示例#1
0
 public virtual IEnumerator <long> GetUserIDs()
 {
     if (tempPrefs == null)
     {
         return(_delegate.GetUserIDs());
     }
     return(new PlusAnonymousUserlongPrimitiveIterator(_delegate.GetUserIDs(), TEMP_USER_ID));
 }
        private int countPreferences()
        {
            int numPreferences = 0;
            var userIDs        = dataModel.GetUserIDs();

            while (userIDs.MoveNext())
            {
                IPreferenceArray preferencesFromUser = dataModel.GetPreferencesFromUser(userIDs.Current);
                numPreferences += preferencesFromUser.Length();
            }
            return(numPreferences);
        }
示例#3
0
        public RandomRecommender(IDataModel dataModel) : base(dataModel)
        {
            float maxPref      = float.NegativeInfinity;
            float minPref      = float.PositiveInfinity;
            var   userIterator = dataModel.GetUserIDs();

            while (userIterator.MoveNext())
            {
                long             userID = userIterator.Current;
                IPreferenceArray prefs  = dataModel.GetPreferencesFromUser(userID);
                for (int i = 0; i < prefs.Length(); i++)
                {
                    float prefValue = prefs.GetValue(i);
                    if (prefValue < minPref)
                    {
                        minPref = prefValue;
                    }
                    if (prefValue > maxPref)
                    {
                        maxPref = prefValue;
                    }
                }
            }
            this.minPref = minPref;
            this.maxPref = maxPref;
        }
 private void buildAverageDiffs()
 {
     lock (this) {
         //buildAveragesLock.writeLock().lock();
         IDataModel dataModel = GetDataModel();
         var        it        = dataModel.GetUserIDs();
         while (it.MoveNext())
         {
             IPreferenceArray prefs = dataModel.GetPreferencesFromUser(it.Current);
             int size = prefs.Length();
             for (int i = 0; i < size; i++)
             {
                 long            itemID  = prefs.GetItemID(i);
                 IRunningAverage average = itemAverages.Get(itemID);
                 if (average == null)
                 {
                     average = new FullRunningAverage();
                     itemAverages.Put(itemID, average);
                 }
                 average.AddDatum(prefs.GetValue(i));
             }
         }
     }
     //finally {
     //buildAveragesLock.writeLock().unlock();
     //}
 }
        public void toyExample()
        {
            SVDRecommender svdRecommender = new SVDRecommender(dataModel, factorizer);

            /// a hold out test would be better, but this is just a toy example so we only check that the
            /// factorization is close to the original matrix
            IRunningAverage avg     = new FullRunningAverage();
            var             userIDs = dataModel.GetUserIDs();

            while (userIDs.MoveNext())
            {
                long userID = userIDs.Current;
                foreach (IPreference pref in dataModel.GetPreferencesFromUser(userID))
                {
                    double rating   = pref.GetValue();
                    double estimate = svdRecommender.EstimatePreference(userID, pref.GetItemID());
                    double err      = rating - estimate;
                    avg.AddDatum(err * err);
                }
            }

            double rmse = Math.Sqrt(avg.GetAverage());

            Assert.True(rmse < 0.2);
        }
        public static void Evaluate(IDataModel model1,
                                    IDataModel model2,
                                    int samples,
                                    IRunningAverage tracker,
                                    String tag)
        {
            printHeader();
            var users = model1.GetUserIDs();

            while (users.MoveNext())
            {
                long             userID = users.Current;
                IPreferenceArray prefs1 = model1.GetPreferencesFromUser(userID);
                IPreferenceArray prefs2 = model2.GetPreferencesFromUser(userID);
                prefs1.SortByValueReversed();
                prefs2.SortByValueReversed();
                FastIDSet commonSet = new FastIDSet();
                long      maxItemID = setBits(commonSet, prefs1, samples);
                FastIDSet otherSet  = new FastIDSet();
                maxItemID = Math.Max(maxItemID, setBits(otherSet, prefs2, samples));
                int max = mask(commonSet, otherSet, maxItemID);
                max = Math.Min(max, samples);
                if (max < 2)
                {
                    continue;
                }
                long[] items1   = getCommonItems(commonSet, prefs1, max);
                long[] items2   = getCommonItems(commonSet, prefs2, max);
                double variance = scoreCommonSubset(tag, userID, samples, max, items1, items2);
                tracker.AddDatum(variance);
            }
        }
示例#7
0
        public GenericUserSimilarity(IUserSimilarity otherSimilarity,
                                     IDataModel dataModel,
                                     int maxToKeep)
        {
            long[] userIDs = longIteratorToList(dataModel.GetUserIDs());
            IEnumerator <UserUserSimilarity> it = new DataModelSimilaritiesIterator(otherSimilarity, userIDs);
            var keptSimilarities = TopItems.GetTopUserUserSimilarities(maxToKeep, it);

            initSimilarityMaps(keptSimilarities.GetEnumerator());
        }
        /// Exports the simple user IDs and associated item IDs in the data model.
        ///
        /// @return a {@link FastByIDMap} mapping user IDs to {@link FastIDSet}s representing
        ///  that user's associated items
        public static FastByIDMap <FastIDSet> toDataMap(IDataModel dataModel)
        {
            FastByIDMap <FastIDSet> data = new FastByIDMap <FastIDSet>(dataModel.GetNumUsers());
            var it = dataModel.GetUserIDs();

            while (it.MoveNext())
            {
                long userID = it.Current;
                data.Put(userID, dataModel.GetItemIDsFromUser(userID));
            }
            return(data);
        }
        /// <summary>Exports the simple user IDs and preferences in the data model.</summary>
        /// <returns>a <see cref="FastByIDMap"/> mapping user IDs to <see cref="IPreferenceArray"/>s representing that user's preferences</returns>
        public static FastByIDMap <IPreferenceArray> ToDataMap(IDataModel dataModel)
        {
            FastByIDMap <IPreferenceArray> data = new FastByIDMap <IPreferenceArray>(dataModel.GetNumUsers());
            var it = dataModel.GetUserIDs();

            while (it.MoveNext())
            {
                long userID = it.Current;
                data.Put(userID, dataModel.GetPreferencesFromUser(userID));
            }
            return(data);
        }
示例#10
0
        public override long[] GetUserNeighborhood(long userID)
        {
            IDataModel      dataModel          = getDataModel();
            IUserSimilarity userSimilarityImpl = getUserSimilarity();

            TopItems.IEstimator <long> estimator = new Estimator(userSimilarityImpl, userID, minSimilarity);

            var userIDs = SamplinglongPrimitiveIterator.MaybeWrapIterator(dataModel.GetUserIDs(),
                                                                          getSamplingRate());

            return(TopItems.GetTopUsers(n, userIDs, null, estimator));
        }
        double getAveragePreference()
        {
            IRunningAverage average = new FullRunningAverage();
            var             it      = dataModel.GetUserIDs();

            while (it.MoveNext())
            {
                foreach (IPreference pref in dataModel.GetPreferencesFromUser(it.Current))
                {
                    average.AddDatum(pref.GetValue());
                }
            }
            return(average.GetAverage());
        }
            private void cachePreferences(IDataModel dataModel)
            {
                int numPreferences = countPreferences(dataModel);

                preferences = new IPreference[numPreferences];

                var userIDs = dataModel.GetUserIDs();
                int index   = 0;

                while (userIDs.MoveNext())
                {
                    long             userID = userIDs.Current;
                    IPreferenceArray preferencesFromUser = dataModel.GetPreferencesFromUser(userID);
                    foreach (IPreference preference in preferencesFromUser)
                    {
                        preferences[index++] = preference;
                    }
                }
            }
        public virtual double Evaluate(IRecommenderBuilder recommenderBuilder,
                                       IDataModelBuilder dataModelBuilder,
                                       IDataModel dataModel,
                                       double trainingPercentage,
                                       double evaluationPercentage)
        {
            //Preconditions.checkNotNull(recommenderBuilder);
            //Preconditions.checkNotNull(dataModel);
            //Preconditions.checkArgument(trainingPercentage >= 0.0 && trainingPercentage <= 1.0,
            //  "Invalid trainingPercentage: " + trainingPercentage + ". Must be: 0.0 <= trainingPercentage <= 1.0");
            //Preconditions.checkArgument(evaluationPercentage >= 0.0 && evaluationPercentage <= 1.0,
            //  "Invalid evaluationPercentage: " + evaluationPercentage + ". Must be: 0.0 <= evaluationPercentage <= 1.0");

            log.Info("Beginning evaluation using {} of {}", trainingPercentage, dataModel);

            int numUsers = dataModel.GetNumUsers();
            FastByIDMap <IPreferenceArray> trainingPrefs = new FastByIDMap <IPreferenceArray>(
                1 + (int)(evaluationPercentage * numUsers));
            FastByIDMap <IPreferenceArray> testPrefs = new FastByIDMap <IPreferenceArray>(
                1 + (int)(evaluationPercentage * numUsers));

            var it = dataModel.GetUserIDs();

            while (it.MoveNext())
            {
                long userID = it.Current;
                if (random.nextDouble() < evaluationPercentage)
                {
                    splitOneUsersPrefs(trainingPercentage, trainingPrefs, testPrefs, userID, dataModel);
                }
            }

            IDataModel trainingModel = dataModelBuilder == null ? new GenericDataModel(trainingPrefs)
        : dataModelBuilder.BuildDataModel(trainingPrefs);

            IRecommender recommender = recommenderBuilder.BuildRecommender(trainingModel);

            double result = getEvaluation(testPrefs, recommender);

            log.Info("Evaluation result: {}", result);
            return(result);
        }
 public RandomRecommender(IDataModel dataModel) : base(dataModel) {
   float maxPref = float.NegativeInfinity;
   float minPref = float.PositiveInfinity;
   var userIterator = dataModel.GetUserIDs();
   while (userIterator.MoveNext()) {
     long userID = userIterator.Current;
     IPreferenceArray prefs = dataModel.GetPreferencesFromUser(userID);
     for (int i = 0; i < prefs.Length(); i++) {
       float prefValue = prefs.GetValue(i);
       if (prefValue < minPref) {
         minPref = prefValue;
       }
       if (prefValue > maxPref) {
         maxPref = prefValue;
       }
     }
   }
   this.minPref = minPref;
   this.maxPref = maxPref;
 }
示例#15
0
        public void testPreferenceShufflerWithSyntheticData()
        {
            setUpSyntheticData();

            ParallelSGDFactorizer.PreferenceShuffler shuffler = new ParallelSGDFactorizer.PreferenceShuffler(dataModel);
            shuffler.shuffle();
            shuffler.stage();

            FastByIDMap <FastByIDMap <bool?> > checkedLst = new FastByIDMap <FastByIDMap <bool?> >();

            for (int i = 0; i < shuffler.size(); i++)
            {
                IPreference pref = shuffler.get(i);

                float?value = dataModel.GetPreferenceValue(pref.GetUserID(), pref.GetItemID());
                Assert.AreEqual(pref.GetValue(), value.Value, 0.0);
                if (!checkedLst.ContainsKey(pref.GetUserID()))
                {
                    checkedLst.Put(pref.GetUserID(), new FastByIDMap <bool?>());
                }

                Assert.IsNull(checkedLst.Get(pref.GetUserID()).Get(pref.GetItemID()));

                checkedLst.Get(pref.GetUserID()).Put(pref.GetItemID(), true);
            }

            var userIDs = dataModel.GetUserIDs();
            int index   = 0;

            while (userIDs.MoveNext())
            {
                long             userID = userIDs.Current;
                IPreferenceArray preferencesFromUser = dataModel.GetPreferencesFromUser(userID);
                foreach (IPreference preference in preferencesFromUser)
                {
                    Assert.True(checkedLst.Get(preference.GetUserID()).Get(preference.GetItemID()).Value);
                    index++;
                }
            }
            Assert.AreEqual(index, shuffler.size());
        }
示例#16
0
        public static LoadStatistics runLoad(IRecommender recommender, int howMany)
        {
            IDataModel dataModel   = recommender.GetDataModel();
            int        numUsers    = dataModel.GetNumUsers();
            double     sampleRate  = 1000.0 / numUsers;
            var        userSampler =
                SamplinglongPrimitiveIterator.MaybeWrapIterator(dataModel.GetUserIDs(), sampleRate);

            if (userSampler.MoveNext())
            {
                recommender.Recommend(userSampler.Current, howMany); // Warm up
            }
            var callables = new List <Action>();

            while (userSampler.MoveNext())
            {
                callables.Add(new LoadCallable(recommender, userSampler.Current).call);
            }
            AtomicInteger            noEstimateCounter = new AtomicInteger();
            IRunningAverageAndStdDev timing            = new FullRunningAverageAndStdDev();

            AbstractDifferenceRecommenderEvaluator.execute(callables, noEstimateCounter, timing);
            return(new LoadStatistics(timing));
        }
示例#17
0
 private void buildAverageDiffs()
 {
     lock (this) {
         //buildAveragesLock.writeLock().lock();
         IDataModel dataModel = GetDataModel();
         var        it        = dataModel.GetUserIDs();
         while (it.MoveNext())
         {
             long             userID = it.Current;
             IPreferenceArray prefs  = dataModel.GetPreferencesFromUser(userID);
             int size = prefs.Length();
             for (int i = 0; i < size; i++)
             {
                 long  itemID = prefs.GetItemID(i);
                 float value  = prefs.GetValue(i);
                 addDatumAndCreateIfNeeded(itemID, value, itemAverages);
                 addDatumAndCreateIfNeeded(userID, value, userAverages);
                 overallAveragePrefValue.AddDatum(value);
             }
         }
     } /*finally {
        * buildAveragesLock.writeLock().unlock();
        * }*/
 }
 public static void Evaluate(IDataModel model1,
                             IDataModel model2,
                             int samples,
                             IRunningAverage tracker,
                             String tag) {
   printHeader();
   var users = model1.GetUserIDs();
   while (users.MoveNext()) {
     long userID = users.Current;
     IPreferenceArray prefs1 = model1.GetPreferencesFromUser(userID);
     IPreferenceArray prefs2 = model2.GetPreferencesFromUser(userID);
     prefs1.SortByValueReversed();
     prefs2.SortByValueReversed();
     FastIDSet commonSet = new FastIDSet();
     long maxItemID = setBits(commonSet, prefs1, samples);
     FastIDSet otherSet = new FastIDSet();
     maxItemID = Math.Max(maxItemID, setBits(otherSet, prefs2, samples));
     int max = mask(commonSet, otherSet, maxItemID);
     max = Math.Min(max, samples);
     if (max < 2) {
       continue;
     }
     long[] items1 = getCommonItems(commonSet, prefs1, max);
     long[] items2 = getCommonItems(commonSet, prefs2, max);
     double variance = scoreCommonSubset(tag, userID, samples, max, items1, items2);
     tracker.AddDatum(variance);
   }
 }
 private void buildMappings()
 {
     userIDMapping = createIDMapping(dataModel.GetNumUsers(), dataModel.GetUserIDs());
     itemIDMapping = createIDMapping(dataModel.GetNumItems(), dataModel.GetItemIDs());
 }
  public virtual double Evaluate(IRecommenderBuilder recommenderBuilder,
                         IDataModelBuilder dataModelBuilder,
                         IDataModel dataModel,
                         double trainingPercentage,
                         double evaluationPercentage) {
    //Preconditions.checkNotNull(recommenderBuilder);
    //Preconditions.checkNotNull(dataModel);
    //Preconditions.checkArgument(trainingPercentage >= 0.0 && trainingPercentage <= 1.0,
    //  "Invalid trainingPercentage: " + trainingPercentage + ". Must be: 0.0 <= trainingPercentage <= 1.0");
    //Preconditions.checkArgument(evaluationPercentage >= 0.0 && evaluationPercentage <= 1.0,
    //  "Invalid evaluationPercentage: " + evaluationPercentage + ". Must be: 0.0 <= evaluationPercentage <= 1.0");

    log.Info("Beginning evaluation using {} of {}", trainingPercentage, dataModel);
    
    int numUsers = dataModel.GetNumUsers();
    FastByIDMap<IPreferenceArray> trainingPrefs = new FastByIDMap<IPreferenceArray>(
        1 + (int) (evaluationPercentage * numUsers));
    FastByIDMap<IPreferenceArray> testPrefs = new FastByIDMap<IPreferenceArray>(
        1 + (int) (evaluationPercentage * numUsers));
    
    var it = dataModel.GetUserIDs();
    while (it.MoveNext()) {
      long userID = it.Current;
      if (random.nextDouble() < evaluationPercentage) {
        splitOneUsersPrefs(trainingPercentage, trainingPrefs, testPrefs, userID, dataModel);
      }
    }
    
    IDataModel trainingModel = dataModelBuilder == null ? new GenericDataModel(trainingPrefs)
        : dataModelBuilder.BuildDataModel(trainingPrefs);
    
    IRecommender recommender = recommenderBuilder.BuildRecommender(trainingModel);
    
    double result = getEvaluation(testPrefs, recommender);
    log.Info("Evaluation result: {}", result);
    return result;
  }
  /// Exports the simple user IDs and associated item IDs in the data model.
  ///
  /// @return a {@link FastByIDMap} mapping user IDs to {@link FastIDSet}s representing
  ///  that user's associated items
 public static FastByIDMap<FastIDSet> toDataMap(IDataModel dataModel) {
   FastByIDMap<FastIDSet> data = new FastByIDMap<FastIDSet>(dataModel.GetNumUsers());
   var it = dataModel.GetUserIDs();
   while (it.MoveNext()) {
     long userID = it.Current;
     data.Put(userID, dataModel.GetItemIDsFromUser(userID));
   }
   return data;
 }
示例#22
0
        public IRStatistics Evaluate(IRecommenderBuilder recommenderBuilder,
                                     IDataModelBuilder dataModelBuilder,
                                     IDataModel dataModel,
                                     IDRescorer rescorer,
                                     int at,
                                     double relevanceThreshold,
                                     double evaluationPercentage)
        {
            //Preconditions.checkArgument(recommenderBuilder != null, "recommenderBuilder is null");
            //Preconditions.checkArgument(dataModel != null, "dataModel is null");
            //Preconditions.checkArgument(at >= 1, "at must be at least 1");
            //Preconditions.checkArgument(evaluationPercentage > 0.0 && evaluationPercentage <= 1.0,
            //    "Invalid evaluationPercentage: " + evaluationPercentage + ". Must be: 0.0 < evaluationPercentage <= 1.0");

            int             numItems  = dataModel.GetNumItems();
            IRunningAverage precision = new FullRunningAverage();
            IRunningAverage recall    = new FullRunningAverage();
            IRunningAverage fallOut   = new FullRunningAverage();
            IRunningAverage nDCG      = new FullRunningAverage();
            int             numUsersRecommendedFor      = 0;
            int             numUsersWithRecommendations = 0;

            var it = dataModel.GetUserIDs();

            while (it.MoveNext())
            {
                long userID = it.Current;

                if (random.nextDouble() >= evaluationPercentage)
                {
                    // Skipped
                    continue;
                }

                var stopWatch = new System.Diagnostics.Stopwatch();
                stopWatch.Start();

                IPreferenceArray prefs = dataModel.GetPreferencesFromUser(userID);

                // List some most-preferred items that would count as (most) "relevant" results
                double    theRelevanceThreshold = Double.IsNaN(relevanceThreshold) ? computeThreshold(prefs) : relevanceThreshold;
                FastIDSet relevantItemIDs       = dataSplitter.GetRelevantItemsIDs(userID, at, theRelevanceThreshold, dataModel);

                int numRelevantItems = relevantItemIDs.Count();
                if (numRelevantItems <= 0)
                {
                    continue;
                }

                FastByIDMap <IPreferenceArray> trainingUsers = new FastByIDMap <IPreferenceArray>(dataModel.GetNumUsers());
                var it2 = dataModel.GetUserIDs();
                while (it2.MoveNext())
                {
                    dataSplitter.ProcessOtherUser(userID, relevantItemIDs, trainingUsers, it2.Current, dataModel);
                }

                IDataModel trainingModel = dataModelBuilder == null ? new GenericDataModel(trainingUsers)
          : dataModelBuilder.BuildDataModel(trainingUsers);
                try {
                    trainingModel.GetPreferencesFromUser(userID);
                } catch (NoSuchUserException nsee) {
                    continue; // Oops we excluded all prefs for the user -- just move on
                }

                int size = numRelevantItems + trainingModel.GetItemIDsFromUser(userID).Count();
                if (size < 2 * at)
                {
                    // Really not enough prefs to meaningfully evaluate this user
                    continue;
                }

                IRecommender recommender = recommenderBuilder.BuildRecommender(trainingModel);

                int intersectionSize = 0;
                var recommendedItems = recommender.Recommend(userID, at, rescorer);
                foreach (IRecommendedItem recommendedItem in recommendedItems)
                {
                    if (relevantItemIDs.Contains(recommendedItem.GetItemID()))
                    {
                        intersectionSize++;
                    }
                }

                int numRecommendedItems = recommendedItems.Count;

                // Precision
                if (numRecommendedItems > 0)
                {
                    precision.AddDatum((double)intersectionSize / (double)numRecommendedItems);
                }

                // Recall
                recall.AddDatum((double)intersectionSize / (double)numRelevantItems);

                // Fall-out
                if (numRelevantItems < size)
                {
                    fallOut.AddDatum((double)(numRecommendedItems - intersectionSize)
                                     / (double)(numItems - numRelevantItems));
                }

                // nDCG
                // In computing, assume relevant IDs have relevance 1 and others 0
                double cumulativeGain = 0.0;
                double idealizedGain  = 0.0;
                for (int i = 0; i < numRecommendedItems; i++)
                {
                    IRecommendedItem item     = recommendedItems[i];
                    double           discount = 1.0 / log2(i + 2.0); // Classical formulation says log(i+1), but i is 0-based here
                    if (relevantItemIDs.Contains(item.GetItemID()))
                    {
                        cumulativeGain += discount;
                    }
                    // otherwise we're multiplying discount by relevance 0 so it doesn't do anything

                    // Ideally results would be ordered with all relevant ones first, so this theoretical
                    // ideal list starts with number of relevant items equal to the total number of relevant items
                    if (i < numRelevantItems)
                    {
                        idealizedGain += discount;
                    }
                }
                if (idealizedGain > 0.0)
                {
                    nDCG.AddDatum(cumulativeGain / idealizedGain);
                }

                // Reach
                numUsersRecommendedFor++;
                if (numRecommendedItems > 0)
                {
                    numUsersWithRecommendations++;
                }

                stopWatch.Stop();

                log.Info("Evaluated with user {} in {}ms", userID, stopWatch.ElapsedMilliseconds);
                log.Info("Precision/recall/fall-out/nDCG/reach: {} / {} / {} / {} / {}",
                         precision.GetAverage(), recall.GetAverage(), fallOut.GetAverage(), nDCG.GetAverage(),
                         (double)numUsersWithRecommendations / (double)numUsersRecommendedFor);
            }

            return(new IRStatisticsImpl(
                       precision.GetAverage(),
                       recall.GetAverage(),
                       fallOut.GetAverage(),
                       nDCG.GetAverage(),
                       (double)numUsersWithRecommendations / (double)numUsersRecommendedFor));
        }
    private void cachePreferences(IDataModel dataModel) {
      int numPreferences = countPreferences(dataModel);
      preferences = new IPreference[numPreferences];

      var userIDs = dataModel.GetUserIDs();
      int index = 0;
      while (userIDs.MoveNext()) {
        long userID = userIDs.Current;
        IPreferenceArray preferencesFromUser = dataModel.GetPreferencesFromUser(userID);
        foreach (IPreference preference in preferencesFromUser) {
          preferences[index++] = preference;
        }
      }
    }
示例#24
0
        private long[] doMostSimilarUsers(int howMany, TopItems.IEstimator <long> estimator)
        {
            IDataModel model = GetDataModel();

            return(TopItems.GetTopUsers(howMany, model.GetUserIDs(), null, estimator));
        }
 private int countPreferences(IDataModel dataModel) {
   int numPreferences = 0;
   var userIDs = dataModel.GetUserIDs();
   while (userIDs.MoveNext()) {
     IPreferenceArray preferencesFromUser = dataModel.GetPreferencesFromUser(userIDs.Current);
     numPreferences += preferencesFromUser.Length();
   }
   return numPreferences;
 }
        public override long[] GetUserNeighborhood(long userID)
        {
            IDataModel dataModel     = getDataModel();
            FastIDSet  neighborhood  = new FastIDSet();
            var        usersIterable = SamplinglongPrimitiveIterator.MaybeWrapIterator(dataModel
                                                                                       .GetUserIDs(), getSamplingRate());
            IUserSimilarity userSimilarityImpl = getUserSimilarity();

            while (usersIterable.MoveNext())
            {
                long otherUserID = usersIterable.Current;
                if (userID != otherUserID)
                {
                    double theSimilarity = userSimilarityImpl.UserSimilarity(userID, otherUserID);
                    if (!Double.IsNaN(theSimilarity) && theSimilarity >= threshold)
                    {
                        neighborhood.Add(otherUserID);
                    }
                }
            }

            return(neighborhood.ToArray());
        }
示例#27
0
 public GenericUserSimilarity(IUserSimilarity otherSimilarity, IDataModel dataModel)
 {
     long[] userIDs = longIteratorToList(dataModel.GetUserIDs());
     initSimilarityMaps(new DataModelSimilaritiesIterator(otherSimilarity, userIDs));
 }
  public IRStatistics Evaluate(IRecommenderBuilder recommenderBuilder,
                               IDataModelBuilder dataModelBuilder,
                               IDataModel dataModel,
                               IDRescorer rescorer,
                               int at,
                               double relevanceThreshold,
                               double evaluationPercentage) {

    //Preconditions.checkArgument(recommenderBuilder != null, "recommenderBuilder is null");
    //Preconditions.checkArgument(dataModel != null, "dataModel is null");
    //Preconditions.checkArgument(at >= 1, "at must be at least 1");
    //Preconditions.checkArgument(evaluationPercentage > 0.0 && evaluationPercentage <= 1.0,
    //    "Invalid evaluationPercentage: " + evaluationPercentage + ". Must be: 0.0 < evaluationPercentage <= 1.0");

    int numItems = dataModel.GetNumItems();
    IRunningAverage precision = new FullRunningAverage();
    IRunningAverage recall = new FullRunningAverage();
    IRunningAverage fallOut = new FullRunningAverage();
    IRunningAverage nDCG = new FullRunningAverage();
    int numUsersRecommendedFor = 0;
    int numUsersWithRecommendations = 0;

    var it = dataModel.GetUserIDs();
    while (it.MoveNext()) {

      long userID = it.Current;

      if (random.nextDouble() >= evaluationPercentage) {
        // Skipped
        continue;
      }

	  var stopWatch = new System.Diagnostics.Stopwatch();
	  stopWatch.Start();

      IPreferenceArray prefs = dataModel.GetPreferencesFromUser(userID);

      // List some most-preferred items that would count as (most) "relevant" results
      double theRelevanceThreshold = Double.IsNaN(relevanceThreshold) ? computeThreshold(prefs) : relevanceThreshold;
      FastIDSet relevantItemIDs = dataSplitter.GetRelevantItemsIDs(userID, at, theRelevanceThreshold, dataModel);

      int numRelevantItems = relevantItemIDs.Count();
      if (numRelevantItems <= 0) {
        continue;
      }

      FastByIDMap<IPreferenceArray> trainingUsers = new FastByIDMap<IPreferenceArray>(dataModel.GetNumUsers());
      var it2 = dataModel.GetUserIDs();
      while (it2.MoveNext()) {
        dataSplitter.ProcessOtherUser(userID, relevantItemIDs, trainingUsers, it2.Current, dataModel);
      }

      IDataModel trainingModel = dataModelBuilder == null ? new GenericDataModel(trainingUsers)
          : dataModelBuilder.BuildDataModel(trainingUsers);
      try {
        trainingModel.GetPreferencesFromUser(userID);
      } catch (NoSuchUserException nsee) {
        continue; // Oops we excluded all prefs for the user -- just move on
      }

      int size = numRelevantItems + trainingModel.GetItemIDsFromUser(userID).Count();
      if (size < 2 * at) {
        // Really not enough prefs to meaningfully evaluate this user
        continue;
      }

      IRecommender recommender = recommenderBuilder.BuildRecommender(trainingModel);

      int intersectionSize = 0;
      var recommendedItems = recommender.Recommend(userID, at, rescorer);
      foreach (IRecommendedItem recommendedItem in recommendedItems) {
        if (relevantItemIDs.Contains(recommendedItem.GetItemID())) {
          intersectionSize++;
        }
      }

      int numRecommendedItems = recommendedItems.Count;

      // Precision
      if (numRecommendedItems > 0) {
        precision.AddDatum((double) intersectionSize / (double) numRecommendedItems);
      }

      // Recall
      recall.AddDatum((double) intersectionSize / (double) numRelevantItems);

      // Fall-out
      if (numRelevantItems < size) {
        fallOut.AddDatum((double) (numRecommendedItems - intersectionSize)
                         / (double) (numItems - numRelevantItems));
      }

      // nDCG
      // In computing, assume relevant IDs have relevance 1 and others 0
      double cumulativeGain = 0.0;
      double idealizedGain = 0.0;
      for (int i = 0; i < numRecommendedItems; i++) {
        IRecommendedItem item = recommendedItems[i];
        double discount = 1.0 / log2(i + 2.0); // Classical formulation says log(i+1), but i is 0-based here
        if (relevantItemIDs.Contains(item.GetItemID())) {
          cumulativeGain += discount;
        }
        // otherwise we're multiplying discount by relevance 0 so it doesn't do anything

        // Ideally results would be ordered with all relevant ones first, so this theoretical
        // ideal list starts with number of relevant items equal to the total number of relevant items
        if (i < numRelevantItems) {
          idealizedGain += discount;
        }
      }
      if (idealizedGain > 0.0) {
        nDCG.AddDatum(cumulativeGain / idealizedGain);
      }

      // Reach
      numUsersRecommendedFor++;
      if (numRecommendedItems > 0) {
        numUsersWithRecommendations++;
      }

	  stopWatch.Stop();

      log.Info("Evaluated with user {} in {}ms", userID, stopWatch.ElapsedMilliseconds);
      log.Info("Precision/recall/fall-out/nDCG/reach: {} / {} / {} / {} / {}",
               precision.GetAverage(), recall.GetAverage(), fallOut.GetAverage(), nDCG.GetAverage(),
               (double) numUsersWithRecommendations / (double) numUsersRecommendedFor);
    }

    return new IRStatisticsImpl(
        precision.GetAverage(),
        recall.GetAverage(),
        fallOut.GetAverage(),
        nDCG.GetAverage(),
        (double) numUsersWithRecommendations / (double) numUsersRecommendedFor);
  }
        /// <summary>Exports the simple user IDs and preferences in the data model.</summary>
        /// <returns>a <see cref="FastByIDMap"/> mapping user IDs to <see cref="IPreferenceArray"/>s representing that user's preferences</returns>
        public static FastByIDMap<IPreferenceArray> ToDataMap(IDataModel dataModel) {
		FastByIDMap<IPreferenceArray> data = new FastByIDMap<IPreferenceArray>(dataModel.GetNumUsers());
		var it = dataModel.GetUserIDs();
		while (it.MoveNext()) {
			long userID = it.Current;
			data.Put(userID, dataModel.GetPreferencesFromUser(userID));
		}
		return data;
	}
示例#30
0
        public override Factorization Factorize()
        {
            log.Info("starting to compute the factorization...");
            Features features = new Features(this);

            /// feature maps necessary for solving for implicit feedback
            IDictionary <int, double[]> userY = null;
            IDictionary <int, double[]> itemY = null;

            if (usesImplicitFeedback)
            {
                userY = userFeaturesMapping(dataModel.GetUserIDs(), dataModel.GetNumUsers(), features.getU());
                itemY = itemFeaturesMapping(dataModel.GetItemIDs(), dataModel.GetNumItems(), features.getM());
            }

            IList <Task> tasks;

            for (int iteration = 0; iteration < numIterations; iteration++)
            {
                log.Info("iteration {0}", iteration);

                /// fix M - compute U
                tasks = new List <Task>();
                var userIDsIterator = dataModel.GetUserIDs();
                try {
                    ImplicitFeedbackAlternatingLeastSquaresSolver implicitFeedbackSolver = usesImplicitFeedback
            ? new ImplicitFeedbackAlternatingLeastSquaresSolver(numFeatures, lambda, alpha, itemY) : null;

                    while (userIDsIterator.MoveNext())
                    {
                        long             userID          = userIDsIterator.Current;
                        var              itemIDsFromUser = dataModel.GetItemIDsFromUser(userID).GetEnumerator();
                        IPreferenceArray userPrefs       = dataModel.GetPreferencesFromUser(userID);

                        tasks.Add(Task.Factory.StartNew(() => {
                            List <double[]> featureVectors = new List <double[]>();
                            while (itemIDsFromUser.MoveNext())
                            {
                                long itemID = itemIDsFromUser.Current;
                                featureVectors.Add(features.getItemFeatureColumn(itemIndex(itemID)));
                            }

                            var userFeatures = usesImplicitFeedback
                                          ? implicitFeedbackSolver.solve(sparseUserRatingVector(userPrefs))
                                          : AlternatingLeastSquaresSolver.solve(featureVectors, ratingVector(userPrefs), lambda, numFeatures);

                            features.setFeatureColumnInU(userIndex(userID), userFeatures);
                        }
                                                        ));
                    }
                } finally {
                    // queue.shutdown();
                    try {
                        Task.WaitAll(tasks.ToArray(), 1000 * dataModel.GetNumUsers());
                    } catch (AggregateException e) {
                        log.Warn("Error when computing user features", e);
                        throw e;
                    }
                }

                /// fix U - compute M
                //queue = createQueue();
                tasks = new List <Task>();

                var itemIDsIterator = dataModel.GetItemIDs();
                try {
                    ImplicitFeedbackAlternatingLeastSquaresSolver implicitFeedbackSolver = usesImplicitFeedback
            ? new ImplicitFeedbackAlternatingLeastSquaresSolver(numFeatures, lambda, alpha, userY) : null;

                    while (itemIDsIterator.MoveNext())
                    {
                        long             itemID    = itemIDsIterator.Current;
                        IPreferenceArray itemPrefs = dataModel.GetPreferencesForItem(itemID);

                        tasks.Add(Task.Factory.StartNew(() => {
                            var featureVectors = new List <double[]>();
                            foreach (IPreference pref in itemPrefs)
                            {
                                long userID = pref.GetUserID();
                                featureVectors.Add(features.getUserFeatureColumn(userIndex(userID)));
                            }

                            var itemFeatures = usesImplicitFeedback
                  ? implicitFeedbackSolver.solve(sparseItemRatingVector(itemPrefs))
                  : AlternatingLeastSquaresSolver.solve(featureVectors, ratingVector(itemPrefs), lambda, numFeatures);

                            features.setFeatureColumnInM(itemIndex(itemID), itemFeatures);
                        }));
                    }
                } finally {
                    try {
                        Task.WaitAll(tasks.ToArray(), 1000 * dataModel.GetNumItems());
                        //queue.awaitTermination(dataModel.getNumItems(), TimeUnit.SECONDS);
                    } catch (AggregateException e) {
                        log.Warn("Error when computing item features", e);
                        throw e;
                    }
                }
            }

            log.Info("finished computation of the factorization...");
            return(createFactorization(features.getU(), features.getM()));
        }
示例#31
0
 public override IEnumerator <long> GetUserIDs()
 {
     return(_delegate.GetUserIDs());
 }