public void TestNextProbablePrime()
        {
            IBigInteger firstPrime = BigInteger.ProbablePrime(32, _random);
            IBigInteger nextPrime  = firstPrime.NextProbablePrime();

            Assert.IsTrue(firstPrime.IsProbablePrime(10));
            Assert.IsTrue(nextPrime.IsProbablePrime(10));

            IBigInteger check = firstPrime.Add(one);

            while (check.CompareTo(nextPrime) < 0)
            {
                Assert.IsFalse(check.IsProbablePrime(10));
                check = check.Add(one);
            }
        }
示例#2
0
        protected virtual DHPublicKeyParameters ValidateDHPublicKey(DHPublicKeyParameters key)
        {
            IBigInteger  Y          = key.Y;
            DHParameters parameters = key.Parameters;
            IBigInteger  p          = parameters.P;
            IBigInteger  g          = parameters.G;

            if (!p.IsProbablePrime(2))
            {
                throw new TlsFatalAlert(AlertDescription.illegal_parameter);
            }
            if (g.CompareTo(BigInteger.Two) < 0 || g.CompareTo(p.Subtract(BigInteger.Two)) > 0)
            {
                throw new TlsFatalAlert(AlertDescription.illegal_parameter);
            }
            if (Y.CompareTo(BigInteger.Two) < 0 || Y.CompareTo(p.Subtract(BigInteger.One)) > 0)
            {
                throw new TlsFatalAlert(AlertDescription.illegal_parameter);
            }

            // TODO See RFC 2631 for more discussion of Diffie-Hellman validation

            return(key);
        }
        private DsaParameters GenerateParameters_FIPS186_2()
        {
            byte[]     seed  = new byte[20];
            byte[]     part1 = new byte[20];
            byte[]     part2 = new byte[20];
            byte[]     u     = new byte[20];
            Sha1Digest sha1  = new Sha1Digest();
            int        n     = (L - 1) / 160;

            byte[] w = new byte[L / 8];

            for (;;)
            {
                random.NextBytes(seed);

                Hash(sha1, seed, part1);
                Array.Copy(seed, 0, part2, 0, seed.Length);
                Inc(part2);
                Hash(sha1, part2, part2);

                for (int i = 0; i != u.Length; i++)
                {
                    u[i] = (byte)(part1[i] ^ part2[i]);
                }

                u[0]  |= (byte)0x80;
                u[19] |= (byte)0x01;

                IBigInteger q = new BigInteger(1, u);

                if (!q.IsProbablePrime(certainty))
                {
                    continue;
                }

                byte[] offset = Arrays.Clone(seed);
                Inc(offset);

                for (int counter = 0; counter < 4096; ++counter)
                {
                    for (int k = 0; k < n; k++)
                    {
                        Inc(offset);
                        Hash(sha1, offset, part1);
                        Array.Copy(part1, 0, w, w.Length - (k + 1) * part1.Length, part1.Length);
                    }

                    Inc(offset);
                    Hash(sha1, offset, part1);
                    Array.Copy(part1, part1.Length - ((w.Length - (n) * part1.Length)), w, 0, w.Length - n * part1.Length);

                    w[0] |= (byte)0x80;

                    IBigInteger x = new BigInteger(1, w);

                    IBigInteger c = x.Mod(q.ShiftLeft(1));

                    IBigInteger p = x.Subtract(c.Subtract(BigInteger.One));

                    if (p.BitLength != L)
                    {
                        continue;
                    }

                    if (p.IsProbablePrime(certainty))
                    {
                        IBigInteger g = CalculateGenerator_FIPS186_2(p, q, random);

                        return(new DsaParameters(p, q, g, new DsaValidationParameters(seed, counter)));
                    }
                }
            }
        }
        /**
         * generate suitable parameters for DSA, in line with
         * <i>FIPS 186-3 A.1 Generation of the FFC Primes p and q</i>.
         */
        private DsaParameters GenerateParameters_FIPS186_3()
        {
// A.1.1.2 Generation of the Probable Primes p and q Using an Approved Hash Function
            // FIXME This should be configurable (digest size in bits must be >= N)
            IDigest d      = new Sha256Digest();
            int     outlen = d.GetDigestSize() * 8;

// 1. Check that the (L, N) pair is in the list of acceptable (L, N pairs) (see Section 4.2). If
//    the pair is not in the list, then return INVALID.
            // Note: checked at initialisation

// 2. If (seedlen < N), then return INVALID.
            // FIXME This should be configurable (must be >= N)
            int seedlen = N;

            byte[] seed = new byte[seedlen / 8];

// 3. n = ceiling(L ⁄ outlen) – 1.
            int n = (L - 1) / outlen;

// 4. b = L – 1 – (n ∗ outlen).
            int b = (L - 1) % outlen;

            byte[] output = new byte[d.GetDigestSize()];
            for (;;)
            {
// 5. Get an arbitrary sequence of seedlen bits as the domain_parameter_seed.
                random.NextBytes(seed);

// 6. U = Hash (domain_parameter_seed) mod 2^(N–1).
                Hash(d, seed, output);
                IBigInteger U = new BigInteger(1, output).Mod(BigInteger.One.ShiftLeft(N - 1));

// 7. q = 2^(N–1) + U + 1 – ( U mod 2).
                IBigInteger q = BigInteger.One.ShiftLeft(N - 1).Add(U).Add(BigInteger.One).Subtract(
                    U.Mod(BigInteger.Two));

// 8. Test whether or not q is prime as specified in Appendix C.3.
                // TODO Review C.3 for primality checking
                if (!q.IsProbablePrime(certainty))
                {
// 9. If q is not a prime, then go to step 5.
                    continue;
                }

// 10. offset = 1.
                // Note: 'offset' value managed incrementally
                byte[] offset = Arrays.Clone(seed);

// 11. For counter = 0 to (4L – 1) do
                int counterLimit = 4 * L;
                for (int counter = 0; counter < counterLimit; ++counter)
                {
// 11.1 For j = 0 to n do
//      Vj = Hash ((domain_parameter_seed + offset + j) mod 2^seedlen).
// 11.2 W = V0 + (V1 ∗ 2^outlen) + ... + (V^(n–1) ∗ 2^((n–1) ∗ outlen)) + ((Vn mod 2^b) ∗ 2^(n ∗ outlen)).
                    // TODO Assemble w as a byte array
                    IBigInteger W = BigInteger.Zero;
                    for (int j = 0, exp = 0; j <= n; ++j, exp += outlen)
                    {
                        Inc(offset);
                        Hash(d, offset, output);

                        IBigInteger Vj = new BigInteger(1, output);
                        if (j == n)
                        {
                            Vj = Vj.Mod(BigInteger.One.ShiftLeft(b));
                        }

                        W = W.Add(Vj.ShiftLeft(exp));
                    }

// 11.3 X = W + 2^(L–1). Comment: 0 ≤ W < 2L–1; hence, 2L–1 ≤ X < 2L.
                    IBigInteger X = W.Add(BigInteger.One.ShiftLeft(L - 1));

// 11.4 c = X mod 2q.
                    IBigInteger c = X.Mod(q.ShiftLeft(1));

// 11.5 p = X - (c - 1). Comment: p ≡ 1 (mod 2q).
                    IBigInteger p = X.Subtract(c.Subtract(BigInteger.One));

                    // 11.6 If (p < 2^(L - 1)), then go to step 11.9
                    if (p.BitLength != L)
                    {
                        continue;
                    }

// 11.7 Test whether or not p is prime as specified in Appendix C.3.
                    // TODO Review C.3 for primality checking
                    if (p.IsProbablePrime(certainty))
                    {
// 11.8 If p is determined to be prime, then return VALID and the values of p, q and
//      (optionally) the values of domain_parameter_seed and counter.
                        // TODO Make configurable (8-bit unsigned)?
//	                    int index = 1;
//	                    IBigInteger g = CalculateGenerator_FIPS186_3_Verifiable(d, p, q, seed, index);
//	                    if (g != null)
//	                    {
//	                        // TODO Should 'index' be a part of the validation parameters?
//	                        return new DsaParameters(p, q, g, new DsaValidationParameters(seed, counter));
//	                    }

                        IBigInteger g = CalculateGenerator_FIPS186_3_Unverifiable(p, q, random);
                        return(new DsaParameters(p, q, g, new DsaValidationParameters(seed, counter)));
                    }

// 11.9 offset = offset + n + 1.      Comment: Increment offset; then, as part of
//                                    the loop in step 11, increment counter; if
//                                    counter < 4L, repeat steps 11.1 through 11.8.
                    // Note: 'offset' value already incremented in inner loop
                }
// 12. Go to step 5.
            }
        }