public static Mode[] GetModes(MatrixByArr hess, string cachepath = null) { Vector[] eigvec; double[] eigval; if (cachepath != null && HFile.Exists(cachepath)) { HSerialize.Deserialize(cachepath, null, out eigval, out eigvec); } else { HDebug.Verify(NumericSolver.Eig(hess, out eigvec, out eigval)); HSerialize.SerializeDepreciated(cachepath, null, eigval, eigvec); } List <Mode> modes; { // sort by eigenvalues int[] idx = eigval.HAbs().HIdxSorted(); modes = new List <Mode>(idx.Length); for (int i = 0; i < eigval.Length; i++) { Mode mode = new Mode { eigval = eigval[idx[i]], eigvec = eigvec[idx[i]] }; modes.Add(mode); } } return(modes.ToArray()); }
public static Anisou[] FromHessian(Mode[] modesMassWeighted, double[] mass, double scale = 10000 *1000 , string cachepath = null ) { if (cachepath != null && HFile.Exists(cachepath)) { List <Anisou> lstanisou; HDebug.Verify(HSerialize.Deserialize(cachepath, null, out lstanisou)); return(lstanisou.ToArray()); } int size = modesMassWeighted.Size(); HDebug.Assert(size == mass.Length); Anisou[] anisous = new Anisou[size]; for (int i = 0; i < size; i++) { MatrixByArr invHii = new double[3, 3]; foreach (Mode mode in modesMassWeighted) { Vector modei = mode.GetEigvecOfAtom(i); invHii = invHii + LinAlg.VVt(modei, modei) * mode.eigval; } MatrixByArr Ui = invHii * scale / mass[i]; anisous[i] = Anisou.FromMatrix(Ui); } if (cachepath != null) { HSerialize.Serialize(cachepath, null, new List <Anisou>(anisous)); } return(anisous); }
public static Anisou[] FromHessian(MatrixByArr hessMassWeighted, double[] mass, double scale = 10000 *1000 , string cachepath = null ) { /// Estimation of "anisotropic temperature factors" (ANISOU) /// /// delta = hess^-1 * force /// = (0 + V7*V7'/L7 + V8*V8'/L8 + V9*V9'/L9 + ...) * force (* assume that 1-6 eigvecs/eigvals are ignored, because rot,trans *) /// /// Assume that force[i] follows gaussian distributions N(0,1). Here, if there are 1000 samples, let denote i-th force as fi, and its j-th element as fi[j] /// Then, $V7' * fi = si7, V8' * fi = si8, ...$ follows gaussian distribution N(0,1), too. /// Its moved position by k-th eigen component is determined then, as /// dik = (Vk * Vk' / Lk) * Fi /// = Vk / Lk * (Vk' * Fi) /// = Vk / Lk * Sik. /// Additionally, the moved position j-th atom is: /// dik[j] = Vk[j] / Lk[j] * Sik. /// and its correlation matrix is written as (because its mean position is 0 !!!): /// Cik[j] = dik[j] * dik[j]' /// = [dik[j]_x * dik[j]_x dik[j]_x * dik[j]_y dik[j]_x * dik[j]_z] /// [dik[j]_y * dik[j]_x dik[j]_y * dik[j]_y dik[j]_y * dik[j]_z] /// [dik[j]_z * dik[j]_x dik[j]_z * dik[j]_y dik[j]_z * dik[j]_z] /// = (Vk[j] * Vk[j]') / (Lk[j]*Lk[j]) * (Sik*Sik). /// /// Note that Sik*Sik follows the chi-square distribution, because Sik follows the gaussian distribution N(0,1). /// Additionally, note that the thermal fluctuation is (not one projection toward k-th eigen component with only i-th force, but) the results of 1..i.. forced movements and 1..k.. eigen components. /// Therefore, for j-th atom, the accumulation of the correlation over all forces (1..i..) with all eigen components (1..k..) is: /// C[j] = sum_{i,k} {(Vk[j] * Vk[j]') / (Lk[j]*Lk[j]) * (Sik*Sik)}. /// /// Here, Sik is normal distribution independent to i and k. Therefore, the mean of C[j] is /// E(C[j]) = E( sum_{i,k} {(Vk[j] * Vk[j]') / (Lk[j]*Lk[j]) * (Sik*Sik)} ) /// = sum_{i,k} E( (Vk[j] * Vk[j]') / (Lk[j]*Lk[j]) * (Sik*Sik) ) /// = sum_{i,k} { (Vk[j] * Vk[j]') / (Lk[j]*Lk[j]) * E(Sik*Sik) } /// = sum_{i,k} { (Vk[j] * Vk[j]') / (Lk[j]*Lk[j]) * 1 } (* because mean of E(x*x)=1 where x~N(0,1) *) /// = sum_{k} { (Vk[j] * Vk[j]') / (Lk[j]*Lk[j]) } /// /// Note that E(C[j]) is same to the j-th diagonal component of inverse hessian matrix (except, the eigenvalues are squared). /// /// Fixation: Gromacx generate the ensemble X by /// X[j] = sum_{k} {Vk / sqrt(Lk[j]) / sqrt(mass[j]) * x_k}, /// where x~N(0,1). However, the above is assumed as /// X[j] = sum_{k} {Vk / Lk[j] * x_k}. /// In order to apply the assumption by the Gromacs ensemble, The equation should be fixed as /// E(C[j]) = sum_{k} { (Vk[j] * Vk[j]') / (sqrt(Lk[j])*sqrt(Lk[j])) } /// = sum_{k} { (Vk[j] * Vk[j]') / Lk[j] / mass[j] } /// int size = mass.Length; HDebug.Assert(hessMassWeighted.RowSize == size * 3, hessMassWeighted.ColSize == size * 3); Anisou[] anisous = new Anisou[size]; if (cachepath != null && HFile.Exists(cachepath)) { List <Anisou> lstanisou; HDebug.Verify(HSerialize.Deserialize <List <Anisou> >(cachepath, null, out lstanisou)); anisous = lstanisou.ToArray(); return(anisous); } // anisotropic temperature factors using (new Matlab.NamedLock("ANISOU")) { Matlab.Clear("ANISOU"); Matlab.PutMatrix("ANISOU.H", hessMassWeighted); Matlab.Execute("[ANISOU.V,ANISOU.D] = eig(ANISOU.H);"); Matlab.Execute("ANISOU.D = diag(ANISOU.D);"); // get diagonal { Matlab.Execute("[ANISOU.sortD, ANISOU.sortIdxD] = sort(abs(ANISOU.D));"); // sorted index of abs(D) Matlab.Execute("ANISOU.D(ANISOU.sortIdxD(1:6)) = 0;"); // set the 6 smallest eigenvalues as zero //Matlab.Execute("ANISOU.D(ANISOU.D < 0) = 0;"); // set negative eigenvalues as zero } //{ // Matlab.Execute("ANISOU.D(1:6) = 0;"); //} Matlab.Execute("ANISOU.invD = 1 ./ ANISOU.D;"); // set invD Matlab.Execute("ANISOU.invD(ANISOU.D == 0) = 0;"); // set Inf (by divided by zero) as zero //Matlab.Execute("ANISOU.D = ANISOU.D .^ 2;"); // assume the gromacs ensemble condition Matlab.Execute("ANISOU.invH = ANISOU.V * diag(ANISOU.invD) * ANISOU.V';"); for (int i = 0; i < size; i++) { string idx = string.Format("{0}:{1}", i * 3 + 1, i * 3 + 3); MatrixByArr U = Matlab.GetMatrix("ANISOU.invH(" + idx + "," + idx + ")"); U *= (scale / mass[i]); anisous[i] = Anisou.FromMatrix(U); } Matlab.Clear("ANISOU"); } if (cachepath != null) { HSerialize.Serialize(cachepath, null, new List <Anisou>(anisous)); } return(anisous); }
public static PdbInfo[] GetPdbInfo(params string[] pdbids) { Dictionary <string, PdbInfo> pdbinfos = new Dictionary <string, PdbInfo>(); int VER = 0; string cachepath = RootPath + @"cache\GetPdbInfo.data"; if (HFile.Exists(cachepath)) { HSerialize.Deserialize(cachepath, VER, out pdbinfos); if (pdbinfos == null) { pdbinfos = new Dictionary <string, PdbInfo>(); } } bool updated = false; for (int i = 0; i < pdbids.Length; i++) { string pdbid = pdbids[i]; if (pdbinfos.ContainsKey(pdbid) == false) { pdbinfos.Add(pdbid, null); } if (pdbinfos[pdbid] != null) { continue; } updated = true; //continue; List <string> pdblines = GetPdbLines(pdbid); if (pdblines == null) { pdblines = GetPdbLines(pdbid, forceToRedownload: true); } HDebug.Assert(pdblines != null); if (pdblines == null) { System.Console.WriteLine(pdbid + " is not processed"); continue; } PdbInfo pdbinfo = GetPdbInfo(pdbid, pdblines); pdbinfos[pdbid] = pdbinfo; if (i % 10 == 0) { System.Console.WriteLine(pdbid + " is processed. There are " + (pdbids.Length - i).ToString() + " unprocessed pdbs."); } if (i % 200 == 0) { HSerialize.Serialize(cachepath, VER, pdbinfos); updated = false; System.Console.WriteLine("serialize cache"); } } //GetPdbInfo(pdbinfos); if (updated) { HSerialize.Serialize(cachepath, VER, pdbinfos); } return(pdbinfos.HSelectByKeys(pdbids)); }
public static void SelfTest() { if (HDebug.Selftest() == false) { return; } string temppath = @"K:\temp\"; string tinkerpath_testgrad = "\"" + @"C:\Program Files\Tinker\bin-win64-8.2.1\testgrad.exe" + "\""; string tinkerpath_testhess = "\"" + @"C:\Program Files\Tinker\bin-win64-8.2.1\testhess.exe" + "\""; var xyz = Tinker.Xyz.FromLines(SelftestData.lines_1L2Y_xyz); var prm = Tinker.Prm.FromLines(SelftestData.lines_charmm22_prm); var univ = Universe.Build(xyz, prm); var testhess = Tinker.Run.Testhess(tinkerpath_testhess, xyz, prm, temppath , HessMatrixZeros: HessMatrixLayeredArray.ZerosHessMatrixLayeredArray ); var testgrad = Tinker.Run.Testgrad(tinkerpath_testgrad, xyz, prm, temppath); var hessinfo = Hess.HessInfo.FromTinker(xyz, prm, testhess.hess); var hessforcinfo = HessForc.Coarse.HessForcInfo.From(hessinfo); hessforcinfo.forc = testgrad.anlyts.GetForces(xyz.atoms); var coarseinfo_debug = HessForc.Coarse.GetCoarseHessForc (hessforcinfo , coords: hessinfo.coords , GetIdxKeepListRemv: GetIdxKeepListRemv , ila: null , thres_zeroblk: double.Epsilon , options: new string[] { "Debug" } ); var coarseinfo_simple = HessForc.Coarse.GetCoarseHessForc (hessforcinfo , coords: hessinfo.coords , GetIdxKeepListRemv: GetIdxKeepListRemv , ila: null , thres_zeroblk: double.Epsilon , options: new string[] { "SubSimple" } ); double absmax_simple = (coarseinfo_debug.hess - coarseinfo_simple.hess).HAbsMax(); HDebug.Assert(Math.Abs(absmax_simple) < 0.00000001); double absmax_simple_forc = (coarseinfo_debug.forc.ToVector() - coarseinfo_simple.forc.ToVector()).ToArray().MaxAbs(); HDebug.Assert(Math.Abs(absmax_simple_forc) < 0.00000001); var coarseinfo_1iter = HessForc.Coarse.GetCoarseHessForc (hessforcinfo , coords: hessinfo.coords , GetIdxKeepListRemv: GetIdxKeepListRemv , ila: null , thres_zeroblk: double.Epsilon , options: new string[] { "OneIter" } ); double absmax_1iter = (coarseinfo_debug.hess - coarseinfo_1iter.hess).HAbsMax(); HDebug.Assert(Math.Abs(absmax_1iter) < 0.00000001); double absmax_1iter_forc = (coarseinfo_debug.forc.ToVector() - coarseinfo_1iter.forc.ToVector()).ToArray().MaxAbs(); HDebug.Assert(Math.Abs(absmax_1iter_forc) < 0.00000001); var coarseinfo_iter = HessForc.Coarse.GetCoarseHessForc (hessforcinfo , coords: hessinfo.coords , GetIdxKeepListRemv: GetIdxKeepListRemv , ila: null , thres_zeroblk: double.Epsilon , options: null ); double absmax_iter = (coarseinfo_debug.hess - coarseinfo_iter.hess).HAbsMax(); HDebug.Assert(Math.Abs(absmax_iter) < 0.00000001); double absmax_iter_forc = (coarseinfo_debug.forc.ToVector() - coarseinfo_iter.forc.ToVector()).ToArray().MaxAbs(); HDebug.Assert(Math.Abs(absmax_iter_forc) < 0.00000001); double tolerance = 1.0E-6; // 0.00001; var coarseinfo_1iter_tolerant = HessForc.Coarse.GetCoarseHessForc (hessforcinfo , coords: hessinfo.coords , GetIdxKeepListRemv: GetIdxKeepListRemv , ila: null , thres_zeroblk: tolerance , options: new string[] { "OneIter" } ); double absmax_1iter_tolerant = (coarseinfo_debug.hess - coarseinfo_1iter_tolerant.hess).HAbsMax(); HDebug.Assert(Math.Abs(absmax_1iter_tolerant) < tolerance * 10); double absmax_1iter_tolerant_forc = (coarseinfo_debug.forc.ToVector() - coarseinfo_1iter_tolerant.forc.ToVector()).ToArray().MaxAbs(); HDebug.Assert(Math.Abs(absmax_1iter_tolerant_forc) < tolerance * 10); var coarseinfo_iter_tolerant = HessForc.Coarse.GetCoarseHessForc (hessforcinfo , coords: hessinfo.coords , GetIdxKeepListRemv: GetIdxKeepListRemv , ila: null , thres_zeroblk: tolerance , options: null ); double absmax_iter_tolerant = (coarseinfo_debug.hess - coarseinfo_iter_tolerant.hess).HAbsMax(); HDebug.Assert(Math.Abs(absmax_iter_tolerant) < tolerance * 10); double absmax_iter_tolerant_forc = (coarseinfo_debug.forc.ToVector() - coarseinfo_iter_tolerant.forc.ToVector()).ToArray().MaxAbs(); HDebug.Assert(Math.Abs(absmax_iter_tolerant_forc) < tolerance * 10); string tempfilepath = HFile.GetTempPath(temppath, "test_serialzation_CoarseHessForc.dat"); HSerialize.Serialize(tempfilepath, null, coarseinfo_iter_tolerant); var coarseinfo_iter_tolerant2 = HSerialize.Deserialize <HessForcInfo>(tempfilepath, null); double absmax_iter_tolerant_file = (coarseinfo_iter_tolerant.hess - coarseinfo_iter_tolerant.hess).HAbsMax(); HDebug.Assert(Math.Abs(absmax_iter_tolerant_file) == 0); double absmax_iter_tolerant_file_forc = (coarseinfo_iter_tolerant.forc.ToVector() - coarseinfo_iter_tolerant.forc.ToVector()).ToArray().MaxAbs(); HDebug.Assert(Math.Abs(absmax_iter_tolerant_file_forc) == 0); HFile.Delete(tempfilepath); }
public void LoadCoords(string path) { Vector[] coords; HSerialize.Deserialize(path, null, out coords); SetCoords(coords); }