public void Iteration()
        {
            HiddenMarkovModel nhmm;

            nhmm = _method.Clone();

            var allGamma = new double[_training.SequenceCount][][];

            double[][] aijNum = EngineArray.AllocateDouble2D(_method.StateCount, _method.StateCount);
            var        aijDen = new double[_method.StateCount];

            EngineArray.Fill(aijDen, 0.0);
            for (int i = 0; i < _method.StateCount; i++)
            {
                EngineArray.Fill(aijNum[i], 0.0);
            }

            int g = 0;

            foreach (IMLDataSet obsSeq in _training.Sequences)
            {
                ForwardBackwardCalculator fbc = GenerateForwardBackwardCalculator(
                    obsSeq, _method);

                double[][][] xi    = EstimateXi(obsSeq, fbc, _method);
                double[][]   gamma = allGamma[g++] = EstimateGamma(xi, fbc);

                for (int i = 0; i < _method.StateCount; i++)
                {
                    for (int t = 0; t < (obsSeq.Count - 1); t++)
                    {
                        aijDen[i] += gamma[t][i];

                        for (int j = 0; j < _method.StateCount; j++)
                        {
                            aijNum[i][j] += xi[t][i][j];
                        }
                    }
                }
            }

            for (int i = 0; i < _method.StateCount; i++)
            {
                if (aijDen[i] == 0.0)
                {
                    for (int j = 0; j < _method.StateCount; j++)
                    {
                        nhmm.TransitionProbability[i][j] =
                            _method.TransitionProbability[i][j];
                    }
                }
                else
                {
                    for (int j = 0; j < _method.StateCount; j++)
                    {
                        nhmm.TransitionProbability[i][j] = aijNum[i][j]
                                                           / aijDen[i];
                    }
                }
            }

            /* compute pi */
            for (int i = 0; i < _method.StateCount; i++)
            {
                nhmm.Pi[i] = 0.0;
            }

            for (int o = 0; o < _training.SequenceCount; o++)
            {
                for (int i = 0; i < _method.StateCount; i++)
                {
                    nhmm.Pi[i] += (allGamma[o][0][i] / _training
                                   .SequenceCount);
                }
            }

            /* compute pdfs */
            for (int i = 0; i < _method.StateCount; i++)
            {
                var    weights = new double[_training.Count];
                double sum     = 0.0;
                int    j       = 0;

                int o = 0;
                foreach (IMLDataSet obsSeq in _training.Sequences)
                {
                    for (int t = 0; t < obsSeq.Count; t++, j++)
                    {
                        sum += weights[j] = allGamma[o][t][i];
                    }
                    o++;
                }

                for (j--; j >= 0; j--)
                {
                    weights[j] /= sum;
                }

                IStateDistribution opdf = nhmm.StateDistributions[i];
                opdf.Fit(_training, weights);
            }

            _method = nhmm;
            Iterations++;
        }
 /// <summary>
 ///   Creates a new object that is a copy of the current instance.
 /// </summary>
 ///
 /// <returns>
 ///   A new object that is a copy of this instance.
 /// </returns>
 ///
 public override object Clone()
 {
     return(model.Clone());
 }
示例#3
0
        public void issue_154()
        {
            int[][] sequences = new int[][]
            {
                new int[] { 0, 1, 1, 1, 1, 0, 1, 1, 1, 1 },
                new int[] { 0, 1, 1, 1, 0, 1, 1, 1, 1, 1 },
                new int[] { 0, 1, 1, 1, 1, 1, 1, 1, 1, 1 },
                new int[] { 0, 1, 1, 1, 1, 1 },
                new int[] { 0, 1, 1, 1, 1, 1, 1 },
                new int[] { 0, 1, 1, 1, 1, 1, 1, 1, 1, 1 },
                new int[] { 0, 1, 1, 1, 1, 1, 1, 1, 1, 1 },
            };

            var hmm0 = new HiddenMarkovModel(states: 3, symbols: 2);
            var hmm1 = hmm0.Clone() as HiddenMarkovModel;
            var hmm2 = hmm0.Clone() as HiddenMarkovModel;
            var hmm3 = hmm0.Clone() as HiddenMarkovModel;
            var hmm4 = hmm0.Clone() as HiddenMarkovModel;

            {
                Accord.Math.Random.Generator.Seed = 0;
                var teacher = new BaumWelchLearning(hmm1)
                {
                    Tolerance = 0.0001, Iterations = 1
                };
                Assert.AreEqual(0, teacher.CurrentIteration);
                teacher.Learn(sequences);
                Assert.AreEqual(1, teacher.CurrentIteration);
                teacher = new BaumWelchLearning(hmm1)
                {
                    Tolerance = 0.0001, Iterations = 1
                };
                Assert.AreEqual(0, teacher.CurrentIteration);
                teacher.Learn(sequences);
                Assert.AreEqual(1, teacher.CurrentIteration);
                teacher = new BaumWelchLearning(hmm1)
                {
                    Tolerance = 0.0001, Iterations = 1
                };
                Assert.AreEqual(0, teacher.CurrentIteration);
                teacher.Learn(sequences);
                Assert.AreEqual(1, teacher.CurrentIteration);
                teacher = new BaumWelchLearning(hmm1)
                {
                    Tolerance = 0.0001, Iterations = 1
                };
                Assert.AreEqual(0, teacher.CurrentIteration);
                teacher.Learn(sequences);
                Assert.AreEqual(1, teacher.CurrentIteration);
            }
            {
                Accord.Math.Random.Generator.Seed = 0;
                var teacher = new BaumWelchLearning(hmm2)
                {
                    Tolerance = 0.0001, Iterations = 2
                };
                Assert.AreEqual(0, teacher.CurrentIteration);
                teacher.Learn(sequences);
                Assert.AreEqual(2, teacher.CurrentIteration);
                teacher.MaxIterations = 4;
                teacher.Learn(sequences);
                Assert.AreEqual(4, teacher.CurrentIteration);
            }
            {
                Accord.Math.Random.Generator.Seed = 0;
                var teacher = new BaumWelchLearning(hmm3)
                {
                    Tolerance = 0.0001, Iterations = 3
                };
                teacher.Learn(sequences);
                Assert.AreEqual(3, teacher.CurrentIteration);
                teacher = new BaumWelchLearning(hmm3)
                {
                    Tolerance = 0.0001, Iterations = 1
                };
                Assert.AreEqual(0, teacher.CurrentIteration);
                teacher.Learn(sequences);
                Assert.AreEqual(1, teacher.CurrentIteration);
            }
            {
                Accord.Math.Random.Generator.Seed = 0;
                var teacher = new BaumWelchLearning(hmm4)
                {
                    Tolerance = 0.0001, Iterations = 4
                };
                Assert.AreEqual(0, teacher.CurrentIteration);
                teacher.Learn(sequences);
                Assert.AreEqual(4, teacher.CurrentIteration);
            }

            {
                var teacher = new BaumWelchLearning(hmm0)
                {
                    Tolerance = 0.0001, Iterations = 0
                };
                teacher.Learn(sequences);
                Assert.AreEqual(13, teacher.CurrentIteration);
            }

            compare(hmm1, hmm2);
            compare(hmm1, hmm3);
            compare(hmm1, hmm4);
        }