public void InternetSampleDownload() { FrameTable table = DownloadFrameTable(new Uri("https://raw.githubusercontent.com/Dataweekends/zero_to_deep_learning_udemy/master/data/weight-height.csv")); FrameView view = table.WhereNotNull(); view.AddComputedColumn("Bmi", (FrameRow r) => { double h = (double)r["Height"]; double w = (double)r["Weight"]; return(w / (h * h)); }); FrameView males = view.Where("Gender", (string s) => (s == "Male")); FrameView females = view.Where("Gender", (string s) => (s == "Female")); SummaryStatistics maleSummary = new SummaryStatistics(males["Height"].As <double>()); SummaryStatistics femaleSummary = new SummaryStatistics(females["Height"].As <double>()); TestResult allNormal = view["Height"].As <double>().ShapiroFranciaTest(); TestResult maleNormal = males["Height"].As <double>().ShapiroFranciaTest(); TestResult femaleNormal = females["Height"].As <double>().ShapiroFranciaTest(); TestResult tTest = Univariate.StudentTTest(males["Height"].As <double>(), females["Height"].As <double>()); TestResult mwTest = Univariate.MannWhitneyTest(males["Height"].As <double>(), females["Height"].As <double>()); LinearRegressionResult result0 = males["Weight"].As <double>().LinearRegression(males["Height"].As <double>()); PolynomialRegressionResult result1 = males["Height"].As <double>().PolynomialRegression(males["Weight"].As <double>(), 1); PolynomialRegressionResult result2 = males["Height"].As <double>().PolynomialRegression(males["Weight"].As <double>(), 2); PolynomialRegressionResult result3 = males["Height"].As <double>().PolynomialRegression(males["Weight"].As <double>(), 3); //MultiLinearRegressionResult multi = view["Weight"].As<double>().MultiLinearRegression(view["Height"].As<double>(), view["Gender"].As<string>().Select(s => (s == "Male") ? 1.0 : 0.0).ToList()); }
public void FrameViewComputedColumn() { FrameView original = GetTestFrame(); original.AddComputedColumn("sex", r => { bool?isMale = (bool?)r["male"]; if (isMale.HasValue) { return(isMale.Value ? "male" : "female"); } else { return(null); } }); Assert.IsTrue(original.Columns["sex"].Name == "sex"); Assert.IsTrue(original.Columns["sex"].StorageType == typeof(string)); Assert.IsTrue(original.Columns["sex"].Count == original.Rows.Count); for (int i = 0; i < original.Rows.Count; i++) { bool? isMale = (bool?)original.Rows[i]["male"]; string sex = (string)original.Rows[i]["sex"]; Assert.IsTrue( ((isMale == null) && (sex == null)) || ((isMale == true) && (sex == "male")) || ((isMale == false) && (sex == "female")) ); } }
public static void AnalyzingData() { FrameTable table; Uri url = new Uri("https://raw.githubusercontent.com/dcwuser/metanumerics/master/Examples/Data/example.csv"); WebRequest request = WebRequest.Create(url); using (WebResponse response = request.GetResponse()) { using (StreamReader reader = new StreamReader(response.GetResponseStream())) { table = FrameTable.FromCsv(reader); } } FrameView view = table.WhereNotNull(); // Get the column with (zero-based) index 4. FrameColumn column4 = view.Columns[4]; // Get the column named "Height". FrameColumn heightsColumn = view.Columns["Height"]; // Even easier way to get the column named "Height". FrameColumn alsoHeightsColumn = view["Height"]; IReadOnlyList <double> heights = view["Height"].As <double>(); SummaryStatistics summary = new SummaryStatistics(view["Height"].As <double>()); Console.WriteLine($"Count = {summary.Count}"); Console.WriteLine($"Mean = {summary.Mean}"); Console.WriteLine($"Standard Deviation = {summary.StandardDeviation}"); Console.WriteLine($"Skewness = {summary.Skewness}"); Console.WriteLine($"Estimated population mean = {summary.PopulationMean}"); Console.WriteLine($"Estimated population standard deviation = {summary.PopulationStandardDeviation}"); IReadOnlyList <double> maleHeights = view.Where <string>("Sex", s => s == "M").Columns["Height"].As <double>(); IReadOnlyList <double> femaleHeights = view.Where <string>("Sex", s => s == "F").Columns["Height"].As <double>(); TestResult test = Univariate.StudentTTest(maleHeights, femaleHeights); Console.WriteLine($"{test.Statistic.Name} = {test.Statistic.Value}"); Console.WriteLine($"P = {test.Probability}"); TestResult maleHeightNormality = maleHeights.ShapiroFranciaTest(); TestResult totalHeightNormality = view["Height"].As <double>().ShapiroFranciaTest(); TestResult heightCompatibility = Univariate.KolmogorovSmirnovTest(maleHeights, femaleHeights); LinearRegressionResult fit = view["Weight"].As <double>().LinearRegression(view["Height"].As <double>()); Console.WriteLine($"Model weight = ({fit.Slope}) * height + ({fit.Intercept})."); Console.WriteLine($"Model explains {fit.RSquared * 100.0}% of variation."); ContingencyTable <string, bool> contingency = Bivariate.Crosstabs(view["Sex"].As <string>(), view["Result"].As <bool>()); Console.WriteLine($"Male incidence: {contingency.ProbabilityOfColumnConditionalOnRow(true, "M")}"); Console.WriteLine($"Female incidence: {contingency.ProbabilityOfColumnConditionalOnRow(true, "F")}"); Console.WriteLine($"Log odds ratio = {contingency.Binary.LogOddsRatio}"); view.AddComputedColumn("Bmi", r => ((double)r["Weight"]) / MoreMath.Sqr((double)r["Height"] / 100.0)); view.AddComputedColumn("Age", r => (DateTime.Now - (DateTime)r["Birthdate"]).TotalDays / 365.24); MultiLinearLogisticRegressionResult result = view["Result"].As <bool>().MultiLinearLogisticRegression( view["Bmi"].As <double>(), view["Sex"].As <string, double>(s => s == "M" ? 1.0 : 0.0) ); foreach (Parameter parameter in result.Parameters) { Console.WriteLine($"{parameter.Name} = {parameter.Estimate}"); } TestResult spearman = Bivariate.SpearmanRhoTest(view["Age"].As <double>(), view["Result"].As <double>()); Console.WriteLine($"{spearman.Statistic.Name} = {spearman.Statistic.Value} P = {spearman.Probability}"); }