public void TestBackwardRun2() { var states = new List <IState> { new State(0, "s"), new State(1, "t") }; var startDistribution = new [] { 0.85, 0.15 }; var tpm = new double[2][]; tpm[0] = new [] { 0.3, 0.7 }; tpm[1] = new [] { 0.1, 0.9 }; var observations = new List <IObservation> { new Observation(new double[] { 0 }, "A"), new Observation(new double[] { 1 }, "B"), new Observation(new double[] { 1 }, "B"), new Observation(new double[] { 0 }, "A") }; var emissions = new DiscreteDistribution[2]; emissions[0] = new DiscreteDistribution(new double[] { 0, 1 }, new[] { 0.4, 0.6 }); emissions[1] = new DiscreteDistribution(new double[] { 0, 1 }, new[] { 0.5, 0.5 }); var algo = new ForwardBackward(false); var res = algo.RunBackward(observations, HiddenMarkovModelStateFactory.GetState(new ModelCreationParameters <DiscreteDistribution>() { Pi = startDistribution, TransitionProbabilityMatrix = tpm, Emissions = emissions })); //new HiddenMarkovModelState<DiscreteDistribution>(startDistribution, tpm, emissions)); Assert.AreEqual(0.25499, res); Assert.AreEqual(1, algo.Beta[3][0]); Assert.AreEqual(1, algo.Beta[3][1]); Assert.AreEqual(0.47, algo.Beta[2][0]); Assert.AreEqual(0.49, algo.Beta[2][1]); Assert.AreEqual(0.2561, algo.Beta[1][0]); Assert.AreEqual(0.2487, algo.Beta[1][1]); Assert.AreEqual(0.133143, algo.Beta[0][0]); Assert.AreEqual(0.127281, algo.Beta[0][1]); }
public void TestBackwardNormalizedRun2() { var states = new List <IState> { new State(0, "s"), new State(1, "t") }; var startDistribution = new [] { 0.85, 0.15 }; var tpm = new double[2][]; tpm[0] = new [] { 0.3, 0.7 }; tpm[1] = new [] { 0.1, 0.9 }; var observations = new List <IObservation> { new Observation(new double[] { 0 }, "A"), new Observation(new double[] { 1 }, "B"), new Observation(new double[] { 1 }, "B"), new Observation(new double[] { 0 }, "A") }; var emissions = new DiscreteDistribution[2]; emissions[0] = new DiscreteDistribution(new double[] { 0, 1 }, new[] { 0.4, 0.6 }); emissions[1] = new DiscreteDistribution(new double[] { 0, 1 }, new[] { 0.5, 0.5 }); var algo = new ForwardBackward(true); var res = algo.RunBackward(observations, HiddenMarkovModelStateFactory.GetState(new ModelCreationParameters <DiscreteDistribution>() { Pi = startDistribution, TransitionProbabilityMatrix = tpm, Emissions = emissions })); //new HiddenMarkovModelState<DiscreteDistribution>(startDistribution, tpm, emissions)); Assert.AreEqual(-1.3665309502789404, res); Assert.AreEqual(0d, algo.Beta[3][0]); Assert.AreEqual(0d, algo.Beta[3][1]); Assert.AreEqual(-0.75502258427803293, algo.Beta[2][0]); Assert.AreEqual(-0.71334988787746456, algo.Beta[2][1]); Assert.AreEqual(-1.3621872857766575, algo.Beta[1][0]); Assert.AreEqual(-1.3915079281727778, algo.Beta[1][1]); Assert.AreEqual(-2.0163315403910613, algo.Beta[0][0]); Assert.AreEqual(-2.0613580382895655, algo.Beta[0][1]); }
public IHiddenMarkovModel <Mixture <IMultivariateDistribution> > Run(int maxIterations, double likelihoodTolerance) { // Initialize responce object var forwardBackward = new ForwardBackward(Normalized); do { maxIterations--; if (!_estimatedModel.Likelihood.EqualsTo(0)) { _currentModel = HiddenMarkovModelStateFactory.GetState(new ModelCreationParameters <Mixture <IMultivariateDistribution> > { Pi = _estimatedPi, TransitionProbabilityMatrix = _estimatedTransitionProbabilityMatrix, Emissions = _estimatedEmissions }); //new HiddenMarkovModelState<Mixture<IMultivariateDistribution>>(_estimatedPi, _estimatedTransitionProbabilityMatrix, _estimatedEmissions) { LogNormalized = _estimatedModel.LogNormalized }; _currentModel.Normalized = Normalized; _currentModel.Likelihood = _estimatedModel.Likelihood; } // Run Forward-Backward procedure forwardBackward.RunForward(_observations, _currentModel); forwardBackward.RunBackward(_observations, _currentModel); // Calculate Gamma and Xi var @params = new MixtureSigmaEstimationParameters <Mixture <IMultivariateDistribution> > { Alpha = forwardBackward.Alpha, Beta = forwardBackward.Beta, Observations = _observations, Model = _currentModel, Normalized = _currentModel.Normalized, L = _currentModel.Emission[0].Components.Length, ObservationWeights = _observationWeights }; _gammaEstimator = new GammaEstimator <Mixture <IMultivariateDistribution> >(); _ksiEstimator = new KsiEstimator <Mixture <IMultivariateDistribution> >(); var mixtureCoefficientsEstimator = new MixtureCoefficientsEstimator <Mixture <IMultivariateDistribution> >(); var mixtureMuEstimator = new MixtureMuEstimator <Mixture <IMultivariateDistribution> >(); // Mean var mixtureSigmaEstimator = new MixtureSigmaEstimator <Mixture <IMultivariateDistribution> >(); // Covariance var mixtureGammaEstimator = new MixtureGammaEstimator <Mixture <IMultivariateDistribution> >(); @params.Gamma = _gammaEstimator.Estimate(@params); @params.GammaComponents = mixtureGammaEstimator.Estimate(@params); EstimatePi(_gammaEstimator.Estimate(@params)); // TODO : weights for A EstimateTransitionProbabilityMatrix(_gammaEstimator.Estimate(@params), _ksiEstimator.Estimate(@params), _observationWeights, _observations.Count); for (var n = 0; n < _currentModel.N; n++) { var mixturesComponents = _currentModel.Emission[n].Coefficients.Length; var distributions = new IMultivariateDistribution[mixturesComponents]; // Calculate coefficients for state n // TODO : weights for W var coefficients = mixtureCoefficientsEstimator.Estimate(@params)[n]; if (Normalized) { mixtureCoefficientsEstimator.Denormalize(); } // TODO : weights Mu @params.Mu = mixtureMuEstimator.Estimate(@params); for (var l = 0; l < mixturesComponents; l++) { // TODO : weights Sigma distributions[l] = new NormalDistribution(mixtureMuEstimator.Estimate(@params)[n, l], mixtureSigmaEstimator.Estimate(@params)[n, l]); } _estimatedEmissions[n] = new Mixture <IMultivariateDistribution>(coefficients, distributions); } _estimatedModel = HiddenMarkovModelStateFactory.GetState(new ModelCreationParameters <Mixture <IMultivariateDistribution> > { Pi = _estimatedPi, TransitionProbabilityMatrix = _estimatedTransitionProbabilityMatrix, Emissions = _estimatedEmissions }); _estimatedModel.Normalized = Normalized; _estimatedModel.Likelihood = forwardBackward.RunForward(_observations, _estimatedModel); _likelihoodDelta = Math.Abs(Math.Abs(_currentModel.Likelihood) - Math.Abs(_estimatedModel.Likelihood)); Debug.WriteLine("Iteration {3} , Current {0}, Estimate {1} Likelihood delta {2}", _currentModel.Likelihood, _estimatedModel.Likelihood, _likelihoodDelta, maxIterations); }while (_currentModel != _estimatedModel && maxIterations > 0 && _likelihoodDelta > likelihoodTolerance); return(_estimatedModel); }