existent protein connections
            // database.addProteinFromIdentification(pep, id.getParentProteinAccessions());

            Double xCorr = id.getXCorr();
            Double dCN   = id.getDeltaCN();

            pep.addScore(xCorr, 0.0, dCN);
            performanceEvaluator.evaluateAnalysis(exclusionList, pep);



            RetentionTime rt = pep.getRetentionTime();

            if (!rtCalcPredictedRT.Keys.Contains(pep.getSequence()))
            {
                rtCalcPredictedRT.Add(pep.getSequence(), rt.getRetentionTimePeak());
            }

            ObservedPeptideRtTrackerObject observedPep = new ObservedPeptideRtTrackerObject(pep.getSequence(), id.getScanTime(), id.getXCorr(),
                                                                                            rt.getRetentionTimePeak(), rt.getRetentionTimeStart() + GlobalVar.retentionTimeWindowSize,
                                                                                            RetentionTime.getRetentionTimeOffset(), rtCalcPredictedRT[pep.getSequence()], (rt.IsPredicted() ? 1 : 0));



            if ((xCorr > 2.5))
            {
                // calibrates our retention time alignment if the observed time is different
                // from the predicted only if it passes this threshold
                calibrateRetentionTime(pep);
            }
            observedPep.offset = RetentionTime.getRetentionTimeOffset();
            peptideIDRT.Add(observedPep);
        }
示例#4
0
        protected void evaluateIdentification(IDs id)
        {
            log.Debug("RandomExclusion. Scores added, but nothing added to the exclusion list");

            // check if the peptide is identified or not
            if (id == null)
            {
                performanceEvaluator.countMS2UnidentifiedAnalyzed();
                return;
            }

            Peptide pep = getPeptideFromIdentification(id);             // if it was going to be null, it already returned
            // is fragmented
            Double xCorr = id.getXCorr();
            Double dCN   = id.getDeltaCN();

            pep.addScore(xCorr, 0.0, dCN);
            performanceEvaluator.evaluateAnalysis(exclusionList, pep);
        }
示例#5
0
 public static void WritePSM(IDs id)
 {
     IDWriter.WriteLine(String.Join("\t", id.getScanNum().ToString(), id.getScanTime().ToString(), id.getPeptideSequence().ToString(),
                                    id.getPeptideMass().ToString(), id.getXCorr().ToString(), id.getDeltaCN().ToString(), String.Join(",", id.getParentProteinAccessions())));
 }
示例#6
0
        protected void evaluateIdentification(IDs id)
        {
            // check if the peptide is identified or not
            if (id == null)
            {
                performanceEvaluator.countMS2UnidentifiedAnalyzed();
                return;
            }

            Peptide pep = getPeptideFromIdentification(id);             // id is null, it already returned

            // add decoy or non-existent protein connections
            // database.AddProteinFromIdentification(pep, id.getParentProteinAccessions());

            Double xCorr = id.getXCorr();
            Double dCN   = id.getDeltaCN();

            pep.addScore(xCorr, dCN);
#if (!DONTEVALUATE)
            performanceEvaluator.evaluateAnalysis(exclusionList, pep);
#endif

            // exclude this peptide for analysis if the xCorr score is above a threshold
            const double XCORR_THRESHOLD = 2.5;
            // add the peptide to the exclusion list if it is over the xCorr threshold
            if ((xCorr > XCORR_THRESHOLD))
            {
                performanceEvaluator.countPeptidesExcluded();
                log.Debug("xCorrThreshold passed. Peptide added to the exclusion list.");
                exclusionList.addPeptide(pep);
                // calibrates our retention time alignment if the observed time is different
                // from the predicted only if it passes this threshold
                calibrateRetentionTime(pep);
            }

            // Add all the peptides corresponding to the parent protein, if the parent
            // protein is deemed confidently identified by the logisitc regression
            // classifier
            Dictionary <String, Boolean> identificationPredictions = IdentificationFeatureExtractionUtil
                                                                     .assessProteinIdentificationConfidence(pep.getProteins(), lrAccord);

            List <Protein> proteinsToExclude = new List <Protein>();
            foreach (Protein parentProtein in pep.getProteins())
            {
                // prevents repeated exclusion of a protein already excluded
                if ((!parentProtein.IsExcluded()))
                {
                    // determine if parent protein is confidently identified
                    bool isConfidentlyIdentified = identificationPredictions[parentProtein.getAccession()];
                    if (isConfidentlyIdentified)
                    {
                        // exclude all peptides of that protein
                        parentProtein.setExcluded(true);
                        log.Debug("Parent protein " + parentProtein.getAccession() + " is identified confidently "
                                  + parentProtein.getNumDB() + " times!");
                        performanceEvaluator.countProteinsExcluded();
                        proteinsToExclude.Add(parentProtein);
                    }
                }
            }
            exclusionList.addProteins(proteinsToExclude);
        }
        protected void evaluateIdentification(IDs id)
        {
            // check if the peptide is identified or not
            if (id == null)
            {
                performanceEvaluator.countMS2UnidentifiedAnalyzed();
                return;
            }

            Peptide pep = getPeptideFromIdentification(id); // id is null, it already returned

            //log.Info("Peptide Observed Time: {0}\tPredicted Time: {1} -----------------", id.getScanTime(),pep.getRetentionTime().getRetentionTimeStart());


            // add decoy or non-existent protein connections
            // database.AddProteinFromIdentification(pep, id.getParentProteinAccessions());

            Double xCorr = id.getXCorr();
            double dCN   = id.getDeltaCN();

            pep.addScore(xCorr, dCN);
#if (!DONTEVALUATE)
            performanceEvaluator.evaluateAnalysis(exclusionList, pep);
#endif

            //RetentionTime rt = pep.getRetentionTime();
            //if (!rtCalcPredictedRT.Keys.Contains(pep.getSequence()))
            //{
            //	rtCalcPredictedRT.Add(pep.getSequence(), rt.getRetentionTimePeak());
            //}
            //double[] values = new double[] { id.getScanTime(), id.getXCorr(), rt.getRetentionTimePeak(), rt.getRetentionTimeStart() + GlobalVar.retentionTimeWindowSize, RetentionTime.getRetentionTimeOffset(), rtCalcPredictedRT[pep.getSequence()], rt.IsPredicted() ? 1 : 0 };

            // exclude this peptide for analysis if the xCorr score is above a threshold
            const double XCORR_THRESHOLD = 2.5;
            // add the peptide to the exclusion list if it is over the xCorr threshold
            if ((xCorr > XCORR_THRESHOLD))
            {
                performanceEvaluator.countPeptidesExcluded();
                log.Debug("xCorrThreshold passed. Peptide added to the exclusion list.");
                exclusionList.addPeptide(pep);
                // calibrates our retention time alignment if the observed time is different
                // from the predicted only if it passes this threshold
                calibrateRetentionTime(pep);
            }

            // Add all the peptides corresponding to the parent protein, if the parent
            // protein is deemed confidently identified by the logisitc regression
            // classifier
            Dictionary <String, Boolean> identificationPredictions = IdentificationFeatureExtractionUtil
                                                                     .assessProteinIdentificationConfidence(pep.getProteins(), lrAccord);

            List <Protein> proteinsToExclude = new List <Protein>();
            foreach (Protein parentProtein in pep.getProteins())
            {
                // prevents repeated exclusion of a protein already excluded
                if ((!parentProtein.IsExcluded()))
                {
                    // determine if parent protein is confidently identified
                    bool isConfidentlyIdentified = identificationPredictions[parentProtein.getAccession()];
                    if (isConfidentlyIdentified)
                    {
                        // exclude all peptides of that protein
#if TRACKEXCLUDEDPROTEINFEATURE
                        excludedProteinFeatureList.Add(parentProtein.vectorize().ItemArray);
#endif
                        parentProtein.setExcluded(true);
                        log.Debug("Parent protein " + parentProtein.getAccession() + " is identified confidently "
                                  + parentProtein.getNumDB() + " times!");
                        performanceEvaluator.countProteinsExcluded();
                        proteinsToExclude.Add(parentProtein);
                    }
                }
            }
            exclusionList.addProteins(proteinsToExclude);
        }
        public static void CometSingleSearchTest()
        {
            String idx = "C:\\Coding\\2019LavalleeLab\\GitProjectRealTimeMS\\TestData\\PreComputedFiles\\uniprot_SwissProt_Human_1_11_2017_decoyConcacenated.fasta.idx";
            //String idx = "C:\\temp\\comet_2019015\\comet_source_2019015\\IDXMake\\uniprot_SwissProt_Human_1_11_2017_decoyConcacenated.fasta.idx";
            String param = "C:\\Coding\\2019LavalleeLab\\temp2\\ExampleDataSet\\2019.comet.params";

            CometSingleSearch.InitializeComet(idx, param);
            CometSingleSearch.QualityCheck();
            Program.ExitProgram(1);
            String dataRoot   = "C:\\Users\\LavalleeLab\\Documents\\JoshTemp\\MealTimeMS_APITestRun\\Data\\";
            String outputRoot = "C:\\Users\\LavalleeLab\\Documents\\JoshTemp\\MealTimeMS_APITestRun\\Output\\";
            //String mzmlPath = dataRoot+"60minMZMLShrink.csv";
            String   mzmlPath   = dataRoot + "8001.ms2.txt";
            String   dbPath     = dataRoot + "tinyDB.fasta.idx"; //
            String   outputPath = outputRoot + "output.txt";
            String   paramsPath = dataRoot + "comet.params";
            MZMLFile mzml       = Loader.parseMS2File(mzmlPath);

            //MZMLFile mzml = null;
            CometSingleSearch.InitializeComet(dbPath, paramsPath);
            var watch   = System.Diagnostics.Stopwatch.StartNew();
            int counter = 0;

            Console.WriteLine("Starting comet search");
            WriterClass.initiateWriter(outputPath);

            for (int i = 0; i < 1; i++)
            {
                if (i % 1 == 0)
                {
                    Spectra spec = mzml.getSpectraArray()[i];
                    if (spec.getMSLevel() != 2)
                    {
                        continue;
                    }
                    Console.WriteLine("scanNum {0} RT {2} Mass {2} MSLevel {3}", spec.getScanNum(), spec.getStartTime(),
                                      spec.getCalculatedPrecursorMass(), spec.getMSLevel());
                    IDs id = null;
                    if (CometSingleSearch.Search(spec, out id))
                    {
                        String outLine = String.Format("{0}\t{1}\txcorr\t{2}\tdcn\t{3}", id.getScanNum(), id.getPeptideSequence(), id.getXCorr(), id.getDeltaCN());
                        Console.WriteLine(outLine);
                        WriterClass.writeln(outLine);
                    }
                    else
                    {
                        Console.WriteLine("Spectrum cannot be matched\n");
                    }
                    counter++;
                }
            }
            watch.Stop();
            Console.WriteLine("Comet search of " + counter + " spectra took " + watch.ElapsedMilliseconds + " milliseconds");
            WriterClass.CloseWriter();
        }