public static CorrelationResult correlation_besselj(FullertonLib.BesselData globaldata, FullertonLib.r8BESJ0Data data, int n, double[] rho, double rho0) //****************************************************************************80 // // Purpose: // // CORRELATION_BESSELJ evaluates the Bessel J correlation function. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 11 November 2012 // // Author: // // John Burkardt // // Reference: // // Petter Abrahamsen, // A Review of Gaussian Random Fields and Correlation Functions, // Norwegian Computing Center, 1997. // // Parameters: // // Input, int N, the number of arguments. // // Input, double RHO[N], the arguments. // // Input, double RHO0, the correlation length. // // Output, double C[N], the correlations. // { int i; double[] c = new double[n]; for (i = 0; i < n; i++) { double rhohat = Math.Abs(rho[i]) / rho0; c[i] = FullertonLib.r8_besj0(ref globaldata, ref data, rhohat); } CorrelationResult result = new() { result = c, data = globaldata, j0data = data }; return(result); }
public static CorrelationResult correlation_gaussian(FullertonLib.BesselData globaldata, FullertonLib.r8BESJ0Data data, int n, double[] rho, double rho0) //****************************************************************************80 // // Purpose: // // CORRELATION_GAUSSIAN evaluates the Gaussian correlation function. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 11 November 2012 // // Author: // // John Burkardt // // Reference: // // Petter Abrahamsen, // A Review of Gaussian Random Fields and Correlation Functions, // Norwegian Computing Center, 1997. // // Parameters: // // Input, int N, the number of arguments. // // Input, double RHO[N], the arguments. // // Input, double RHO0, the correlation length. // // Output, double C[N], the correlations. // { int i; double[] c = new double[n]; for (i = 0; i < n; i++) { c[i] = Math.Exp(-Math.Pow(rho[i] / rho0, 2)); } return(new CorrelationResult { result = c, data = globaldata, j0data = data }); }
public static CorrelationResult correlation_damped_sine(FullertonLib.BesselData globaldata, FullertonLib.r8BESJ0Data data, int n, double[] rho, double rho0) //****************************************************************************80 // // Purpose: // // CORRELATION_DAMPED_SINE evaluates the damped sine correlation function. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 11 November 2012 // // Author: // // John Burkardt // // Reference: // // Petter Abrahamsen, // A Review of Gaussian Random Fields and Correlation Functions, // Norwegian Computing Center, 1997. // // Parameters: // // Input, int N, the number of arguments. // // Input, double RHO[N], the arguments. // // Input, double RHO0, the correlation length. // // Output, double C[N], the correlations. // { int i; double[] c = new double[n]; for (i = 0; i < n; i++) { switch (rho[i]) { case 0.0: c[i] = 1.0; break; default: double rhohat = Math.Abs(rho[i]) / rho0; c[i] = Math.Sin(rhohat) / rhohat; break; } } return(new CorrelationResult { result = c, data = globaldata, j0data = data }); }
public static Correlation.CorrelationResult sample_paths_eigen(FullertonLib.BesselData globaldata, FullertonLib.r8BESJ0Data jdata, int n, int n2, double rhomax, double rho0, Func <FullertonLib.BesselData, FullertonLib.r8BESJ0Data, int, double[], double, Correlation.CorrelationResult> correlation, ref typeMethods.r8vecNormalData data, ref int seed) //****************************************************************************80 // // Purpose: // // SAMPLE_PATHS_EIGEN: sample paths for stationary correlation functions. // // Discussion: // // This method uses the eigen-decomposition of the correlation matrix. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 12 November 2012 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the number of points on each path. // // Input, int N2, the number of paths. // // Input, double RHOMAX, the maximum value of RHO. // // Input, double RHO0, the correlation length. // // Input, double *CORRELATION ( int n, double rho_vec[], double rho0), // the name of the function which evaluates the correlation. // // Input/output, int &SEED, a seed for the random number // generator. // // Output, double X[N*N2], the sample paths. // { int i; int j; int k; // // Choose N equally spaced sample points from 0 to RHOMAX. // const double rhomin = 0.0; double[] rho_vec = typeMethods.r8vec_linspace_new(n, rhomin, rhomax); // // Evaluate the correlation function. // Correlation.CorrelationResult tr = correlation(globaldata, jdata, n, rho_vec, rho0); double[] cor_vec = tr.result; globaldata = tr.data; jdata = tr.j0data; // // Construct the correlation matrix; // // From the vector // [ C(0), C(1), C(2), ... C(N-1) ] // construct the vector // [ C(N-1), ..., C(2), C(1), C(0), C(1), C(2), ... C(N-1) ] // Every row of the correlation matrix can be constructed by a subvector // of this vector. // double[] cor = new double[n * n]; for (j = 0; j < n; j++) { for (i = 0; i < n; i++) { k = typeMethods.i4_wrap(Math.Abs(i - j), 0, n - 1); cor[i + j * n] = cor_vec[k]; } } // // Get the eigendecomposition of COR: // // COR = V * D * V'. // // Because COR is symmetric, V is orthogonal. // double[] d = new double[n]; double[] w = new double[n]; double[] v = new double[n * n]; TRED2.tred2(n, cor, ref d, ref w, ref v); TQL2.tql2(n, ref d, ref w, v); // // We assume COR is non-negative definite, and hence that there // are no negative eigenvalues. // double dmin = typeMethods.r8vec_min(n, d); if (dmin < -Math.Sqrt(typeMethods.r8_epsilon())) { Console.WriteLine(""); Console.WriteLine("SAMPLE_PATHS_EIGEN - Warning!"); Console.WriteLine(" Negative eigenvalues observed as low as " + dmin + ""); } for (i = 0; i < n; i++) { d[i] = Math.Max(d[i], 0.0); } // // Compute the eigenvalues of the factor C. // for (i = 0; i < n; i++) { d[i] = Math.Sqrt(d[i]); } // // Compute C, such that C' * C = COR. // double[] c = new double[n * n]; for (j = 0; j < n; j++) { for (i = 0; i < n; i++) { c[i + j * n] = 0.0; for (k = 0; k < n; k++) { c[i + j * n] += d[k] * v[i + k * n] * v[j + k * n]; } } } // // Compute N by N2 independent random normal values. // double[] r = typeMethods.r8mat_normal_01_new(n, n2, ref data, ref seed); // // Multiply to get the variables X which have correlation COR. // double[] x = typeMethods.r8mat_mm_new(n, n, n2, c, r); Correlation.CorrelationResult result = new() { result = x, data = globaldata }; return(result); }