示例#1
0
        public static void Main()
        {
            Console.WriteLine("You are runnning the GraphSearch example.");
            Console.WriteLine("======================================================");
            Console.WriteLine();

            #region Simple Example
            {
                Console.WriteLine("  Graph Searching----------------------");
                Console.WriteLine();
                Console.WriteLine("    Graph:");
                Console.WriteLine();
                Console.WriteLine("      [0]-----(1)---->[1]  ");
                Console.WriteLine("       |               |   ");
                Console.WriteLine("       |               |   ");
                Console.WriteLine("      (99)            (2)  ");
                Console.WriteLine("       |               |   ");
                Console.WriteLine("       |               |   ");
                Console.WriteLine("       v               v   ");
                Console.WriteLine("      [3]<----(5)-----[2]  ");
                Console.WriteLine();
                Console.WriteLine("      [nodes in brackets]");
                Console.WriteLine("      (edge costs in parenthases)");
                Console.WriteLine();

                // make a graph
                IGraph <int> graph = GraphSetOmnitree.New <int>();
                // add nodes
                graph.Add(0);
                graph.Add(1);
                graph.Add(2);
                graph.Add(3);
                // add edges
                graph.Add(0, 1);
                graph.Add(1, 2);
                graph.Add(2, 3);
                graph.Add(0, 3);
示例#2
0
文件: Program.cs 项目: mangzee/Towel
        static void Main()
        {
            Console.WriteLine("You are runnning the GraphSearch example.");
            Console.WriteLine("======================================================");
            Console.WriteLine();

            #region Simple Example
            {
                Console.WriteLine("  Graph Searching----------------------");
                Console.WriteLine();

                // visualization
                //
                //    [0]-----(1)---->[1]
                //     |               |
                //     |               |
                //    (99)            (2)
                //     |               |
                //     |               |
                //     v               v
                //    [3]<----(5)-----[2]
                //
                //    [nodes in brackets]
                //    (edge costs in parenthases)

                // make a graph
                IGraph <int> graph = new GraphSetOmnitree <int>()
                {
                    // add nodes
                    0, 1, 2, 3,
                    // add edges
                    { 0, 1 },
                    { 1, 2 },
                    { 2, 3 },
                    { 0, 3 },
                };
示例#3
0
        static void Main(string[] args)
        {
            Random random = new Random();
            int    test   = 10;

            Console.WriteLine("You are runnning the Data Structures example.");
            Console.WriteLine("======================================================");
            Console.WriteLine();

            #region Link (aka Tuple)

            Console.WriteLine("  Link------------------------------------");
            Console.WriteLine();
            Console.WriteLine("    A \"Link\" is like a System.Tuple that implements");
            Console.WriteLine("    Towel.DataStructures.DataStructure. A Link/Tuple is");
            Console.WriteLine("    used when you have a small, known-sized set of objects");
            Console.WriteLine("    that you want to bundle together without making a custom");
            Console.WriteLine("    custom class.");
            Console.WriteLine();

            Link link = new Link <int, int, int, int, int, int>(0, 1, 2, 3, 4, 5);
            Console.Write("    Traversal: ");
            link.Stepper(i => Console.Write(i));
            Console.WriteLine();

            Console.WriteLine("    Size: " + link.Size);
            Console.WriteLine();

            #endregion

            #region Indexed (aka Array)

            Console.WriteLine("  Indexed---------------------------------");
            Console.WriteLine();
            Console.WriteLine("    An \"Indexed\" is just a wrapper for arrays that implements");
            Console.WriteLine("    Towel.DataStructures.DataStructure. An array is used when");
            Console.WriteLine("    dealing with static-sized, known-sized sets of data. Arrays");
            Console.WriteLine("    can be sorted along 1 dimensions for binary searching algorithms.");
            Console.WriteLine();

            IIndexed <int> indexed = new IndexedArray <int>(test);

            Console.Write("    Filling in (0-" + (test - 1) + ")...");
            for (int i = 0; i < test; i++)
            {
                indexed[i] = i;
            }
            Console.WriteLine();

            Console.Write("    Traversal: ");
            indexed.Stepper(i => Console.Write(i));
            Console.WriteLine();

            Console.WriteLine("    Length: " + indexed.Length);

            Console.WriteLine();

            #endregion

            #region Addable (aka List)

            Console.WriteLine("  Addable---------------------------------");
            Console.WriteLine();
            Console.WriteLine("    An \"Addable\" is like an IList that implements");
            Console.WriteLine("    Towel.DataStructures.DataStructure. \"AddableArray\" is");
            Console.WriteLine("    the array implementation while \"AddableLinked\" is the");
            Console.WriteLine("    the linked-list implementation. An Addable/List is used");
            Console.WriteLine("    when dealing with an unknown quantity of data that you");
            Console.WriteLine("    will likely have to enumerate/step through everything. The");
            Console.WriteLine("    AddableArray shares the properties of an Indexed/Array in");
            Console.WriteLine("    that it can be relateively quickly sorted along 1 dimensions");
            Console.WriteLine("    for binary search algorithms.");
            Console.WriteLine();

            // AddableArray ---------------------------------------
            IAddable <int> addableArray = new AddableArray <int>(test);

            Console.Write("    [AddableArray] Adding (0-" + (test - 1) + ")...");
            for (int i = 0; i < test; i++)
            {
                addableArray.Add(i);
            }
            Console.WriteLine();

            Console.Write("    [AddableArray] Traversal: ");
            addableArray.Stepper(i => Console.Write(i));
            Console.WriteLine();

            Console.WriteLine("    [AddableArray] Count: " + addableArray.Count);

            addableArray.Clear(); // Clears the addable

            Console.WriteLine();

            // AddableLinked ---------------------------------------
            IAddable <int> addableLinked = new AddableLinked <int>();

            Console.Write("    [AddableLinked] Adding (0-" + (test - 1) + ")...");
            for (int i = 0; i < test; i++)
            {
                addableLinked.Add(i);
            }
            Console.WriteLine();

            Console.Write("    [AddableLinked] Traversal: ");
            addableLinked.Stepper(i => Console.Write(i));
            Console.WriteLine();

            Console.WriteLine("    [AddableLinked] Count: " + addableLinked.Count);

            addableLinked.Clear(); // Clears the addable

            Console.WriteLine();

            #endregion

            #region FirstInLastOut (aka stack)
            {
                Console.WriteLine("  FirstInLastOut---------------------------------");
                Console.WriteLine();
                Console.WriteLine("    An \"FirstInLastOut\" is a Stack that implements");
                Console.WriteLine("    Towel.DataStructures.DataStructure. \"FirstInLastOutArray\" is");
                Console.WriteLine("    the array implementation while \"FirstInLastOutLinked\" is the");
                Console.WriteLine("    the linked-list implementation. A FirstInLastOut/Stack is used");
                Console.WriteLine("    specifically when you need the algorithm provided by the Push");
                Console.WriteLine("    and Pop functions.");
                Console.WriteLine();

                IFirstInLastOut <int> firstInLastOutArray = new FirstInLastOutArray <int>();

                Console.Write("    [FirstInLastOutArray] Pushing (0-" + (test - 1) + ")...");
                for (int i = 0; i < test; i++)
                {
                    firstInLastOutArray.Push(i);
                }
                Console.WriteLine();

                Console.Write("    [FirstInLastOutArray] Traversal: ");
                firstInLastOutArray.Stepper(i => Console.Write(i));
                Console.WriteLine();

                Console.WriteLine("    [FirstInLastOutArray] Pop: " + firstInLastOutArray.Pop());
                Console.WriteLine("    [FirstInLastOutArray] Pop: " + firstInLastOutArray.Pop());
                Console.WriteLine("    [FirstInLastOutArray] Peek: " + firstInLastOutArray.Peek());
                Console.WriteLine("    [FirstInLastOutArray] Pop: " + firstInLastOutArray.Pop());
                Console.WriteLine("    [FirstInLastOutArray] Count: " + firstInLastOutArray.Count);

                firstInLastOutArray.Clear(); // Clears the firstInLastOut

                Console.WriteLine();

                IFirstInLastOut <int> firstInLastOutLinked = new FirstInLastOutLinked <int>();

                Console.Write("    [FirstInLastOutLinked] Pushing (0-" + (test - 1) + ")...");
                for (int i = 0; i < test; i++)
                {
                    firstInLastOutLinked.Push(i);
                }
                Console.WriteLine();

                Console.Write("    [FirstInLastOutLinked] Traversal: ");
                firstInLastOutLinked.Stepper(i => Console.Write(i));
                Console.WriteLine();

                Console.WriteLine("    [FirstInLastOutLinked] Pop: " + firstInLastOutLinked.Pop());
                Console.WriteLine("    [FirstInLastOutLinked] Pop: " + firstInLastOutLinked.Pop());
                Console.WriteLine("    [FirstInLastOutLinked] Peek: " + firstInLastOutLinked.Peek());
                Console.WriteLine("    [FirstInLastOutLinked] Pop: " + firstInLastOutLinked.Pop());
                Console.WriteLine("    [FirstInLastOutLinked] Count: " + firstInLastOutLinked.Count);

                firstInLastOutLinked.Clear(); // Clears the firstInLastOut

                Console.WriteLine();
            }
            #endregion

            #region FirstInFirstOut (aka Queue)
            {
                Console.WriteLine("  FirstInFirstOut---------------------------------");
                Console.WriteLine();
                Console.WriteLine("    An \"FirstInFirstOut\" is a Queue that implements");
                Console.WriteLine("    Towel.DataStructures.DataStructure. \"FirstInFirstOutArray\" is");
                Console.WriteLine("    the array implementation while \"FirstInFirstOutLinked\" is the");
                Console.WriteLine("    the linked-list implementation. A FirstInFirstOut/Stack is used");
                Console.WriteLine("    specifically when you need the algorithm provided by the Queue");
                Console.WriteLine("    and Dequeue functions.");
                Console.WriteLine();

                IFirstInFirstOut <int> firstInFirstOutArray = new FirstInFirstOutArray <int>();

                Console.Write("    [FirstInFirstOutArray] Enqueuing (0-" + (test - 1) + ")...");
                for (int i = 0; i < test; i++)
                {
                    firstInFirstOutArray.Enqueue(i);
                }
                Console.WriteLine();

                Console.Write("    [FirstInFirstOutArray] Traversal: ");
                firstInFirstOutArray.Stepper(i => Console.Write(i));
                Console.WriteLine();

                Console.WriteLine("    [FirstInFirstOutArray] Dequeue: " + firstInFirstOutArray.Dequeue());
                Console.WriteLine("    [FirstInFirstOutArray] Dequeue: " + firstInFirstOutArray.Dequeue());
                Console.WriteLine("    [FirstInFirstOutArray] Peek: " + firstInFirstOutArray.Peek());
                Console.WriteLine("    [FirstInFirstOutArray] Dequeue: " + firstInFirstOutArray.Dequeue());
                Console.WriteLine("    [FirstInFirstOutArray] Count: " + firstInFirstOutArray.Count);

                firstInFirstOutArray.Clear(); // Clears the firstInLastOut

                Console.WriteLine();

                IFirstInFirstOut <int> firstInFirstOutLinked = new FirstInFirstOutLinked <int>();

                Console.Write("    [FirstInFirstOutLinked] Enqueuing (0-" + (test - 1) + ")...");
                for (int i = 0; i < test; i++)
                {
                    firstInFirstOutLinked.Enqueue(i);
                }
                Console.WriteLine();

                Console.Write("    [FirstInFirstOutLinked] Traversal: ");
                firstInFirstOutLinked.Stepper(i => Console.Write(i));
                Console.WriteLine();

                Console.WriteLine("    [FirstInFirstOutLinked] Pop: " + firstInFirstOutLinked.Dequeue());
                Console.WriteLine("    [FirstInFirstOutLinked] Pop: " + firstInFirstOutLinked.Dequeue());
                Console.WriteLine("    [FirstInFirstOutLinked] Peek: " + firstInFirstOutLinked.Peek());
                Console.WriteLine("    [FirstInFirstOutLinked] Pop: " + firstInFirstOutLinked.Dequeue());
                Console.WriteLine("    [FirstInFirstOutLinked] Count: " + firstInFirstOutLinked.Count);

                firstInFirstOutLinked.Clear(); // Clears the firstInLastOut

                Console.WriteLine();
            }
            #endregion

            #region Heap
            {
                Console.WriteLine("  Heap---------------------------------");
                Console.WriteLine();
                Console.WriteLine("    An \"Heap\" is a binary tree that stores items based on priorities.");
                Console.WriteLine("    It implements Towel.DataStructures.DataStructure like the others.");
                Console.WriteLine("    It uses sifting algorithms to move nodes vertically through itself.");
                Console.WriteLine("    It is often the best data structure for standard priority queues.");
                Console.WriteLine("    \"HeapArray\" is an implementation where the tree has been flattened");
                Console.WriteLine("    into an array.");
                Console.WriteLine();

                Console.WriteLine("    Let's say the priority is how close a number is to \"5\".");
                Console.WriteLine("    So \"Dequeue\" will give us the next closest value to \"5\".");
                Comparison Priority(int a, int b)
                {
                    int        _a         = Compute.AbsoluteValue(a - 5);
                    int        _b         = Compute.AbsoluteValue(b - 5);
                    Comparison comparison = Compare.Wrap(_b.CompareTo(_a));

                    return(comparison);
                }

                Console.WriteLine();

                IHeap <int> heapArray = new HeapArray <int>(Priority);

                Console.Write("    [HeapArray] Enqueuing (0-" + (test - 1) + ")...");
                for (int i = 0; i < test; i++)
                {
                    heapArray.Enqueue(i);
                }
                Console.WriteLine();

                Console.WriteLine("    [HeapArray] Dequeue: " + heapArray.Dequeue());
                Console.WriteLine("    [HeapArray] Dequeue: " + heapArray.Dequeue());
                Console.WriteLine("    [HeapArray] Peek: " + heapArray.Peek());
                Console.WriteLine("    [HeapArray] Dequeue: " + heapArray.Dequeue());
                Console.WriteLine("    [HeapArray] Count: " + heapArray.Count);

                heapArray.Clear(); // Clears the heapArray

                Console.WriteLine();
            }
            #endregion

            #region Tree

            //Console.WriteLine("  Tree-----------------------------");

            //Tree<int> tree_Map = new TreeMap<int>(0, Compute.Equal, Hash.Default);

            //for (int i = 1; i < test; i++)
            //{
            //    tree_Map.Add(i, i / Compute.SquareRoot(i));
            //}
            //Console.Write("    Children of 0 (root): ");
            //tree_Map.Children(0, (int i) => { Console.Write(i + " "); });
            //Console.WriteLine();
            //Console.Write("    Children of " + ((int)System.Math.Sqrt(test) - 1) + " (root): ");
            //tree_Map.Children(((int)System.Math.Sqrt(test) - 1), (int i) => { Console.Write(i + " "); });
            //Console.WriteLine();
            //Console.Write("    Traversal: ");
            //tree_Map.Stepper((int i) => { Console.Write(i + " "); });
            //Console.WriteLine();

            //Console.WriteLine();

            #endregion

            #region AVL Tree
            {
                Console.WriteLine("  AvlTree------------------------------------------------");
                Console.WriteLine();
                Console.WriteLine("    An AVL Tree is a sorted binary tree.");
                Console.WriteLine("    It implements Towel.DataStructures.DataStructure like the others.");
                Console.WriteLine("    It allows for very fast 1D ranged queries/traversals.");
                Console.WriteLine("    It is very similar to an Red Black tree, but uses a different sorting algorithm.");
                Console.WriteLine();

                IAvlTree <int> avlTree = new AvlTreeLinked <int>();

                Console.Write("    Adding (0-" + (test - 1) + ")...");
                for (int i = 0; i < test; i++)
                {
                    avlTree.Add(i);
                }
                Console.WriteLine();

                Console.Write("    Traversal: ");
                avlTree.Stepper(i => Console.Write(i));
                Console.WriteLine();

                //// Note: Because the nodes in AVL Tree linked do not have
                //// a parent pointer, the IEnumerable "foreach" iteration
                //// is extremely slow and should be avoided. It requires
                //// a stack for it's iteration.
                //
                //Console.Write("    Traversal Foreach: ");
                //foreach (int i in avlTree)
                //{
                //    Console.Write(i);
                //}
                //Console.WriteLine();

                int minimum = random.Next(1, test / 2);
                int maximum = random.Next(1, test / 2) + test / 2;
                Console.Write("    Ranged Traversal [" + minimum + "-" + maximum + "]: ");
                avlTree.Stepper(i => Console.Write(i), minimum, maximum);
                Console.WriteLine();

                int removal = random.Next(0, test);
                Console.Write("    Remove(" + removal + "): ");
                avlTree.Remove(removal);
                avlTree.Stepper(i => Console.Write(i));
                Console.WriteLine();

                int contains = random.Next(0, test);
                Console.WriteLine("    Contains(" + contains + "): " + avlTree.Contains(contains));
                Console.WriteLine("    Current Least: " + avlTree.CurrentLeast);
                Console.WriteLine("    Current Greatest: " + avlTree.CurrentGreatest);
                Console.WriteLine("    Count: " + avlTree.Count);

                avlTree.Clear(); // Clears the AVL tree

                Console.WriteLine();
            }
            #endregion

            #region Red-Black Tree
            {
                Console.WriteLine("  Red-Black Tree------------------------------------------------");
                Console.WriteLine();
                Console.WriteLine("    An Red-Black Tree is a sorted binary tree.");
                Console.WriteLine("    It implements Towel.DataStructures.DataStructure like the others.");
                Console.WriteLine("    It allows for very fast 1D ranged queries/traversals.");
                Console.WriteLine("    It is very similar to an AVL tree, but uses a different sorting algorithm.");
                Console.WriteLine();

                IRedBlackTree <int> redBlackTree = new RedBlackTreeLinked <int>();

                Console.Write("    Adding (0-" + (test - 1) + ")...");
                for (int i = 0; i < test; i++)
                {
                    redBlackTree.Add(i);
                }
                Console.WriteLine();

                Console.Write("    Traversal: ");
                redBlackTree.Stepper(i => Console.Write(i));
                Console.WriteLine();

                int minimum = random.Next(1, test / 2);
                int maximum = random.Next(1, test / 2) + test / 2;
                Console.Write("    Ranged Traversal [" + minimum + "-" + maximum + "]: ");
                redBlackTree.Stepper(i => Console.Write(i), minimum, maximum);
                Console.WriteLine();

                int removal = random.Next(0, test);
                Console.Write("    Remove(" + removal + "): ");
                redBlackTree.Remove(removal);
                redBlackTree.Stepper(i => Console.Write(i));
                Console.WriteLine();

                int contains = random.Next(0, test);
                Console.WriteLine("    Contains(" + contains + "): " + redBlackTree.Contains(contains));
                Console.WriteLine("    Current Least: " + redBlackTree.CurrentLeast);
                Console.WriteLine("    Current Greatest: " + redBlackTree.CurrentGreatest);
                Console.WriteLine("    Count: " + redBlackTree.Count);

                redBlackTree.Clear(); // Clears the Red Black tree

                Console.WriteLine();
            }
            #endregion

            #region BTree
            {
                Console.WriteLine("  B Tree------------------------------------------------");
                Console.WriteLine();
                Console.WriteLine("    A B Tree is a sorted binary tree that allows multiple values to");
                Console.WriteLine("    be stored per node. This makes it sort of a hybrid between a");
                Console.WriteLine("    binary tree and an array. Because multiple values are stored ");
                Console.WriteLine("    per node, it means less nodes must be traversed to completely");
                Console.WriteLine("    traverse the values in the B tree.");
                Console.WriteLine();

                Console.WriteLine("    The generic B Tree in Towel is still in development.");

                Console.WriteLine();
            }
            #endregion

            #region Set
            {
                Console.WriteLine("  Set------------------------------------------------");
                Console.WriteLine();
                Console.WriteLine("    A Set is like an Addable/List, but it does not allow duplicates. Sets are");
                Console.WriteLine("    usually implemented using hash codes. Implementations with hash codes");
                Console.WriteLine("    usually have very fast \"Contains\" checks to see if a value has already");
                Console.WriteLine("    been added to the set.");
                Console.WriteLine();

                ISet <int> setHashLinked = new SetHashLinked <int>();

                Console.Write("    Adding (0-" + (test - 1) + ")...");
                for (int i = 0; i < test; i++)
                {
                    setHashLinked.Add(i);
                }
                Console.WriteLine();

                Console.Write("    Traversal: ");
                setHashLinked.Stepper(i => Console.Write(i));
                Console.WriteLine();

                int a = random.Next(0, test);
                setHashLinked.Remove(a);
                Console.Write("    Remove(" + a + "): ");
                setHashLinked.Stepper(i => Console.Write(i));
                Console.WriteLine();

                int b = random.Next(0, test);
                Console.WriteLine("    Contains(" + b + "): " + setHashLinked.Contains(b));
                Console.WriteLine("    Count: " + setHashLinked.Count);

                Console.WriteLine();
            }
            #endregion

            #region Map (aka Dictionary)
            {
                Console.WriteLine("  Map------------------------------------------------");
                Console.WriteLine();
                Console.WriteLine("    A Map (aka Dictionary) is similar to a Set, but it stores two values (a ");
                Console.WriteLine("    key and a value). Maps do not allow duplicate keys much like Sets don't");
                Console.WriteLine("    allow duplicate values. When provided with the key, the Map uses that key");
                Console.WriteLine("    to look up the value that it is associated with. Thus, it allows you to ");
                Console.WriteLine("    \"map\" one object to another. As with Sets, Maps are usually implemented");
                Console.WriteLine("    using hash codes.");
                Console.WriteLine();

                // Note: the first generic is the value, the second is the key
                IMap <string, int> mapHashLinked = new MapHashLinked <string, int>();

                Console.WriteLine("    Let's map each int to its word representation (ex 1 -> One).");

                Console.Write("    Adding (0-" + (test - 1) + ")...");
                for (int i = 0; i < test; i++)
                {
                    mapHashLinked.Add(i, ((decimal)i).ToEnglishWords());
                }
                Console.WriteLine();

                Console.WriteLine("    Traversal: ");
                mapHashLinked.Keys(i => Console.WriteLine("      " + i + "->" + mapHashLinked[i]));
                Console.WriteLine();

                int a = random.Next(0, test);
                mapHashLinked.Remove(a);
                Console.Write("    Remove(" + a + "): ");
                mapHashLinked.Keys(i => Console.Write(i));
                Console.WriteLine();

                int b = random.Next(0, test);
                Console.WriteLine("    Contains(" + b + "): " + mapHashLinked.Contains(b));
                Console.WriteLine("    Count: " + mapHashLinked.Count);

                Console.WriteLine();
            }
            #endregion

            #region OmnitreePoints
            {
                Console.WriteLine("  OmnitreePoints--------------------------------------");
                Console.WriteLine();
                Console.WriteLine("    An Omnitree is an ND SPT that allows for");
                Console.WriteLine("    multidimensional sorting. Any time you need to look");
                Console.WriteLine("    items up based on multiple fields/properties, then");
                Console.WriteLine("    you might want to use an Omnitree. If you need to");
                Console.WriteLine("    perform ranged queries on multiple dimensions, then");
                Console.WriteLine("    the Omnitree is the data structure for you.");
                Console.WriteLine();
                Console.WriteLine("    The \"OmnitreePoints\" stores individual points (vectors),");
                Console.WriteLine("    and the \"OmnitreeBounds\" stores bounded objects (spaces).");
                Console.WriteLine();

                IOmnitreePoints <int, double, string, decimal> omnitree =
                    new OmnitreePointsLinked <int, double, string, decimal>(
                        // This is a location delegate. (how to locate the item along each dimension)
                        (int index, out double a, out string b, out decimal c) =>
                {
                    a = index;
                    b = index.ToString();
                    c = index;
                });

                Console.Write("    Adding (0-" + (test - 1) + ")...");
                for (int i = 0; i < test; i++)
                {
                    omnitree.Add(i);
                }
                Console.WriteLine();

                Console.Write("    Traversal: ");
                omnitree.Stepper(i => Console.Write(i));
                Console.WriteLine();

                int    minimumXZ = random.Next(1, test / 2);
                int    maximumXZ = random.Next(1, test / 2) + test / 2;
                string minimumY  = minimumXZ.ToString();
                string maximumY  = maximumXZ.ToString();
                Console.Write("    Spacial Traversal [" +
                              "(" + minimumXZ + ", \"" + minimumY + "\", " + minimumXZ + ")->" +
                              "(" + maximumXZ + ", \"" + maximumY + "\", " + maximumXZ + ")]: ");
                omnitree.Stepper(i => Console.Write(i),
                                 minimumXZ, maximumXZ,
                                 minimumY, maximumY,
                                 minimumXZ, maximumXZ);
                Console.WriteLine();

                // Note: this "look up" is just a very narrow spacial query that (since we know the data)
                // wil only give us one result.
                int    lookUp         = random.Next(0, test);
                string lookUpToString = lookUp.ToString();
                Console.Write("    Look Up (" + lookUp + ", \"" + lookUpToString + "\", " + lookUp + "): ");
                omnitree.Stepper(i => Console.Write(i),
                                 lookUp, lookUp,
                                 lookUp.ToString(), lookUp.ToString(),
                                 lookUp, lookUp);
                Console.WriteLine();

                // Ignoring dimensions on traversals example.
                // If you want to ignore a column on a traversal, you can do so like this:
                omnitree.Stepper(i => { /*Do Nothing*/ },
                                 lookUp, lookUp,
                                 Omnitree.Bound <string> .None, Omnitree.Bound <string> .None,
                                 Omnitree.Bound <decimal> .None, Omnitree.Bound <decimal> .None);

                Console.Write("    Counting Items In a Space [" +
                              "(" + minimumXZ + ", \"" + minimumY + "\", " + minimumXZ + ")->" +
                              "(" + maximumXZ + ", \"" + maximumY + "\", " + maximumXZ + ")]: ");
                omnitree.CountSubSpace(
                    minimumXZ, maximumXZ,
                    minimumY, maximumY,
                    minimumXZ, maximumXZ);
                Console.WriteLine();

                int    removalMinimum  = random.Next(1, test / 2);
                int    removalMaximum  = random.Next(1, test / 2) + test / 2;
                string removalMinimumY = removalMinimum.ToString();
                string removalMaximumY = removalMaximum.ToString();
                Console.Write("    Remove (" + removalMinimum + "-" + removalMaximum + "): ");
                omnitree.Remove(
                    removalMinimum, removalMaximum,
                    removalMinimumY, removalMaximumY,
                    removalMinimum, removalMaximum);
                omnitree.Stepper(i => Console.Write(i));
                Console.WriteLine();

                Console.WriteLine("    Dimensions: " + omnitree.Dimensions);
                Console.WriteLine("    Count: " + omnitree.Count);

                omnitree.Clear(); // Clears the Omnitree

                Console.WriteLine();
            }
            #endregion

            #region OmnitreeBounds
            {
                Console.WriteLine("  OmnitreeBounds--------------------------------------");
                Console.WriteLine();
                Console.WriteLine("    An Omnitree is an ND SPT that allows for");
                Console.WriteLine("    multidimensional sorting. Any time you need to look");
                Console.WriteLine("    items up based on multiple fields/properties, then");
                Console.WriteLine("    you might want to use an Omnitree. If you need to");
                Console.WriteLine("    perform ranged queries on multiple dimensions, then");
                Console.WriteLine("    the Omnitree is the data structure for you.");
                Console.WriteLine();
                Console.WriteLine("    The \"OmnitreePoints\" stores individual points (vectors),");
                Console.WriteLine("    and the \"OmnitreeBounds\" stores bounded objects (spaces).");
                Console.WriteLine();

                IOmnitreeBounds <int, double, string, decimal> omnitree =
                    new OmnitreeBoundsLinked <int, double, string, decimal>(
                        // This is a location delegate. (how to locate the item along each dimension)
                        (int index,
                         out double min1, out double max1,
                         out string min2, out string max2,
                         out decimal min3, out decimal max3) =>
                {
                    string indexToString = index.ToString();

                    min1 = index; max1 = index;
                    min2 = indexToString; max2 = indexToString;
                    min3 = index; max3 = index;
                });

                Console.Write("    Adding (0-" + (test - 1) + ")...");
                for (int i = 0; i < test; i++)
                {
                    omnitree.Add(i);
                }
                Console.WriteLine();

                Console.Write("    Traversal: ");
                omnitree.Stepper(i => Console.Write(i));
                Console.WriteLine();

                int    minimumXZ = random.Next(1, test / 2);
                int    maximumXZ = random.Next(1, test / 2) + test / 2;
                string minimumY  = minimumXZ.ToString();
                string maximumY  = maximumXZ.ToString();
                Console.Write("    Spacial Traversal [" +
                              "(" + minimumXZ + ", \"" + minimumY + "\", " + minimumXZ + ")->" +
                              "(" + maximumXZ + ", \"" + maximumY + "\", " + maximumXZ + ")]: ");
                omnitree.StepperOverlapped(i => Console.Write(i),
                                           minimumXZ, maximumXZ,
                                           minimumY, maximumY,
                                           minimumXZ, maximumXZ);
                Console.WriteLine();

                // Note: this "look up" is just a very narrow spacial query that (since we know the data)
                // wil only give us one result.
                int    lookUpXZ = random.Next(0, test);
                string lookUpY  = lookUpXZ.ToString();
                Console.Write("    Look Up (" + lookUpXZ + ", \"" + lookUpY + "\", " + lookUpXZ + "): ");
                omnitree.StepperOverlapped(i => Console.Write(i),
                                           lookUpXZ, lookUpXZ,
                                           lookUpY, lookUpY,
                                           lookUpXZ, lookUpXZ);
                Console.WriteLine();

                // Ignoring dimensions on traversals example.
                // If you want to ignore a dimension on a traversal, you can do so like this:
                omnitree.StepperOverlapped(i => { /*Do Nothing*/ },
                                           lookUpXZ, lookUpXZ,
                                           // The "None" means there is no bound, so all values are valid
                                           Omnitree.Bound <string> .None, Omnitree.Bound <string> .None,
                                           Omnitree.Bound <decimal> .None, Omnitree.Bound <decimal> .None);

                Console.Write("    Counting Items In a Space [" +
                              "(" + minimumXZ + ", \"" + minimumY + "\", " + minimumXZ + ")->" +
                              "(" + maximumXZ + ", \"" + maximumY + "\", " + maximumXZ + ")]: " +
                              omnitree.CountSubSpaceOverlapped(
                                  minimumXZ, maximumXZ,
                                  minimumY, maximumY,
                                  minimumXZ, maximumXZ));
                Console.WriteLine();

                int    removalMinimumXZ = random.Next(1, test / 2);
                int    removalMaximumXZ = random.Next(1, test / 2) + test / 2;
                string removalMinimumY  = removalMinimumXZ.ToString();
                string removalMaximumY  = removalMaximumXZ.ToString();
                Console.Write("    Remove (" + removalMinimumXZ + "-" + removalMaximumXZ + "): ");
                omnitree.RemoveOverlapped(
                    removalMinimumXZ, removalMaximumXZ,
                    removalMinimumY, removalMaximumY,
                    removalMinimumXZ, removalMaximumXZ);
                omnitree.Stepper(i => Console.Write(i));
                Console.WriteLine();

                Console.WriteLine("    Dimensions: " + omnitree.Dimensions);
                Console.WriteLine("    Count: " + omnitree.Count);

                omnitree.Clear(); // Clears the Omnitree

                Console.WriteLine();
            }
            #endregion

            #region KD Tree
            {
                Console.WriteLine("  KD Tree------------------------------------------------");
                Console.WriteLine();
                Console.WriteLine("    A KD Tree binary tree that stores points sorted along along an");
                Console.WriteLine("    arbitrary number of dimensions. So it performs multidimensional");
                Console.WriteLine("    sorting similar to the Omnitree (Quadtree/Octree) in Towel, but");
                Console.WriteLine("    it uses a completely different algorithm and format.");
                Console.WriteLine();

                Console.WriteLine("    The generic KD Tree in Towel is still in development.");

                Console.WriteLine();
            }
            #endregion

            #region Graph
            {
                Console.WriteLine("  Graph------------------------------------------------");
                Console.WriteLine();
                Console.WriteLine("    A Graph is a data structure of nodes and edges. Nodes are values");
                Console.WriteLine("    and edges are connections between those values. Graphs are often");
                Console.WriteLine("    used to model real world data such as maps, and are often used in");
                Console.WriteLine("    path finding algoritms. See the \"Algorithms\" example for path");
                Console.WriteLine("    finding examples. This is just an example of how to make a graph.");
                Console.WriteLine("    A \"GraphSetOmnitree\" is an implementation where nodes are stored.");
                Console.WriteLine("    in a Set and edges are stored in an Omnitree (aka Quadtree).");
                Console.WriteLine();

                IGraph <int> graphSetOmnitree = new GraphSetOmnitree <int>();

                Console.WriteLine("    Adding Nodes (0-" + (test - 1) + ")...");
                for (int i = 0; i < test; i++)
                {
                    graphSetOmnitree.Add(i);
                }

                int edgesPerNode = 3;
                Console.WriteLine("    Adding Random Edges (0-3 per node)...");
                for (int i = 0; i < test; i++)
                {
                    // lets use a heap to randomize the edges using random priorities
                    IHeap <(int, int)> heap = new HeapArray <(int, int)>((x, y) => Compare.Wrap(x.Item2.CompareTo(y.Item2)));
                    for (int j = 0; j < test; j++)
                    {
                        if (j != i)
                        {
                            heap.Enqueue((j, random.Next()));
                        }
                    }

                    // dequeue some random edges from the heap and add them to the graph
                    int randomEdgeCount = random.Next(edgesPerNode + 1);
                    for (int j = 0; j < randomEdgeCount; j++)
                    {
                        graphSetOmnitree.Add(i, heap.Dequeue().Item1);
                    }
                }

                Console.Write("    Nodes (Traversal): ");
                graphSetOmnitree.Stepper(i => Console.Write(i));
                Console.WriteLine();

                Console.WriteLine("    Edges (Traversal): ");
                graphSetOmnitree.Stepper((from, to) => Console.WriteLine("      " + from + "->" + to));
                Console.WriteLine();

                int a = random.Next(0, test);
                Console.Write("    Neighbors (" + a + "):");
                graphSetOmnitree.Neighbors(a, i => Console.Write(" " + i));
                Console.WriteLine();

                int b = random.Next(0, test / 2);
                int c = random.Next(test / 2, test);
                Console.WriteLine("    Are Adjacent (" + b + ", " + c + "): " + graphSetOmnitree.Adjacent(b, c));
                Console.WriteLine("    Node Count: " + graphSetOmnitree.NodeCount);
                Console.WriteLine("    Edge Count: " + graphSetOmnitree.EdgeCount);

                graphSetOmnitree.Clear(); // Clears the graph

                Console.WriteLine();
            }
            #endregion

            #region Trie
            {
                Console.WriteLine("  Trie------------------------------------------------");
                Console.WriteLine();
                Console.WriteLine("    A Trie is a tree where portions of the data are stored in each node");
                Console.WriteLine("    such that when you traverse the tree to a leaf, you have read the contents");
                Console.WriteLine("    of that leaf along the way. Because of this, a Trie allows for its values");
                Console.WriteLine("    to share data, which is a form of compression. So a Trie may be used to save");
                Console.WriteLine("    memory. A trie may also be a very useful tool in pattern matching, because it");
                Console.WriteLine("    it allows for culling based are portions of the data.");
                Console.WriteLine();

                Console.WriteLine("    The generic Trie in Towel is still in development.");

                Console.WriteLine();
            }
            #endregion

            Console.WriteLine("============================================");
            Console.WriteLine("Examples Complete...");
            Console.ReadLine();
        }
示例#4
0
        static void Main(string[] args)
        {
            Random random = new Random();
            int    test   = 10;

            Console.WriteLine("You are runnning the Data Structures example.");
            Console.WriteLine("======================================================");
            Console.WriteLine();

            #region Link

            Console.WriteLine("  Testing Link-------------------------------");
            Console.WriteLine("   Size: 6");
            Link link = new Link <int, int, int, int, int, int>(0, 1, 2, 3, 4, 5);
            Console.Write("    Traversal: ");
            link.Stepper((dynamic current) => { Console.Write(current); });
            Console.WriteLine();
            // Saving to a file
            //string linklink_file = "link." + ToExtension(link.GetType());
            //Console.WriteLine("    File: \"" + linklink_file + "\"");
            //Console.WriteLine("    Serialized: " + Serialize(linklink_file, link));
            //Link<int, int, int, int, int, int> deserialized_linklink;
            //Console.WriteLine("    Deserialized: " + Deserialize(linklink_file, out deserialized_linklink));
            Console.WriteLine();

            #endregion

            #region Array

            Console.WriteLine("  Testing Array_Array<int>-------------------");
            Indexed <int> array = new IndexedArray <int>(test);
            for (int i = 0; i < test; i++)
            {
                array[i] = i;
            }
            Console.Write("    Traversal: ");
            array.Stepper((int current) => { Console.Write(current); });
            Console.WriteLine();
            // Saving to a file
            //string arrayarray_file = "array." + ToExtension(array.GetType());
            //Console.WriteLine("    File: \"" + arrayarray_file + "\"");
            //Console.WriteLine("    Serialized: " + Serialize(arrayarray_file, array));
            //ArrayArray<int> deserialized_arrayarray;
            //Console.WriteLine("    Deserialized: " + Deserialize(arrayarray_file, out deserialized_arrayarray));
            Console.WriteLine();

            #endregion

            #region List

            Console.WriteLine("  Testing List_Array<int>--------------------");
            Addable <int> list_array = new AddableArray <int>(test);
            for (int i = 0; i < test; i++)
            {
                list_array.Add(i);
            }
            Console.Write("    Traversal: ");
            list_array.Stepper((int current) => { Console.Write(current); });
            Console.WriteLine();
            //string list_array_serialization = (list_array as ListArray<int>).Serialize(x => x.ToString());
            //using (StreamWriter writer = new StreamWriter("ListArray.ListArray"))
            //{
            //    writer.WriteLine(list_array_serialization);
            //}
            //using (StreamReader reader = new StreamReader("ListArray.ListArray"))
            //{
            //    list_array = ListArray<int>.Deserialize(reader.ReadToEnd(), x => Int16.Parse(x.Trim()));
            //}
            //Console.Write("    Serialization/Deserialization is possible.");
            list_array.Add(11);
            list_array.Remove(7);
            Console.WriteLine();
            Console.WriteLine();


            //ListArray<ListArray<int>> list_array2 = new ListArray<ListArray<int>>(test);
            //for (int i = 0; i < test; i++)
            //{
            //    ListArray<int> nested_list = new ListArray<int>();
            //    for (int j = 0; j < test; j++)
            //    {
            //        nested_list.Add(j);
            //    }
            //    list_array2.Add(nested_list);
            //}
            //string list_array2_serialization = list_array2.Serialize(x => x.Serialize(y => y.ToString()));
            //using (StreamWriter writer = new StreamWriter("ListArray2.ListArray"))
            //{
            //    writer.WriteLine(list_array2_serialization);
            //}
            //using (StreamReader reader = new StreamReader("ListArray2.ListArray"))
            //{
            //    list_array2 = ListArray<ListArray<int>>.Deserialize(reader.ReadToEnd(), x => ListArray<int>.Deserialize(x, y => Int16.Parse(y.Trim())));
            //}

            Console.WriteLine("  Testing List_Linked<int>-------------------");
            Addable <int> list_linked = new AddableLinked <int>();
            for (int i = 0; i < test; i++)
            {
                list_linked.Add(i);
            }
            Console.Write("    Traversal: ");
            list_linked.Stepper((int current) => { Console.Write(current); });
            Console.WriteLine();



            // Saving to a file
            //string listlinked_file = "list_linked." + ToExtension(list_linked.GetType());
            //Console.WriteLine("    File: \"" + listlinked_file + "\"");
            //Console.WriteLine("    Serialized: " + Serialize(listlinked_file, list_linked));
            //ListLinked<int> deserialized_listlinked;
            //Console.WriteLine("    Deserialized: " + Deserialize(listlinked_file, out deserialized_listlinked));
            Console.WriteLine();

            #endregion

            #region Stack

            Console.WriteLine("  Testing Stack_Linked<int>------------------");
            FirstInLastOut <int> stack_linked = new FirstInLastOutLinked <int>();
            for (int i = 0; i < test; i++)
            {
                stack_linked.Push(i);
            }
            Console.Write("    Traversal: ");
            stack_linked.Stepper((int current) => { Console.Write(current); });
            Console.WriteLine();
            // Saving to a file
            //string stacklinked_file = "stack_linked." + ToExtension(stack_linked.GetType());
            //Console.WriteLine("    File: \"" + stacklinked_file + "\"");
            //Console.WriteLine("    Serialized: " + Serialize(stacklinked_file, stack_linked));
            //StackLinked<int> deserialized_stacklinked;
            //Console.WriteLine("    Deserialized: " + Deserialize(stacklinked_file, out deserialized_stacklinked));
            Console.WriteLine();

            #endregion

            #region Queue

            Console.WriteLine("  Testing Queue_Linked<int>------------------");
            FirstInFirstOut <int> queue_linked = new FirstInFirstOutLinked <int>();
            for (int i = 0; i < test; i++)
            {
                queue_linked.Enqueue(i);
            }
            Console.Write("    Traversal: ");
            queue_linked.Stepper((int current) => { Console.Write(current); });
            Console.WriteLine();
            // Saving to a file
            //string queuelinked_file = "queue_linked." + ToExtension(queue_linked.GetType());
            //Console.WriteLine("    File: \"" + queuelinked_file + "\"");
            //Console.WriteLine("    Serialized: " + Serialize(queuelinked_file, queue_linked));
            //QueueLinked<int> deserialized_queuelinked;
            //Console.WriteLine("    Deserialized: " + Deserialize(queuelinked_file, out deserialized_queuelinked));
            Console.WriteLine();

            #endregion

            #region Heap

            Console.WriteLine("  Testing Heap_Array<int>--------------------");
            Heap <int> heap_array = new HeapArray <int>(Compute.Compare);
            for (int i = 0; i < test; i++)
            {
                heap_array.Enqueue(i);
            }
            Console.Write("    Delegate: ");
            heap_array.Stepper((int current) => { Console.Write(current); });
            Console.WriteLine();
            // Saving to a file
            //string heaplinked_file = "heap_array." + ToExtension(heap_array.GetType());
            //Console.WriteLine("    File: \"" + heaplinked_file + "\"");
            //Console.WriteLine("    Serialized: " + Serialize(heaplinked_file, heap_array));
            //HeapArray<int> deserialized_heaplinked;
            //Console.WriteLine("    Deserialized: " + Deserialize(heaplinked_file, out deserialized_heaplinked));
            Console.WriteLine();

            #endregion

            #region Tree

            Console.WriteLine("  Testing Tree_Map<int>----------------------");
            Tree <int> tree_Map = new TreeMap <int>(0, Compute.Equal, Hash.Default);
            for (int i = 1; i < test; i++)
            {
                tree_Map.Add(i, i / (int)System.Math.Sqrt(test));
            }
            Console.Write("    Children of 0 (root): ");
            tree_Map.Children(0, (int i) => { Console.Write(i + " "); });
            Console.WriteLine();
            Console.Write("    Children of " + ((int)System.Math.Sqrt(test) - 1) + " (root): ");
            tree_Map.Children(((int)System.Math.Sqrt(test) - 1), (int i) => { Console.Write(i + " "); });
            Console.WriteLine();
            Console.Write("    Traversal: ");
            tree_Map.Stepper((int i) => { Console.Write(i + " "); });
            Console.WriteLine();
            // Saving to a file
            //string treelinked_file = "tree_Map." + ToExtension(tree_Map.GetType());
            //Console.WriteLine("    File: \"" + treelinked_file + "\"");
            //Console.WriteLine("    Serialized: " + Serialize(treelinked_file, tree_Map));
            //TreeMap<int> deserialized_treelinked;
            //Console.WriteLine("    Deserialized: " + Deserialize(treelinked_file, out deserialized_treelinked));
            Console.WriteLine();

            #endregion

            #region AVL Tree

            //Console.WriteLine("  Testing AvlTree_Linked<int>----------------");
            //// Construction
            //AvlTree<int> avlTree_linked = new AvlTree_Linked<int>(Logic.compare);
            //// Adding Items
            //Console.Write("    Adding (0-" + test + ")...");
            //for (int i = 0; i < test; i++)
            //	avlTree_linked.Add(i);
            //Console.WriteLine();
            //// Iteration
            //Console.Write("    Traversal: ");
            //avlTree_linked.Stepper((int current) => { Console.Write(current); });
            //Console.WriteLine();
            //// Removal
            //int avl_tree_linked_removal = random.Next(0, test);
            //avlTree_linked.Remove(avl_tree_linked_removal);
            //Console.Write("    Remove(" + avl_tree_linked_removal + "): ");
            //avlTree_linked.Stepper((int current) => { Console.Write(current); });
            //Console.WriteLine();
            //// Look Up Items
            //int avl_tree_linked_lookup = random.Next(0, test);
            //while (avl_tree_linked_lookup == avl_tree_linked_removal)
            //	avl_tree_linked_lookup = random.Next(0, test);
            //Console.WriteLine("    Look Up (" + avl_tree_linked_lookup + "): " + avlTree_linked.TryGet(avl_tree_linked_lookup, Logic.compare, out temp));
            //Console.WriteLine("    Look Up (" + avl_tree_linked_removal + "): " + avlTree_linked.TryGet(avl_tree_linked_removal, Logic.compare, out temp));
            //avlTree_linked.Get(avl_tree_linked_lookup, Logic.compare);
            //// Current Min-Max Values
            //Console.WriteLine("    Least: " + avlTree_linked.CurrentLeast + " Greatest: " + avlTree_linked.CurrentGreatest);
            //// Saving to a file
            //string avltreelinked_file = "avlTree_linked." + ToExtension(avlTree_linked.GetType());
            //Console.WriteLine("    File: \"" + avltreelinked_file + "\"");
            //Console.WriteLine("    Serialized: " + Serialize(avltreelinked_file, avlTree_linked));
            //AvlTree_Linked<int> deserialized_avltreelinked;
            //Console.WriteLine("    Deserialized: " + Deserialize(avltreelinked_file, out deserialized_avltreelinked));
            //Console.WriteLine();

            #endregion

            #region Red-Black Tree

            Console.WriteLine("  Testing RedBlack_Linked<int>---------------");
            RedBlackTree <int> redBlackTree_linked = new RedBlackTreeLinked <int>(Compute.Compare);
            for (int i = 0; i < test; i++)
            {
                redBlackTree_linked.Add(i);
            }
            Console.Write("    Traversal: ");
            redBlackTree_linked.Stepper((int current) => { Console.Write(current); });
            Console.WriteLine();
            // Saving to a file
            //string redblacktreelinked_file = "redBlackTree_linked." + ToExtension(redBlackTree_linked.GetType());
            //Console.WriteLine("    File: \"" + redblacktreelinked_file + "\"");
            //Console.WriteLine("    Serialized: " + Serialize(redblacktreelinked_file, redBlackTree_linked));
            //RedBlackTreeLinked<int> deserialized_redblacktreelinked;
            //Console.WriteLine("    Deserialized: " + Deserialize(redblacktreelinked_file, out deserialized_redblacktreelinked));
            Console.WriteLine();

            #endregion

            #region BTree

            //Console.WriteLine("  Testing BTree_LinkedArray<int>-------------");
            //BTree<int> btree_linked = new BTree_LinkedArray<int>(Logic.compare, 3);
            //for (int i = 0; i < test; i++)
            //	btree_linked.Add(i);
            //Console.Write("    Delegate: ");
            //btree_linked.Stepper((int current) => { Console.Write(current); });
            //Console.WriteLine();
            //Console.Write("    IEnumerator: ");
            //foreach (int current in btree_linked)
            //	Console.Write(current);
            //Console.WriteLine();
            //Console.WriteLine("  Press Enter to continue...");
            //string maplinked_file = "maplinked.quad";
            //Console.WriteLine("    File: \"" + maplinked_file + "\"");
            //Console.WriteLine("    Serialized: " + Serialize(maplinked_file, hashTable_linked));
            //Omnitree_LinkedLinkedLists<int, double> deserialized_maplinked;
            //Console.WriteLine("    Deserialized: " + Deserialize(maplinked_file, out deserialized_maplinked));
            //Console.ReadLine();
            //Console.WriteLine();

            #endregion

            #region Set

            Console.WriteLine("  Testing Set_Hash<int>----------------------");
            Set <int> set_linked = new SetHashList <int>(Compute.Equal, Hash.Default);
            for (int i = 0; i < test; i++)
            {
                set_linked.Add(i);
            }
            // Traversal
            Console.Write("    Traversal: ");
            set_linked.Stepper((int current) => { Console.Write(current); });
            Console.WriteLine();
            Console.Write("    Table Size: " + (set_linked as SetHashList <int>).TableSize);
            Console.WriteLine();
            Console.WriteLine();

            #endregion

            #region Map

            Console.WriteLine("  Testing MapHashList<int, int>--------------");
            Map <int, int> map_sethash = new MapHashLinked <int, int>(Compute.Equal, Hash.Default);
            for (int i = 0; i < test; i++)
            {
                map_sethash.Add(i, i);
            }
            Console.Write("    Look Ups: ");
            for (int i = 0; i < test; i++)
            {
                Console.Write(map_sethash[i]);
            }
            Console.WriteLine();
            // Traversal
            Console.Write("    Traversal: ");
            map_sethash.Stepper((int current) => { Console.Write(current); });
            Console.WriteLine();
            Console.Write("    Table Size: " + (map_sethash as MapHashLinked <int, int>).TableSize);
            Console.WriteLine();
            Console.WriteLine();

            #endregion

            #region OmnitreePoints
            {
                Console.WriteLine("  Testing OmnitreeLinkedLinked<int, double>-------");
                // Construction
                OmnitreePoints <int, double, double, double> omnitree_linked = new OmnitreePointsLinked <int, double, double, double>(
                    (int index, out double a, out double b, out double c) => { a = index; b = index; c = index; }); // axis average function
                                                                                                                    // Properties
                Console.WriteLine("      Dimensions: " + omnitree_linked.Dimensions);
                Console.WriteLine("      Count: " + omnitree_linked.Count);
                // Addition
                Console.Write("    Adding 0-" + test + ": ");
                for (int i = 0; i < test; i++)
                {
                    omnitree_linked.Add(i);
                }
                omnitree_linked.Stepper((int current) => { Console.Write(current); });
                Console.WriteLine();
                Console.WriteLine("      Count: " + omnitree_linked.Count);
                // Traversal
                Console.Write("    Traversal [ALL]: ");
                omnitree_linked.Stepper((int current) => { Console.Write(current); });
                Console.WriteLine();
                // Look Up 1
                Console.Write("    Traversal [(" + (test / 2) + ", " + (test / 2) + ", " + (test / 2) + ")->(" + test + ", " + test + ", " + test + ")]: ");
                omnitree_linked.Stepper((int current) => { Console.Write(current); },
                                        test / 2, test,
                                        test / 2, test,
                                        test / 2, test);
                Console.WriteLine();
                // Look Up 2
                Console.Write("    Look Up [" + (test / 3) + ", " + (test / 3) + ", " + (test / 3) + "]: ");
                omnitree_linked[(test / 3), (test / 3), (test / 3)]((int current) => { Console.Write(current); });
                Console.WriteLine();
                // Removal
                Console.Write("    Remove 0-" + test / 3 + ": ");
                omnitree_linked.Remove(
                    0, test / 3,
                    0, test / 3,
                    0, test / 3);
                omnitree_linked.Stepper((int current) => { Console.Write(current); });
                Console.WriteLine();
                Console.WriteLine("      Count: " + omnitree_linked.Count);
                // Clear
                Console.Write("    Clear: ");
                omnitree_linked.Clear();
                omnitree_linked.Stepper((int current) => { Console.Write(current); });
                Console.WriteLine();
                Console.WriteLine("      Count: " + omnitree_linked.Count);
                // Saving to a file
                //string omnitreelinked_file = "omnitree_linkedlinkedlists." + ToExtension(omnitree_linked.GetType());
                //Console.WriteLine("    File: \"" + omnitreelinked_file + "\"");
                //Console.WriteLine("    Serialized: " + Serialize(omnitreelinked_file, omnitree_linked));
                //OmnitreeLinkedLinkedLists<int, double> deserialized_omnitreeLinked;
                //Console.WriteLine("    Deserialized: " + Deserialize(omnitreelinked_file, out deserialized_omnitreeLinked));
                Console.WriteLine();

                //Console.WriteLine("  Testing Omnitree_LinkedArrayLists<int, double>--------");
                //// Construction
                //Omnitree<int, double> omnitree_array = new OmnitreeLinkedArray<int, double>(
                //	new double[] { -test - 1, -test - 1, -test - 1 }, // minimum dimensions of the omnitree
                //	new double[] { test + 1, test + 1, test + 1 }, // maximum dimensions of the omnitree
                //	(int index) => { return Accessor.Get(new double[] { index, index, index }); }, // "N-D" location function
                //	Compute<double>.Compare, // comparison function
                //	(double a, double b) => { return (a + b) / 2; }); // average function
                //// Properties
                //Console.WriteLine("      Origin: [" + omnitree_array.Origin(0) + ", " + omnitree_array.Origin(1) + ", " + omnitree_array.Origin(2) + "]");
                //Console.WriteLine("      Minimum: [" + omnitree_array.Min(0) + ", " + omnitree_array.Min(1) + ", " + omnitree_array.Min(2) + "]");
                //Console.WriteLine("      Maximum: [" + omnitree_array.Max(0) + ", " + omnitree_array.Max(1) + ", " + omnitree_array.Max(2) + "]");
                //Console.WriteLine("      Dimensions: " + omnitree_array.Dimensions);
                //Console.WriteLine("      Count: " + omnitree_array.Count);
                //// Addition
                //Console.Write("    Adding 0-" + test + ": ");
                //for (int i = 0; i < test; i++)
                //	omnitree_array.Add(i);
                //omnitree_array.Stepper((int current) => { Console.Write(current); });
                //Console.WriteLine();
                //Console.WriteLine("      Count: " + omnitree_array.Count);
                //// Traversal
                //Console.Write("    Traversal [ALL]: ");
                //			omnitree_array.Stepper((int current) => { Console.Write(current); });
                //Console.WriteLine();
                //// Look Up
                //Console.Write("    Traversal [" + (test / 2) + "-" + test + "]: ");
                //			omnitree_array.Stepper((int current) => { Console.Write(current); },
                //	new double[] { test / 2, test / 2, test / 2 },
                //	new double[] { test, test, test });
                //Console.WriteLine();
                //// Removal
                //Console.Write("    Remove 0-" + test / 3 + ": ");
                //omnitree_array.Remove(
                //	new double[] { 0, 0, 0 },
                //	new double[] { test / 3, test / 3, test / 3 });
                //omnitree_array.Stepper((int current) => { Console.Write(current); });
                //Console.WriteLine();
                //Console.WriteLine("      Count: " + omnitree_array.Count);
                //// Clear
                //Console.Write("    Clear: ");
                //omnitree_array.Clear();
                //			omnitree_array.Stepper((int current) => { Console.Write(current); });
                //Console.WriteLine();
                //Console.WriteLine("      Count: " + omnitree_array.Count);
                //// Saving to a file
                ////string omnitreearray_file = "omnitree_linkedarraylists." + ToExtension(omnitree_array.GetType());
                ////Console.WriteLine("    File: \"" + omnitreearray_file + "\"");
                ////Console.WriteLine("    Serialized: " + Serialize(omnitreearray_file, omnitree_array));
                ////OmnitreeLinkedLinkedLists<int, double> deserialized_omnitreearray;
                ////Console.WriteLine("    Deserialized: " + Deserialize(omnitreearray_file, out deserialized_omnitreearray));
                //Console.WriteLine();
            }
            #endregion

            #region OmnitreeBounds
            {
                Console.WriteLine("  Testing OmnitreeBoundsLinked<int, double>-------");
                // Construction
                OmnitreeBounds <int, double, double, double> omnitreeBounds_linked = new OmnitreeBoundsLinked <int, double, double, double>(
                    (int index,
                     out double min1, out double max1,
                     out double min2, out double max2,
                     out double min3, out double max3) =>
                {
                    min1 = index; max1 = index;
                    min2 = index; max2 = index;
                    min3 = index; max3 = index;
                });

                // Properties
                Console.WriteLine("      Dimensions: " + omnitreeBounds_linked.Dimensions);
                Console.WriteLine("      Count: " + omnitreeBounds_linked.Count);

                // Addition
                Console.Write("    Adding 0-" + test + ": ");
                for (int i = 0; i < test; i++)
                {
                    omnitreeBounds_linked.Add(i);
                }
                omnitreeBounds_linked.Stepper((int current) => { Console.Write(current); });
                Console.WriteLine();
                Console.WriteLine("      Count: " + omnitreeBounds_linked.Count);
                // Traversal
                Console.Write("    Traversal [ALL]: ");
                omnitreeBounds_linked.Stepper((int current) => { Console.Write(current); });
                Console.WriteLine();
                // Look Up 1
                //Console.Write("    Traversal [(" + (test / 2) + ", " + (test / 2) + ", " + (test / 2) + ")->(" + test + ", " + test + ", " + test + ")]: ");
                //omnitreeBounds_linked.Stepper((int current) => { Console.Write(current); },
                //    test / 2, test,
                //    test / 2, test,
                //    test / 2, test);
                //Console.WriteLine();
                // Removal
                Console.Write("    Remove 0-" + test / 3 + ": ");
                omnitreeBounds_linked.RemoveOverlapped(
                    0, test / 3,
                    0, test / 3,
                    0, test / 3);
                omnitreeBounds_linked.Stepper((int current) => { Console.Write(current); });
                Console.WriteLine();
                Console.WriteLine("      Count: " + omnitreeBounds_linked.Count);
                // Clear
                Console.Write("    Clear: ");
                omnitreeBounds_linked.Clear();
                omnitreeBounds_linked.Stepper((int current) => { Console.Write(current); });
                Console.WriteLine();
                Console.WriteLine("      Count: " + omnitreeBounds_linked.Count);
                Console.WriteLine();
            }
            #endregion

            #region KD Tree

            ////List<KdTreeNode<float, string>> testNodes = new List_Linked<KdTreeNode<float, string>>();
            //KdTree_Linked<string, float> tree = new KdTree_Linked<string, float>(
            //	2,
            //	Logic.compare,
            //	float.MinValue,
            //	float.MaxValue,
            //	0,
            //	Arithmetic.Add,
            //	Arithmetic.Subtract,
            //	Arithmetic.Multiply);

            //List<KdTree_Linked<string, float>.Node> testNodes =
            //	new List_Linked<KdTree_Linked<string, float>.Node>
            //{
            //	new KdTree_Linked<string, float>.Node(new float[] { 5, 5 }, "Root"),
            //	new KdTree_Linked<string, float>.Node(new float[] { 2.5f, 2.5f }, "Root-Left"),
            //	new KdTree_Linked<string, float>.Node(new float[] { 7.5f, 7.5f }, "Root-Right"),
            //	new KdTree_Linked<string, float>.Node(new float[] { 1, 10 }, "Root-Left-Left"),
            //	new KdTree_Linked<string, float>.Node(new float[] { 10, 10 }, "Root-Right-Right")
            //};

            //foreach (var node in testNodes)
            //	if (!tree.Add(node.Point, node.Value))
            //		throw new Exception("Failed to add node to tree");

            //var nodesToRemove = new KdTreeNode<float, string>[] {
            //	testNodes[1], // Root-Left
            //	testNodes[0] // Root
            //};

            //foreach (var nodeToRemove in nodesToRemove)
            //{
            //	tree.RemoveAt(nodeToRemove.Point);
            //	testNodes.Remove(nodeToRemove);

            //	Assert.IsNull(tree.FindValue(nodeToRemove.Value));
            //	Assert.IsNull(tree.FindValueAt(nodeToRemove.Point));

            //	foreach (var testNode in testNodes)
            //	{
            //		Assert.AreEqual(testNode.Value, tree.FindValueAt(testNode.Point));
            //		Assert.AreEqual(testNode.Point, tree.FindValue(testNode.Value));
            //	}

            //	Assert.AreEqual(testNodes.Count, tree.Count);
            //}

            #endregion

            #region Graph

            Console.WriteLine("  Testing Graph_SetOmnitree<int>-------------");
            Graph <int> graph = new GraphSetOmnitree <int>(Compute.Equal, Compute.Compare, Hash.Default);
            // add nodes
            for (int i = 0; i < test; i++)
            {
                graph.Add(i);
            }
            // add edges
            for (int i = 0; i < test - 1; i++)
            {
                graph.Add(i, i + 1);
            }
            Console.Write("    Traversal: ");
            graph.Stepper((int current) => { Console.Write(current); });
            Console.WriteLine();
            Console.WriteLine("    Edges: ");
            //((Graph_SetQuadtree<int>)graph)._edges.Foreach((Graph_SetQuadtree<int>.Edge e) => { Console.WriteLine("     " + e.Start + " " + e.End); });
            graph.Stepper(
                (int current) =>
            {
                Console.Write("     " + current + ": ");
                graph.Neighbors(current,
                                (int a) =>
                {
                    Console.Write(a);
                });
                Console.WriteLine();
            });
            Console.WriteLine();

            #endregion

            Console.WriteLine("============================================");
            Console.WriteLine("Examples Complete...");
            Console.ReadLine();
        }
示例#5
0
        static void Main(string[] args)
        {
            Console.WriteLine("You are runnning the Algorithms example.");
            Console.WriteLine("======================================================");
            Console.WriteLine();

            #region Sorting
            {
                // Note: these functions are not restricted to array types. You can use the
                // overloads with "Get" and "Assign" delegates to use them on any int-indexed
                // data structure.

                Console.WriteLine("  Sorting Algorithms----------------------");
                Console.WriteLine();
                int[] dataSet = new int[] { 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 };
                Console.Write("    Data Set:" + string.Join(", ", dataSet.Select(x => x.ToString())));
                Console.WriteLine();

                // Shuffling (Randomizing)
                Sort.Shuffle(dataSet);
                Console.Write("    Shuffle (Randomizing): " + string.Join(", ", dataSet.Select(x => x.ToString())));
                Console.WriteLine();

                // Bubble
                Sort.Bubble(dataSet);
                Console.Write("    Bubble: " + string.Join(", ", dataSet.Select(x => x.ToString())));
                Console.WriteLine();

                Console.WriteLine("    shuffling dataSet...");
                Sort.Shuffle(dataSet);

                // Selection
                Sort.Selection(dataSet);
                Console.Write("    Selection: " + string.Join(", ", dataSet.Select(x => x.ToString())));
                Console.WriteLine();

                Console.WriteLine("    shuffling dataSet...");
                Sort.Shuffle(dataSet);

                // Insertion
                Sort.Insertion(dataSet);
                Console.Write("    Insertion: " + string.Join(", ", dataSet.Select(x => x.ToString())));
                Console.WriteLine();

                Console.WriteLine("    shuffling dataSet...");
                Sort.Shuffle(dataSet);

                // Quick
                Sort.Quick(dataSet);
                Console.Write("    Quick: " + string.Join(", ", dataSet.Select(x => x.ToString())));
                Console.WriteLine();

                Console.WriteLine("    shuffling dataSet...");
                Sort.Shuffle(dataSet);

                // Merge
                Sort.Merge(Compute.Compare, dataSet);
                Console.Write("    Merge: " + string.Join(", ", dataSet.Select(x => x.ToString())));
                Console.WriteLine();

                Console.WriteLine("    shuffling dataSet...");
                Sort.Shuffle(dataSet);

                // Heap
                Sort.Heap(Compute.Compare, dataSet);
                Console.Write("    Heap: " + string.Join(", ", dataSet.Select(x => x.ToString())));
                Console.WriteLine();

                Console.WriteLine("    shuffling dataSet...");
                Sort.Shuffle(dataSet);

                // OddEven
                Sort.OddEven(Compute.Compare, dataSet);
                Console.Write("    OddEven: " + string.Join(", ", dataSet.Select(x => x.ToString())));
                Console.WriteLine();

                //Console.WriteLine("  shuffling dataSet...");
                //Sort<int>.Shuffle(dataSet);

                //// Slow
                //Sort<int>.Slow(Logic.compare, get, set, 0, dataSet.Length);
                //Console.Write("Slow: " + string.Join(", ", dataSet.Select(x => x.ToString())));
                //Console.WriteLine();

                //Console.WriteLine("  shuffling dataSet...");
                //Sort<int>.Shuffle(dataSet);

                // Bogo
                //Sort<int>.Bogo(Logic.compare, get, set, 0, dataSet.Length);
                Console.Write("    Bogo: Disabled (takes forever)"); //+ string.Join(", ", dataSet.Select(x => x.ToString())));
                //Console.WriteLine();

                Console.WriteLine();
                Console.WriteLine();
            }
            #endregion

            #region Graph Search (Using Graph Data Structure)
            {
                Console.WriteLine("  Graph Searching----------------------");
                Console.WriteLine();

                // make a graph
                IGraph <int> graph = new GraphSetOmnitree <int>()
                {
                    // add nodes
                    0,
                    1,
                    2,
                    3,
                    // add edges
                    { 0, 1 },
                    { 0, 2 },
                    { 1, 3 },
                    { 2, 3 }
                };

                // make a heuristic function
                int heuristic(int node)
                {
                    switch (node)
                    {
                    case 0:
                        return(3);

                    case 1:
                        return(6);

                    case 2:
                        return(1);

                    case 3:
                        return(0);

                    default:
                        throw new NotImplementedException();
                    }
                }

                // make a cost function
                int cost(int from, int to)
                {
                    if (from == 0 && to == 1)
                    {
                        return(1);
                    }
                    if (from == 0 && to == 2)
                    {
                        return(2);
                    }
                    if (from == 1 && to == 3)
                    {
                        return(5);
                    }
                    if (from == 2 && to == 3)
                    {
                        return(1);
                    }
                    if (from == 0 && to == 3)
                    {
                        return(99);
                    }
                    throw new Exception("invalid path cost computation");
                }

                // make a goal function
                bool goal(int node)
                {
                    if (node == 3)
                    {
                        return(true);
                    }
                    else
                    {
                        return(false);
                    }
                }

                // run A* the algorithm
                Stepper <int> aStar_path = Search.Graph <int, int>(0, graph, heuristic, cost, goal);
                Console.Write("    A* Path: ");
                if (aStar_path != null)
                {
                    aStar_path(i => Console.Write(i + " "));
                }
                else
                {
                    Console.Write("none");
                }

                Console.WriteLine();

                // run the Greedy algorithm
                Stepper <int> greedy_path = Search.Graph <int, int>(0, graph, heuristic, goal);
                Console.Write("    Greedy Path: ");
                if (greedy_path != null)
                {
                    greedy_path(i => Console.Write(i + " "));
                }
                else
                {
                    Console.Write("none");
                }

                Console.WriteLine();
                Console.WriteLine();
            }
            #endregion

            #region Graph Search (Vector Game-Style Example)
            {
                Console.WriteLine("  Graph Searching (Vector Game-Style Example)-------------------");
                Console.WriteLine();
                Console.WriteLine("    Debug the code. The path is to large to write to the console.");
                Console.WriteLine();

                // Lets say you are coding enemy AI and you want the AI to find a path towards the player
                // in order to attack them. Here are their starting positions:
                Vector <float> enemyLocation    = new Vector <float>(-100f, 0f, -50f);
                Vector <float> playerLocation   = new Vector <float>(200f, 0f, -50f);
                float          enemyAttackRange = 3f; // enemy has a melee attack with 3 range

                // Lets say most of the terrain is open, but there is a big rock in between them that they
                // must go around.
                Vector <float> rockLocation = new Vector <float>(15f, 0f, -40f);
                float          rockRadius   = 20f;

                // Make sure we don't re-use locations (must be wiped after running the algorithm)
                ISet <Vector <float> > alreadyUsed = new SetHashLinked <Vector <float> >();

                Vector <float> validationVectorStorage = null; // storage to prevent a ton of vectors from being allocated

                // So, we just need to validate movement locations (make sure the path finding algorithm
                // ignores locations inside the rock)
                bool validateMovementLocation(Vector <float> location)
                {
                    // if the location is inside the rock, it is not a valid movement
                    location.Subtract(rockLocation, ref validationVectorStorage);
                    float magnitude = validationVectorStorage.Magnitude;

                    if (magnitude <= rockRadius)
                    {
                        return(false);
                    }

                    // NOTE: If you are running a physics engine, you might be able to just call it to validate a location.

                    // if the location was already used, then let's consider it invalid, because
                    // another path (which is faster) has already reached that location
                    if (alreadyUsed.Contains(location))
                    {
                        return(false);
                    }

                    return(true);
                }

                // Now we need the neighbor function (getting the neighbors of the current location).
                void neighborFunction(Vector <float> currentLocation, Step <Vector <float> > neighbors)
                {
                    // NOTES:
                    // - This neighbor function has a 90 degree per-node resolution (360 / 4 [north/south/east/west] = 90).
                    // - This neighbor function has a 1 unit per-node distance resolution, because we went 1 unit in each direction.

                    // RECOMMENDATIONS:
                    // - If the path finding is failing, you may need to increase the resolution.
                    // - If the algorithm is running too slow, you may need to reduce the resolution.

                    float distanceResolution = 1;

                    float x = currentLocation.X;
                    float y = currentLocation.Y;
                    float z = currentLocation.Z;

                    // Note: I'm using the X-axis and Z-axis here, but which axis you need to use
                    // depends on your environment. Your "north" could be along the Y-axis for example.

                    Vector <float> north = new Vector <float>(x + distanceResolution, y, z);

                    if (validateMovementLocation(north))
                    {
                        alreadyUsed.Add(north); // mark location as used
                        neighbors(north);
                    }

                    Vector <float> east = new Vector <float>(x, y, z + distanceResolution);

                    if (validateMovementLocation(east))
                    {
                        alreadyUsed.Add(east); // mark location as used
                        neighbors(east);
                    }

                    Vector <float> south = new Vector <float>(x - distanceResolution, y, z);

                    if (validateMovementLocation(south))
                    {
                        alreadyUsed.Add(south); // mark location as used
                        neighbors(south);
                    }

                    Vector <float> west = new Vector <float>(x, y, z - distanceResolution);

                    if (validateMovementLocation(west))
                    {
                        alreadyUsed.Add(west); // mark location as used
                        neighbors(west);
                    }
                }

                Vector <float> heuristicVectorStorage = null; // storage to prevent a ton of vectors from being allocated

                // Heuristic function (how close are we to the goal)
                float heuristicFunction(Vector <float> currentLocation)
                {
                    // The goal is the player's location, so we just need our distance from the player.
                    currentLocation.Subtract(playerLocation, ref heuristicVectorStorage);
                    return(heuristicVectorStorage.Magnitude);
                }

                // Lets say there is a lot of mud around the rock, and the mud makes our player move at half their normal speed.
                // Our path finding needs to find the fastest route to the player, whether it be through the mud or not.
                Vector <float> mudLocation = new Vector <float>(15f, 0f, -70f);
                float          mudRadius   = 30f;

                Vector <float> costVectorStorage = null; // storage to prevent a ton of vectors from being allocated

                // Cost function
                float costFunction(Vector <float> from, Vector <float> to)
                {
                    // If the location we are moving to is in the mud, lets adjust the
                    // cost because mud makes us move slower.
                    to.Subtract(mudLocation, ref costVectorStorage);
                    float magnitude = costVectorStorage.Magnitude;

                    if (magnitude <= mudRadius)
                    {
                        return(2f);
                    }

                    // neither location is in the mud, it is just a standard movement at normal speed.
                    return(1f);
                }

                Vector <float> goalVectorStorage = null; // storage to prevent a ton of vectors from being allocated

                // Goal function
                bool goalFunction(Vector <float> currentLocation)
                {
                    // if the player is within the enemy's attack range WE FOUND A PATH! :)
                    currentLocation.Subtract(playerLocation, ref goalVectorStorage);
                    float magnitude = goalVectorStorage.Magnitude;

                    if (magnitude <= enemyAttackRange)
                    {
                        return(true);
                    }

                    // the enemy is not yet within attack range
                    return(false);
                }

                // We have all the necessary parameters. Run the pathfinding algorithms!
                Stepper <Vector <float> > aStarPath =
                    Search.Graph(
                        enemyLocation,
                        neighborFunction,
                        heuristicFunction,
                        costFunction,
                        goalFunction);

                // Flush the already used markers before running the Greedy algorithm.
                // Normally you won't run two algorithms for the same graph/location, but
                // we are running both algorithms in this example to demonstrate the
                // differences between them.
                alreadyUsed.Clear();

                Stepper <Vector <float> > greedyPath =
                    Search.Graph(
                        enemyLocation,
                        neighborFunction,
                        heuristicFunction,
                        goalFunction);

                // NOTE: If there is no valid path, then "Search.Graph" will return "null."
                // For this example, I know that there will be a valid path so I did not
                // include a null check.

                // Lets convert the paths into arrays so you can look at them in the debugger. :)
                Vector <float>[] aStarPathArray  = aStarPath.ToArray();
                Vector <float>[] greedyPathArray = greedyPath.ToArray();

                // lets calculate the movement cost of each path to see how they compare
                float astartTotalCost = Compute.Add <float>(step =>
                {
                    for (int i = 0; i < aStarPathArray.Length - 1; i++)
                    {
                        step(costFunction(aStarPathArray[i], aStarPathArray[i + 1]));
                    }
                });
                float greedyTotalCost = Compute.Add <float>(step =>
                {
                    for (int i = 0; i < greedyPathArray.Length - 1; i++)
                    {
                        step(costFunction(greedyPathArray[i], greedyPathArray[i + 1]));
                    }
                });

                // Notice that that the A* algorithm produces a less costly path than the Greedy,
                // meaning that it is faster. The Greedy path went through the mud, but the A* path
                // took the longer route around the other side of the rock, which ended up being faster
                // than running through the mud.
            }
            #endregion

            #region Random Generation
            {
                Console.WriteLine("  Random Generation---------------------");
                Console.WriteLine();

                int iterationsperrandom = 3;
                void testrandom(Random random)
                {
                    for (int i = 0; i < iterationsperrandom; i++)
                    {
                        Console.WriteLine("    " + i + ": " + random.Next());
                    }
                    Console.WriteLine();
                }

                Arbitrary mcg_2pow59_13pow13 = new Arbitrary.Algorithms.MultiplicativeCongruent_A();
                Console.WriteLine("    mcg_2pow59_13pow13 randoms:");
                testrandom(mcg_2pow59_13pow13);
                Arbitrary mcg_2pow31m1_1132489760 = new Arbitrary.Algorithms.MultiplicativeCongruent_B();
                Console.WriteLine("    mcg_2pow31m1_1132489760 randoms:");
                testrandom(mcg_2pow31m1_1132489760);
                Arbitrary mersenneTwister = new Arbitrary.Algorithms.MersenneTwister();
                Console.WriteLine("    mersenneTwister randoms:");
                testrandom(mersenneTwister);
                Arbitrary cmr32_c2_o3 = new Arbitrary.Algorithms.CombinedMultipleRecursive();
                Console.WriteLine("    mersenneTwister randoms:");
                testrandom(cmr32_c2_o3);
                Arbitrary wh1982cmcg = new Arbitrary.Algorithms.WichmannHills1982();
                Console.WriteLine("    mersenneTwister randoms:");
                testrandom(wh1982cmcg);
                Arbitrary wh2006cmcg = new Arbitrary.Algorithms.WichmannHills2006();
                Console.WriteLine("    mersenneTwister randoms:");
                testrandom(wh2006cmcg);
                Arbitrary mwcxorsg = new Arbitrary.Algorithms.MultiplyWithCarryXorshift();
                Console.WriteLine("    mwcxorsg randoms:");
                testrandom(mwcxorsg);
            }
            #endregion

            Console.WriteLine();
            Console.WriteLine("============================================");
            Console.WriteLine("Example Complete...");
            Console.ReadLine();
        }
示例#6
0
文件: Graph.cs 项目: lanicon/Theta
 private GraphSetOmnitree(GraphSetOmnitree <T> graph)
 {
     this._edges = graph._edges.Clone() as OmnitreePointsLinked <Edge, T, T>;
     this._nodes = graph._nodes.Clone() as SetHashList <T>;
 }
示例#7
0
文件: Graph.cs 项目: lanicon/Theta
 private GraphMap(Equate <T> equate, Hash <T> hash, GraphSetOmnitree <T> graph)
 {
     this._edges = 0;
     this._map   = new MapHashLinked <MapHashLinked <bool, T>, T>(equate, hash);
 }
示例#8
0
        static void Main()
        {
            Console.WriteLine("You are runnning the Algorithms example.");
            Console.WriteLine("======================================================");
            Console.WriteLine();

            #region Sorting
            {
                // Note: these functions are not restricted to array types. You can use the
                // overloads with "Get" and "Assign" delegates to use them on any int-indexed
                // data structure.

                Console.WriteLine("  Sorting Algorithms----------------------");
                Console.WriteLine();
                int[] dataSet = new int[] { 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 };
                Console.Write("    Data Set:" + string.Join(", ", dataSet.Select(x => x.ToString())));
                Console.WriteLine();

                // Shuffling (Randomizing)
                Sort.Shuffle(dataSet);
                Console.Write("    Shuffle (Randomizing): " + string.Join(", ", dataSet.Select(x => x.ToString())));
                Console.WriteLine();

                // Bubble
                Sort.Bubble(dataSet);
                Console.Write("    Bubble:    " + string.Join(", ", dataSet.Select(x => x.ToString())));
                Console.WriteLine();

                Console.WriteLine("    shuffling dataSet...");
                Sort.Shuffle(dataSet);

                // Selection
                Sort.Selection(dataSet);
                Console.Write("    Selection: " + string.Join(", ", dataSet.Select(x => x.ToString())));
                Console.WriteLine();

                Console.WriteLine("    shuffling dataSet...");
                Sort.Shuffle(dataSet);

                // Insertion
                Sort.Insertion(dataSet);
                Console.Write("    Insertion: " + string.Join(", ", dataSet.Select(x => x.ToString())));
                Console.WriteLine();

                Console.WriteLine("    shuffling dataSet...");
                Sort.Shuffle(dataSet);

                // Quick
                Sort.Quick(dataSet);
                Console.Write("    Quick:     " + string.Join(", ", dataSet.Select(x => x.ToString())));
                Console.WriteLine();

                Console.WriteLine("    shuffling dataSet...");
                Sort.Shuffle(dataSet);

                // Merge
                Sort.Merge(dataSet);
                Console.Write("    Merge:     " + string.Join(", ", dataSet.Select(x => x.ToString())));
                Console.WriteLine();

                Console.WriteLine("    shuffling dataSet...");
                Sort.Shuffle(dataSet);

                // Heap
                Sort.Heap(dataSet);
                Console.Write("    Heap:      " + string.Join(", ", dataSet.Select(x => x.ToString())));
                Console.WriteLine();

                Console.WriteLine("    shuffling dataSet...");
                Sort.Shuffle(dataSet);

                // OddEven
                Sort.OddEven(dataSet);
                Console.Write("    OddEven:   " + string.Join(", ", dataSet.Select(x => x.ToString())));
                Console.WriteLine();

                //Console.WriteLine("  shuffling dataSet...");
                //Sort.Shuffle(dataSet);

                //// Slow
                //Sort<int>.Slow(Logic.compare, get, set, 0, dataSet.Length);
                //Console.Write("Slow: " + string.Join(", ", dataSet.Select(x => x.ToString())));
                //Console.WriteLine();

                Console.WriteLine("    shuffling dataSet...");
                Sort.Shuffle(dataSet);

                // Bogo
                Console.Write("    Bogo:      Disabled (takes forever)");
                //Sort.Bogo(dataSet);
                //Console.Write("    Bogo: " + string.Join(", ", dataSet.Select(x => x.ToString())));
                Console.WriteLine();

                Console.WriteLine();
                Console.WriteLine();
            }
            #endregion

            #region Graph Search (Using Graph Data Structure)
            {
                Console.WriteLine("  Graph Searching----------------------");
                Console.WriteLine();

                // visualization
                //
                //    [0]-----(1)---->[1]
                //     |               |
                //     |               |
                //    (99)            (2)
                //     |               |
                //     |               |
                //     v               v
                //    [3]<----(5)-----[2]
                //
                //    [nodes in brackets]
                //    (edge costs in parenthases)

                // make a graph
                IGraph <int> graph = new GraphSetOmnitree <int>()
                {
                    // add nodes
                    0, 1, 2, 3,
                    // add edges
                    { 0, 1 },
                    { 1, 2 },
                    { 2, 3 },
                    { 0, 3 },
                };
示例#9
0
        static void Main(string[] args)
        {
            Console.WriteLine("Welcome To SevenFramework! :)");
            Console.WriteLine();
            Console.WriteLine("You are runnning the Algorithms tutorial.");
            Console.WriteLine("======================================================");
            Console.WriteLine();

            #region Sorting

            Console.WriteLine("Sorting Algorithms----------------------");
            Console.WriteLine();
            int[] dataSet = new int[] { 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 };
            Console.Write("Data Set:");
            Console.Write(dataSet[0]);
            for (int i = 1; i < dataSet.Length; i++)
            {
                Console.Write(", " + dataSet[i]);
            }
            Console.WriteLine();

            // if you want to sort non-array types, see the overloads using Get<int> and Assign<int>
            // Delegates
            //Get<int> get = (int index) => { return dataSet[index]; };
            //Assign<int> assign = (int index, int value) => { dataSet[index] = value; };

            // Shuffling (Randomizing)
            Sort <int> .Shuffle(dataSet);

            Console.Write("Shuffle (Randomizing): ");
            Console.Write(dataSet[0]);
            for (int i = 1; i < dataSet.Length; i++)
            {
                Console.Write(", " + dataSet[i]);
            }
            Console.WriteLine();

            // Bubble
            Sort <int> .Bubble(dataSet);

            Console.Write("Bubble: ");
            Console.Write(dataSet[0]);
            for (int i = 1; i < dataSet.Length; i++)
            {
                Console.Write(", " + dataSet[i]);
            }
            Console.WriteLine();

            Console.WriteLine("shuffling dataSet...");
            Sort <int> .Shuffle(dataSet);

            // Selection
            Sort <int> .Selection(dataSet);

            Console.Write("Selection: ");
            Console.Write(dataSet[0]);
            for (int i = 1; i < dataSet.Length; i++)
            {
                Console.Write(", " + dataSet[i]);
            }
            Console.WriteLine();

            Console.WriteLine("shuffling dataSet...");
            Sort <int> .Shuffle(dataSet);

            // Insertion
            Sort <int> .Insertion(dataSet);

            Console.Write("Insertion: ");
            Console.Write(dataSet[0]);
            for (int i = 1; i < dataSet.Length; i++)
            {
                Console.Write(", " + dataSet[i]);
            }
            Console.WriteLine();

            Console.WriteLine("shuffling dataSet...");
            Sort <int> .Shuffle(dataSet);

            // Quick
            Sort <int> .Quick(dataSet);

            Console.Write("Quick: ");
            Console.Write(dataSet[0]);
            for (int i = 1; i < dataSet.Length; i++)
            {
                Console.Write(", " + dataSet[i]);
            }
            Console.WriteLine();

            Console.WriteLine("shuffling dataSet...");
            Sort <int> .Shuffle(dataSet);

            // Merge
            Sort <int> .Merge(Compute <int> .Compare, dataSet);

            Console.Write("Merge: ");
            Console.Write(dataSet[0]);
            for (int i = 1; i < dataSet.Length; i++)
            {
                Console.Write(", " + dataSet[i]);
            }
            Console.WriteLine();

            Console.WriteLine("shuffling dataSet...");
            Sort <int> .Shuffle(dataSet);

            // Heap
            Sort <int> .Heap(Compute <int> .Compare, dataSet);

            Console.Write("Heap: ");
            Console.Write(dataSet[0]);
            for (int i = 1; i < dataSet.Length; i++)
            {
                Console.Write(", " + dataSet[i]);
            }
            Console.WriteLine();

            Console.WriteLine("shuffling dataSet...");
            Sort <int> .Shuffle(dataSet);

            // OddEven
            Sort <int> .OddEven(Compute <int> .Compare, dataSet);

            Console.Write("OddEven: ");
            Console.Write(dataSet[0]);
            for (int i = 1; i < dataSet.Length; i++)
            {
                Console.Write(", " + dataSet[i]);
            }
            Console.WriteLine();

            //Sort<int>.Shuffle(get, set, 0, dataSet.Length);

            //// Slow
            //Sort<int>.Slow(Logic.compare, get, set, 0, dataSet.Length);
            //Console.Write("Slow: ");
            //Console.Write(dataSet[0]);
            //for (int i = 1; i < dataSet.Length; i++)
            //	Console.Write(", " + dataSet[i]);
            //Console.WriteLine();

            Sort <int> .Shuffle(dataSet);

            // Bogo
            //Sort<int>.Bogo(Logic.compare, get, set, 0, dataSet.Length);
            Console.Write("Bogo: Enable (uncomment) in Source Code");
            //Console.Write(dataSet[0]);
            //for (int i = 1; i < dataSet.Length; i++)
            //	Console.Write(", " + dataSet[i]);
            //Console.WriteLine();

            Console.WriteLine();
            Console.WriteLine();

            #endregion

            #region Graph Search

            Console.WriteLine("Graph Searching----------------------");
            Console.WriteLine();

            // make a graph
            Graph <int> graph = new GraphSetOmnitree <int>(
                Compute <int> .Compare,
                Hash.Default,
                0, 3,
                (int l, int r) => { return((l + r) / 2); });

            // add nodes
            graph.Add(0);
            graph.Add(1);
            graph.Add(2);
            graph.Add(3);

            // add edges
            graph.Add(0, 1);
            graph.Add(0, 2);
            graph.Add(1, 3);
            graph.Add(2, 3);

            //// represent a graph
            //// Note: can be any type  (doesn't have to be int?[,])
            //int?[,] adjacencyMatrix =
            //{
            //	{ null, 1, 2, null },
            //	{ null, null, null, 5 },
            //	{ null, null, null, 1 },
            //	{ null, null, null, null }
            //};

            // make a delegate for finding neighbor nodes
            Action <int, Step <int> > neighbors =
                (int current, Step <int> step_function) =>
            {
                //for (int i = 0; i < 4; i++)
                //	if (adjacencyMatrix[current, i] != null)
                //		step(i);
                graph.Neighbors(current, step_function);
            };

            // make a delegate for computing heuristics
            Func <int, int> heuristic =
                (int node) =>
            {
                switch (node)
                {
                case 0:
                    return(3);

                case 1:
                    return(6);

                case 2:
                    return(1);

                case 3:
                    return(0);

                default:
                    throw new NotImplementedException();
                }
            };

            // make a delegate for computing costs
            Func <int, int, int> cost =
                (int from, int to) =>
            {
                if (from == 0 && to == 1)
                {
                    return(1);
                }
                if (from == 0 && to == 2)
                {
                    return(2);
                }
                if (from == 1 && to == 3)
                {
                    return(5);
                }
                if (from == 2 && to == 3)
                {
                    return(1);
                }
                throw new Exception("invalid path cost computation");
            };

            // make a delegate for determining if the goal is reached
            Func <int, bool> goal =
                (int node) =>
            {
                if (node == 3)
                {
                    return(true);
                }
                else
                {
                    return(false);
                }
            };

            // run A* the algorithm
            Stepper <int> aStar_path = Search <int> .Graph <int> .Astar(
                0,
                graph,
                new Search <int> .Graph <int> .Heuristic(heuristic),
                new Search <int> .Graph <int> .Cost(cost),
                new Search <int> .Graph <int> .Goal(goal));

            // run the Greedy algorithm
            Stepper <int> greedy_path = Search <int> .Graph <int> .Greedy(
                0,
                graph,
                new Search <int> .Graph <int> .Heuristic(heuristic),
                new Search <int> .Graph <int> .Goal(goal));

            Console.Write("A* Path: ");
            if (aStar_path != null)
            {
                aStar_path((int i) => { System.Console.Write(i + " "); });
            }
            else
            {
                Console.Write("none");
            }

            Console.WriteLine();

            Console.Write("Greedy Path: ");
            if (greedy_path != null)
            {
                greedy_path((int i) => { System.Console.Write(i + " "); });
            }
            else
            {
                Console.Write("none");
            }
            Console.WriteLine();

            #endregion

            Console.WriteLine();
            Console.WriteLine("============================================");
            Console.WriteLine("Example Complete...");
            Console.ReadLine();
        }
示例#10
0
        static void Main(string[] args)
        {
            Console.WriteLine("You are runnning the Algorithms tutorial.");
            Console.WriteLine("======================================================");
            Console.WriteLine();

            #region Sorting
            {
                Console.WriteLine(" Sorting Algorithms----------------------");
                Console.WriteLine();
                int[] dataSet = new int[] { 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 };
                Console.Write("  Data Set:");
                Console.Write(dataSet[0]);
                for (int i = 1; i < dataSet.Length; i++)
                {
                    Console.Write(", " + dataSet[i]);
                }
                Console.WriteLine();

                // if you want to sort non-array types, see the overloads using Get<int> and Assign<int>
                // Delegates
                //Get<int> get = (int index) => { return dataSet[index]; };
                //Assign<int> assign = (int index, int value) => { dataSet[index] = value; };

                // Shuffling (Randomizing)
                Sort <int> .Shuffle(dataSet);

                Console.Write("  Shuffle (Randomizing): ");
                Console.Write(dataSet[0]);
                for (int i = 1; i < dataSet.Length; i++)
                {
                    Console.Write(", " + dataSet[i]);
                }
                Console.WriteLine();

                // Bubble
                Sort <int> .Bubble(dataSet);

                Console.Write("  Bubble: ");
                Console.Write(dataSet[0]);
                for (int i = 1; i < dataSet.Length; i++)
                {
                    Console.Write(", " + dataSet[i]);
                }
                Console.WriteLine();

                Console.WriteLine("  shuffling dataSet...");
                Sort <int> .Shuffle(dataSet);

                // Selection
                Sort <int> .Selection(dataSet);

                Console.Write("  Selection: ");
                Console.Write(dataSet[0]);
                for (int i = 1; i < dataSet.Length; i++)
                {
                    Console.Write(", " + dataSet[i]);
                }
                Console.WriteLine();

                Console.WriteLine("  shuffling dataSet...");
                Sort <int> .Shuffle(dataSet);

                // Insertion
                Sort <int> .Insertion(dataSet);

                Console.Write("  Insertion: ");
                Console.Write(dataSet[0]);
                for (int i = 1; i < dataSet.Length; i++)
                {
                    Console.Write(", " + dataSet[i]);
                }
                Console.WriteLine();

                Console.WriteLine("  shuffling dataSet...");
                Sort <int> .Shuffle(dataSet);

                // Quick
                Sort <int> .Quick(dataSet);

                Console.Write("  Quick: ");
                Console.Write(dataSet[0]);
                for (int i = 1; i < dataSet.Length; i++)
                {
                    Console.Write(", " + dataSet[i]);
                }
                Console.WriteLine();

                Console.WriteLine("  shuffling dataSet...");
                Sort <int> .Shuffle(dataSet);

                // Merge
                Sort <int> .Merge(Compute.Compare, dataSet);

                Console.Write("  Merge: ");
                Console.Write(dataSet[0]);
                for (int i = 1; i < dataSet.Length; i++)
                {
                    Console.Write(", " + dataSet[i]);
                }
                Console.WriteLine();

                Console.WriteLine("  shuffling dataSet...");
                Sort <int> .Shuffle(dataSet);

                // Heap
                Sort <int> .Heap(Compute.Compare, dataSet);

                Console.Write("  Heap: ");
                Console.Write(dataSet[0]);
                for (int i = 1; i < dataSet.Length; i++)
                {
                    Console.Write(", " + dataSet[i]);
                }
                Console.WriteLine();

                Console.WriteLine("  shuffling dataSet...");
                Sort <int> .Shuffle(dataSet);

                // OddEven
                Sort <int> .OddEven(Compute.Compare, dataSet);

                Console.Write("  OddEven: ");
                Console.Write(dataSet[0]);
                for (int i = 1; i < dataSet.Length; i++)
                {
                    Console.Write(", " + dataSet[i]);
                }
                Console.WriteLine();

                //Sort<int>.Shuffle(get, set, 0, dataSet.Length);

                //// Slow
                //Sort<int>.Slow(Logic.compare, get, set, 0, dataSet.Length);
                //Console.Write("Slow: ");
                //Console.Write(dataSet[0]);
                //for (int i = 1; i < dataSet.Length; i++)
                //	Console.Write(", " + dataSet[i]);
                //Console.WriteLine();

                Sort <int> .Shuffle(dataSet);

                // Bogo
                //Sort<int>.Bogo(Logic.compare, get, set, 0, dataSet.Length);
                Console.Write("  Bogo: Disabled (takes forever)");
                //Console.Write(dataSet[0]);
                //for (int i = 1; i < dataSet.Length; i++)
                //	Console.Write(", " + dataSet[i]);
                //Console.WriteLine();

                Console.WriteLine();
                Console.WriteLine();
            }
            #endregion

            #region Graph Search
            {
                Console.WriteLine(" Graph Searching----------------------");
                Console.WriteLine();

                // make a graph
                Graph <int> graph = new GraphSetOmnitree <int>(
                    Compare.Default,
                    Hash.Default);

                // add nodes
                graph.Add(0);
                graph.Add(1);
                graph.Add(2);
                graph.Add(3);

                // add edges
                graph.Add(0, 1);
                graph.Add(0, 2);
                graph.Add(1, 3);
                graph.Add(2, 3);

                //// represent a graph
                //// Note: can be any type  (doesn't have to be int?[,])
                //int?[,] adjacencyMatrix =
                //{
                //	{ null, 1, 2, null },
                //	{ null, null, null, 5 },
                //	{ null, null, null, 1 },
                //	{ null, null, null, null }
                //};

                // make a delegate for finding neighbor nodes
                Action <int, Step <int> > neighbors =
                    (int current, Step <int> step_function) =>
                {
                    //for (int i = 0; i < 4; i++)
                    //	if (adjacencyMatrix[current, i] != null)
                    //		step(i);
                    graph.Neighbors(current, step_function);
                };

                // make a delegate for computing heuristics
                Func <int, int> heuristic =
                    (int node) =>
                {
                    switch (node)
                    {
                    case 0:
                        return(3);

                    case 1:
                        return(6);

                    case 2:
                        return(1);

                    case 3:
                        return(0);

                    default:
                        throw new NotImplementedException();
                    }
                };

                // make a delegate for computing costs
                Func <int, int, int> cost =
                    (int from, int to) =>
                {
                    if (from == 0 && to == 1)
                    {
                        return(1);
                    }
                    if (from == 0 && to == 2)
                    {
                        return(2);
                    }
                    if (from == 1 && to == 3)
                    {
                        return(5);
                    }
                    if (from == 2 && to == 3)
                    {
                        return(1);
                    }
                    if (from == 0 && to == 3)
                    {
                        return(99);
                    }
                    throw new Exception("invalid path cost computation");
                };

                // make a delegate for determining if the goal is reached
                Func <int, bool> goal =
                    (int node) =>
                {
                    if (node == 3)
                    {
                        return(true);
                    }
                    else
                    {
                        return(false);
                    }
                };

                // run A* the algorithm
                Stepper <int> aStar_path = Search <int> .Graph <int> .Astar(
                    0,
                    graph,
                    new Search <int> .Graph <int> .Heuristic(heuristic),
                    new Search <int> .Graph <int> .Cost(cost),
                    new Search <int> .Graph <int> .Goal(goal));

                // run the Greedy algorithm
                Stepper <int> greedy_path = Search <int> .Graph <int> .Greedy(
                    0,
                    graph,
                    new Search <int> .Graph <int> .Heuristic(heuristic),
                    new Search <int> .Graph <int> .Goal(goal));

                Console.Write("  A* Path: ");
                if (aStar_path != null)
                {
                    aStar_path((int i) => { System.Console.Write(i + " "); });
                }
                else
                {
                    Console.Write("  none");
                }

                Console.WriteLine();

                Console.Write("  Greedy Path: ");
                if (greedy_path != null)
                {
                    greedy_path((int i) => { System.Console.Write(i + " "); });
                }
                else
                {
                    Console.Write("  none");
                }
                Console.WriteLine();
                Console.WriteLine();
            }
            #endregion

            #region Graph Search (Vector Game-Style Example)

            // Lets say you are coding enemy AI and you want the AI to find a path towards the player
            // in order to attack them. Here are their starting positions:
            Vector <float> enemy_location     = new Vector <float>(-100, 0, -50);
            Vector <float> player_location    = new Vector <float>(200, 0, -50);
            float          enemy_attack_range = 3; // enemy has a melee attack with 3 range

            // Lets say most of the terrain is open, but there is a big rock in between them that they
            // must go around.
            Vector <float> rock_location = new Vector <float>(15, 0, -40);
            float          rock_radius   = 20;

            // So, we just need to validate movement locations (make sure the path finding algorithm
            // ignores locations inside the rock)
            Func <Vector <float>, bool> validateMovementLocation = location =>
            {
                float mag = (location - rock_location).Magnitude;
                if (mag <= rock_radius)
                {
                    return(false); // inside rock (not valid)
                }
                return(true);      // not inside rock (valid)

                // NOTE:
                // This function will normally be handled by your physics engine if you are running one.
            };

            // Make sure we don't re-use locations (must be wiped after running the algorithm)
            Set <Vector <float> > already_used = new SetHashList <Vector <float> >();

            // Now we need the neighbor function (getting the neighbors of the current location).
            Search <Vector <float> > .Graph <float> .Neighbors neighborFunction = (currentLocation, neighbors) =>
            {
                // lets make a simple neighbor function that returns 4 locations (directly north, south, east, and west)
                // and the distance of each node in the graph will be 1
                Vector <float>
                north = new Vector <float>(currentLocation.X + 1, currentLocation.Y, currentLocation.Z),
                                                               east  = new Vector <float>(currentLocation.X, currentLocation.Y, currentLocation.Z + 1),
                                                               south = new Vector <float>(currentLocation.X - 1, currentLocation.Y, currentLocation.Z),
                                                               west  = new Vector <float>(currentLocation.X, currentLocation.Y, currentLocation.Z - 1);

                // validate the locations (not inside the rock) and make sure we have not already traversed the location
                if (validateMovementLocation(north) && !already_used.Contains(north))
                {
                    already_used.Add(north); // mark for usage so we do not use this location again
                    neighbors(north);
                }
                if (validateMovementLocation(east) && !already_used.Contains(east))
                {
                    already_used.Add(east); // mark for usage so we do not use this location again
                    neighbors(east);
                }
                if (validateMovementLocation(south) && !already_used.Contains(south))
                {
                    already_used.Add(south); // mark for usage so we do not use this location again
                    neighbors(south);
                }
                if (validateMovementLocation(west) && !already_used.Contains(west))
                {
                    already_used.Add(west); // mark for usage so we do not use this location again
                    neighbors(west);
                }

                // NOTES:
                // - This neighbor function has a 90 degree per-node resolution (360 / 4 [north/south/east/west] = 90).
                // - This neighbor function has a 1 unit per-node resolution, because we went 1 unit in each direction.

                // RECOMMENDATIONS:
                // - If the path finding is failing, you may need to increase the resolution.
                // - If the algorithm is running too slow, you may need to reduce the resolution.
            };

            // Now we need the heuristic function (how close are we to the goal).
            Search <Vector <float> > .Graph <float> .Heuristic heuristicFunction = currentLocation =>
            {
                // The goal is the player's location, so we just need our distance from the player.
                return((currentLocation - player_location).Magnitude);
            };

            // Lets say there is a lot of mud around the rock, and the mud makes our player move at half their normal speed.
            // Our path finding needs to find the fastest route to the player, whether it be through the mud or not.
            Vector <float> mud_location = new Vector <float>(15, 0, -70);
            float          mud_radius   = 30;

            // Now we need the cost function
            Search <Vector <float> > .Graph <float> .Cost costFunction = (location1, location2) =>
            {
                // If either locations are in the mud, lets increase the cost of moving to that spot.
                float mag1 = (location1 - mud_location).Magnitude;
                if (mag1 <= mud_radius)
                {
                    return(2);
                }
                float mag2 = (location2 - mud_location).Magnitude;
                if (mag2 <= mud_radius)
                {
                    return(2);
                }

                // neither location is in the mud, it is just a standard movement at normal speed.
                return(1);
            };

            // Now we need a goal function
            Search <Vector <float> > .Graph <float> .Goal goalFunction = currentLocation =>
            {
                float mag = (currentLocation - player_location).Magnitude;
                // if the player is within the enemy's attack range WE FOUND A PATH! :)
                if (mag <= enemy_attack_range)
                {
                    return(true);
                }

                // the enemy is not yet within attack range
                return(false);
            };

            // We have all the necessary parameters. Run the pathfinding algorithms!
            Stepper <Vector <float> > aStarPath = Search <Vector <float> > .Graph <float> .Astar(
                enemy_location,
                neighborFunction,
                heuristicFunction,
                costFunction,
                goalFunction);

            // NOTE:
            // if the "Astar" function returns "null" there is no valid path. (in this example there
            // are valid paths, so I didn't add a nul check)

            // Here is the path converted to an array (easier to read while debugging)
            Vector <float>[] aStarPath_array = aStarPath.ToArray();

            // flush the duplicate locations checker before running the Greedy algorithm
            already_used.Clear();

            Stepper <Vector <float> > greedyPath = Search <Vector <float> > .Graph <float> .Greedy(
                enemy_location,
                neighborFunction,
                heuristicFunction,
                goalFunction);

            // Here is the path converted to an array (easier to read while debugging)
            Vector <float>[] greedyPath_array = greedyPath.ToArray();


            // lets calculate the movement cost of each path

            float total_cost_astar = Compute.Add <float>(step =>
            {
                for (int i = 0; i < aStarPath_array.Length - 1; i++)
                {
                    float cost = costFunction(aStarPath_array[i], aStarPath_array[i + 1]);
                    step(cost);
                }
            });

            float total_cost_greedy = Compute.Add <float>(step =>
            {
                for (int i = 0; i < greedyPath_array.Length - 1; i++)
                {
                    float cost = costFunction(greedyPath_array[i], greedyPath_array[i + 1]);
                    step(cost);
                }
            });

            // Notice that that the A* algorithm produces a less costly path than the Greedy,
            // meaning that it is faster. The Greedy path went through the mud, but the A* path
            // took the longer route around the other side of the rock, which ended up being faster
            // than running through the mud.

            #endregion

            #region Random Generation

            Console.WriteLine(" Random Generation---------------------");
            Console.WriteLine();

            int             iterationsperrandom = 3;
            Action <Random> testrandom          = (Random random) =>
            {
                for (int i = 0; i < iterationsperrandom; i++)
                {
                    Console.WriteLine("    " + i + ": " + random.Next());
                }
                Console.WriteLine();
            };
            Arbitrary mcg_2pow59_13pow13 = new Arbitrary.Algorithms.MultiplicativeCongruent_A();
            Console.WriteLine("  mcg_2pow59_13pow13 randoms:");
            testrandom(mcg_2pow59_13pow13);
            Arbitrary mcg_2pow31m1_1132489760 = new Arbitrary.Algorithms.MultiplicativeCongruent_B();
            Console.WriteLine("  mcg_2pow31m1_1132489760 randoms:");
            testrandom(mcg_2pow31m1_1132489760);
            Arbitrary mersenneTwister = new Arbitrary.Algorithms.MersenneTwister();
            Console.WriteLine("  mersenneTwister randoms:");
            testrandom(mersenneTwister);
            Arbitrary cmr32_c2_o3 = new Arbitrary.Algorithms.CombinedMultipleRecursive();
            Console.WriteLine("  mersenneTwister randoms:");
            testrandom(cmr32_c2_o3);
            Arbitrary wh1982cmcg = new Arbitrary.Algorithms.WichmannHills1982();
            Console.WriteLine("  mersenneTwister randoms:");
            testrandom(wh1982cmcg);
            Arbitrary wh2006cmcg = new Arbitrary.Algorithms.WichmannHills2006();
            Console.WriteLine("  mersenneTwister randoms:");
            testrandom(wh2006cmcg);
            Arbitrary mwcxorsg = new Arbitrary.Algorithms.MultiplyWithCarryXorshift();
            Console.WriteLine("  mwcxorsg randoms:");
            testrandom(mwcxorsg);

            #endregion

            Console.WriteLine();
            Console.WriteLine("============================================");
            Console.WriteLine("Example Complete...");
            Console.ReadLine();
        }