/// <summary> /// Constructs a blas using a maximum of <i>maxThreads<i> threads; each executing the given sequential algos. /// </summary> /// <param name="maxThreads"></param> /// <param name="seqBlas"></param> public SmpBlas(int maxThreads, IBlas seqBlas) { this.seqBlas = seqBlas; this.maxThreads = maxThreads; this.smp = new Smp(maxThreads); //Smp.smp = new Smp(maxThreads); }
public DataFrame() { _blas = new DotNetBlas(); _rng = new Random(); //_indices = new int[_baseFrame.RowCount]; //for (var i = 0; i < _indices.Length; i++) //{ // _indices[i] = i; //} }
/// <summary> /// Sets the public global variable <i>SmpBlas.smpBlas</i> to a blas using a maximum of <i>maxThreads</i> threads, each executing the given sequential algorithm; <i>maxThreads</i> is normally the number of CPUs. /// Call this method at the very beginning of your programd /// Normally there is no need to call this method more than once. /// </summary> /// <param name="maxThreads">the maximum number of threads (= CPUs) to be used</param> /// <param name="seqBlas">the sequential blas algorithms to be used on concurrently processed matrix blocks.</param> public static void AllocateBlas(int maxThreads, IBlas seqBlas) { if (smpBlas is SmpBlas) { // no need to change anything? SmpBlas s = (SmpBlas)smpBlas; if (s.maxThreads == maxThreads && s.seqBlas == seqBlas) { return; } } if (maxThreads <= 1) { smpBlas = seqBlas; } else { smpBlas = new SmpBlas(maxThreads, seqBlas); } }
public StatsFunctions(IBlas blas) { _blas = blas; }
/// <summary> /// Linear algebraic matrix power; <i>B = A<sup>k</sup> <==> B = A*A*...*A</i>. /// <ul> /// <li><i>p >= 1: B = A*A*...*A</i>.</li> /// <li><i>p == 0: B = identity matrix</i>.</li> /// <li><i>p < 0: B = pow(inverse(A),-p)</i>.</li> /// </ul> /// Implementation: Based on logarithms of 2, memory usage minimized. /// </summary> /// <param name="A">the source matrix; must be square; stays unaffected by this operation.</param> /// <param name="p">the exponent, can be any number.</param> /// <returns><i>B</i>, a newly constructed result matrix; storage-independent of <i>A</i>.</returns> ///<exception cref="ArgumentException">if <i>!property().isSquare(A)</i>.</exception> public static DoubleMatrix2D Pow(DoubleMatrix2D A, int p) { // matrix multiplication based on log2 method: A*A*....*A is slow, ((A * A)^2)^2 * ..D is faster // allocates two auxiliary matrices as work space IBlas blas = SmpBlas.smpBlas; // for parallel matrix mult; if not initialized defaults to sequential blas Property.DEFAULT.CheckSquare(A); if (p < 0) { A = Inverse(A); p = -p; } if (p == 0) { return(DoubleFactory2D.Dense.Identity(A.Rows)); } DoubleMatrix2D T = A.Like(); // temporary if (p == 1) { return(T.Assign(A)); // safes one auxiliary matrix allocation } if (p == 2) { blas.Dgemm(false, false, 1, A, A, 0, T); // mult(A,A); // safes one auxiliary matrix allocation return(T); } int k = Cern.Colt.Bitvector.QuickBitVector.MostSignificantBit(p); // index of highest bit in state "true" /* * this is the naive version: * DoubleMatrix2D B = A.Copy(); * for (int i=0; i<p-1; i++) { * B = mult(B,A); * } * return B; */ // here comes the optimized version: //cern.colt.Timer timer = new cern.colt.Timer().start(); int i = 0; while (i <= k && (p & (1 << i)) == 0) { // while (bit i of p == false) // A = mult(A,A); would allocate a lot of temporary memory blas.Dgemm(false, false, 1, A, A, 0, T); // A.zMult(A,T); DoubleMatrix2D swap = A; A = T; T = swap; // swap A with T i++; } DoubleMatrix2D B = A.Copy(); i++; for (; i <= k; i++) { // A = mult(A,A); would allocate a lot of temporary memory blas.Dgemm(false, false, 1, A, A, 0, T); // A.zMult(A,T); DoubleMatrix2D swap = A; A = T; T = swap; // swap A with T if ((p & (1 << i)) != 0) { // if (bit i of p == true) // B = mult(B,A); would allocate a lot of temporary memory blas.Dgemm(false, false, 1, B, A, 0, T); // B.zMult(A,T); swap = B; B = T; T = swap; // swap B with T } } //timer.stop().Display(); return(B); }
public void SetBlas(IBlas blas) { _blas = blas; }