public Square ()
		{
			// initialize vertex byte buffer for shape coordinates
			ByteBuffer bb = ByteBuffer.AllocateDirect (
			// (# of coordinate values * 4 bytes per float)
			        squareCoords.Length * 4);
			bb.Order (ByteOrder.NativeOrder ());
			vertexBuffer = bb.AsFloatBuffer ();
			vertexBuffer.Put (squareCoords);
			vertexBuffer.Position (0);

			// initialize byte buffer for the draw list
			ByteBuffer dlb = ByteBuffer.AllocateDirect (
			// (# of coordinate values * 2 bytes per short)
			        drawOrder.Length * 2);
			dlb.Order (ByteOrder.NativeOrder ());
			drawListBuffer = dlb.AsShortBuffer ();
			drawListBuffer.Put (drawOrder);
			drawListBuffer.Position (0);

			// prepare shaders and OpenGL program
			int vertexShader = MyGLRenderer.LoadShader (GLES20.GlVertexShader,
			                                           vertexShaderCode);
			int fragmentShader = MyGLRenderer.LoadShader (GLES20.GlFragmentShader,
			                                             fragmentShaderCode);

			mProgram = GLES20.GlCreateProgram ();             // create empty OpenGL Program
			GLES20.GlAttachShader (mProgram, vertexShader);   // add the vertex shader to program
			GLES20.GlAttachShader (mProgram, fragmentShader); // add the fragment shader to program
			GLES20.GlLinkProgram (mProgram);                  // create OpenGL program executables
		}
示例#2
0
 public MITCRender()
 {
     mTriangleBuffer = FloatbufferUtil(mTriangleArray);
      mColorBuffer = FloatbufferUtil(mColorArray);
      quateBuffer = FloatbufferUtil(mQuateArray);
      CMatrixMath.Matrix4fSetIdentity(ref m_Transform);
 }
		public Triangle ()
		{
			// initialize vertex byte buffer for shape coordinates
			ByteBuffer bb = ByteBuffer.AllocateDirect (
	                // (number of coordinate values * 4 bytes per float)
				                triangleCoords.Length * 4);
			// use the device hardware's native byte order
			bb.Order (ByteOrder.NativeOrder ());

			// create a floating point buffer from the ByteBuffer
			vertexBuffer = bb.AsFloatBuffer ();
			// add the coordinates to the FloatBuffer
			vertexBuffer.Put (triangleCoords);
			// set the buffer to read the first coordinate
			vertexBuffer.Position (0);

			// prepare shaders and OpenGL program
			int vertexShader = MyGLRenderer.LoadShader (GLES30.GlVertexShader,
				                   vertexShaderCode);
			int fragmentShader = MyGLRenderer.LoadShader (GLES30.GlFragmentShader,
				                     fragmentShaderCode);

			mProgram = GLES30.GlCreateProgram ();             // create empty OpenGL Program
			GLES30.GlAttachShader (mProgram, vertexShader);   // add the vertex shader to program
			GLES30.GlAttachShader (mProgram, fragmentShader); // add the fragment shader to program
			GLES30.GlLinkProgram (mProgram);                  // create OpenGL program executables
		}
 public MainRenderer(MainView view)
 {
     mView = view;
     float[] vtmp = { 1.0f, -1.0f, -1.0f, -1.0f, 1.0f, 1.0f, -1.0f, 1.0f };
     float[] ttmp = { 1.0f, 1.0f, 0.0f, 1.0f, 1.0f, 0.0f, 0.0f, 0.0f };
     pVertex = ByteBuffer.AllocateDirect(8 * 4).Order(ByteOrder.NativeOrder()).AsFloatBuffer();
     pVertex.Put(vtmp);
     pVertex.Position(0);
     pTexCoord = ByteBuffer.AllocateDirect(8 * 4).Order(ByteOrder.NativeOrder()).AsFloatBuffer();
     pTexCoord.Put(ttmp);
     pTexCoord.Position(0);
 }
示例#5
0
      public Cube()
      {
         ByteBuffer byteBuf = ByteBuffer.AllocateDirect(vertices.Length * 4);
         byteBuf.Order(ByteOrder.NativeOrder());
         mVertexBuffer = byteBuf.AsFloatBuffer();
         mVertexBuffer.Put(vertices);
         mVertexBuffer.Position(0);

         byteBuf = ByteBuffer.AllocateDirect(colors.Length * 4);
         byteBuf.Order(ByteOrder.NativeOrder());
         mColorBuffer = byteBuf.AsFloatBuffer();
         mColorBuffer.Put(colors);
         mColorBuffer.Position(0);

         mIndexBuffer = ByteBuffer.AllocateDirect(indices.Length);
         mIndexBuffer.Put(indices);
         mIndexBuffer.Position(0);
      }
			public MyRenderer()
			{
				ByteBuffer bb = ByteBuffer.allocateDirect(mXYZCoords.Length * 4);
				bb.order(ByteOrder.nativeOrder());
				mVertexBuffer = bb.asFloatBuffer();
				mVertexBuffer.put(mXYZCoords);
				mVertexBuffer.position(0);

				ByteBuffer tb = ByteBuffer.allocateDirect(mUVCoords.Length * 4);
				tb.order(ByteOrder.nativeOrder());
				mTextureBuffer = tb.asFloatBuffer();
				mTextureBuffer.put(mUVCoords);
				mTextureBuffer.position(0);

				ByteBuffer dlb = ByteBuffer.allocateDirect(mVertexIndex.Length * 2);
				dlb.order(ByteOrder.nativeOrder());
				mDrawListBuffer = dlb.asShortBuffer();
				mDrawListBuffer.put(mVertexIndex);
				mDrawListBuffer.position(0);
			}
示例#7
0
        public Trajectory(int lineWidth)
        {
            mLineWidth = lineWidth;
            // Reset the model matrix to the identity
            Matrix.SetIdentityM(ModelMatrix, 0);

            // Allocate a vertex buffer
            ByteBuffer vertexByteBuffer = ByteBuffer.AllocateDirect(MAX_VERTICES * BYTES_PER_FLOAT);

            vertexByteBuffer.Order(ByteOrder.NativeOrder());
            mVertexBuffer = vertexByteBuffer.AsFloatBuffer();

            // Load the vertex and fragment shaders, then link the program
            int vertexShader = RenderUtils.loadShader(GLES20.GlVertexShader, mVertexShaderCode);
            int fragShader   = RenderUtils.loadShader(GLES20.GlFragmentShader, mFragmentShaderCode);

            mProgram = GLES20.GlCreateProgram();
            GLES20.GlAttachShader(mProgram, vertexShader);
            GLES20.GlAttachShader(mProgram, fragShader);
            GLES20.GlLinkProgram(mProgram);
        }
示例#8
0
        private void DrawTriangle(FloatBuffer aTriangleBuffer)
        {
            // Pass in the position information.
            aTriangleBuffer.Position(mPositionOffset);

            GLES20.GlVertexAttribPointer(mPositionHandle, mPositionDataSize, GLES20.GlFloat, false, mStrideBytes, aTriangleBuffer);
            GLES20.GlEnableVertexAttribArray(mPositionHandle);

            //Pass in the color information

            aTriangleBuffer.Position(mColorOffset);
            GLES20.GlVertexAttribPointer(mColorHandle, mColorDataSize, GLES20.GlFloat, false, mStrideBytes, aTriangleBuffer);
            GLES20.GlEnableVertexAttribArray(mColorHandle);

            Matrix.MultiplyMM(mMVPMatrix, 0, mViewMatrix, 0, mModelMatrix, 0);

            Matrix.MultiplyMM(mMVPMatrix, 0, mProjectionMatrix, 0, mMVPMatrix, 0);

            GLES20.GlUniformMatrix4fv(mMVPMatrixHandle, 1, false, mMVPMatrix, 0);
            GLES20.GlDrawArrays(GLES20.GlTriangles, 0, 3);
        }
        /// <summary>
        /// Converts a plane polygon from ARCore into a <see cref="Vector3"/> array.
        /// </summary>
        /// <param name="buffer">The float buffer containing 2D vertices of the polygon</param>
        /// <param name="waveVectorArray">The <see cref="Vector3"/> array with the 3D vertices of the polygon</param>
        public static void ToWave(this FloatBuffer buffer, ref Vector3[] waveVectorArray)
        {
            buffer.Rewind();

            var boundaryVertices = buffer.Limit() / 2;

            if (waveVectorArray == null)
            {
                waveVectorArray = new Vector3[boundaryVertices];
            }
            else if (waveVectorArray.Length != boundaryVertices)
            {
                Array.Resize(ref waveVectorArray, boundaryVertices);
            }

            for (int i = 0; i < boundaryVertices; i++)
            {
                waveVectorArray[i].X = buffer.Get();
                waveVectorArray[i].Z = buffer.Get();
            }
        }
示例#10
0
        public static FloatBuffer getDirectBuffer(int size, FloatBuffer buffer)
        {
            if (buffer == null)
            {
                return(buffer);
            }

            size = Round4(size);

            if (buffer.Direct)
            {
                buffer.limit((size >> 2) + buffer.position());
                return(buffer);
            }

            FloatBuffer directBuffer = allocateDirectBuffer(size).asFloatBuffer();

            directBuffer.put((FloatBuffer)((FloatBuffer)buffer).slice().limit(size >> 2));
            directBuffer.rewind();

            return(directBuffer);
        }
示例#11
0
        /// <summary>
        /// Adds the line.
        /// </summary>
        /// <param name="points">The points.</param>
        /// <param name="argb">ARGB.</param>
        public void AddLine(float[] points, float width, int argb)
        {
            // a float is 4 bytes, therefore we multiply the number if
            // vertices with 4.
            ByteBuffer vbb = ByteBuffer.AllocateDirect(points.Length * 4);

            vbb.Order(ByteOrder.NativeOrder());
            FloatBuffer vertexBuffer = vbb.AsFloatBuffer();

            vertexBuffer.Put(points);
            vertexBuffer.Position(0);

            LineProcessed line = new LineProcessed()
            {
                Vertices = vertexBuffer,
                Color    = argb,
                Width    = width,
                Count    = points.Length / 3
            };

            _lines.Add(line);
        }
示例#12
0
        /**
         * Compute the intersections of a line with a collection of triangles.
         *
         * @param line     the line to intersect.
         * @param vertices the triangles, arranged in a buffer as GL_TRIANGLES (9 floats per triangle).
         *
         * @return the list of intersections with the line and the triangles, or null if there are no intersections.
         *
         * @throws ArgumentException if the line or vertex buffer is null.
         */
        public static List <Intersection> intersectTriangles(Line line, FloatBuffer vertices)
        {
            if (line == null)
            {
                string msg = Logging.getMessage("nullValue.LineIsNull");
                Logging.logger().severe(msg);
                throw new ArgumentException(msg);
            }

            if (vertices == null)
            {
                string msg = Logging.getMessage("nullValue.BufferIsNull");
                Logging.logger().severe(msg);
                throw new ArgumentException(msg);
            }

            List <Intersection> intersections = null;

            vertices.rewind();

            while (vertices.limit() - vertices.position() >= 9)
            {
                Intersection intersection = intersect(line,
                                                      vertices.get(), vertices.get(), vertices.get(),
                                                      vertices.get(), vertices.get(), vertices.get(),
                                                      vertices.get(), vertices.get(), vertices.get());

                if (intersection != null)
                {
                    if (intersections == null)
                    {
                        intersections = new List <Intersection>();
                    }
                    intersections.Add(intersection);
                }
            }

            return(intersections);
        }
示例#13
0
        private void FindValidSkeletonPoints(ARBody arBody)
        {
            int index = 0;

            int[] isExists;
            int   validPointNum = 0;

            float[] points;
            float[] skeletonPoints;

            // Determine whether the data returned by the algorithm is 3D human
            // skeleton data or 2D human skeleton data, and obtain valid skeleton points.
            if (arBody.CoordinateSystemType == ARCoordinateSystemType.CoordinateSystemType3dCamera)
            {
                isExists       = arBody.GetSkeletonPointIsExist3D();
                points         = new float[isExists.Length * 3];
                skeletonPoints = arBody.GetSkeletonPoint3D();
            }
            else
            {
                isExists       = arBody.GetSkeletonPointIsExist2D();
                points         = new float[isExists.Length * 3];
                skeletonPoints = arBody.GetSkeletonPoint2D();
            }

            // Save the three coordinates of each joint point(each point has three coordinates).
            for (int i = 0; i < isExists.Length; i++)
            {
                if (isExists[i] != 0)
                {
                    points[index++] = skeletonPoints[3 * i];
                    points[index++] = skeletonPoints[3 * i + 1];
                    points[index++] = skeletonPoints[3 * i + 2];
                    validPointNum++;
                }
            }
            mSkeletonPoints = FloatBuffer.Wrap(points);
            mPointsNum      = validPointNum;
        }
        private void FindValidConnectionSkeletonLines(ARBody arBody)
        {
            mPointsLineNum = 0;
            int[]   connections = arBody.GetBodySkeletonConnection();
            float[] linePoints  = new float[LINE_POINT_RATIO * connections.Length];
            float[] coors;
            int[]   isExists;

            if (arBody.CoordinateSystemType == ARCoordinateSystemType.CoordinateSystemType3dCamera)
            {
                coors    = arBody.GetSkeletonPoint3D();
                isExists = arBody.GetSkeletonPointIsExist3D();
            }
            else
            {
                coors    = arBody.GetSkeletonPoint2D();
                isExists = arBody.GetSkeletonPointIsExist2D();
            }

            // Filter out valid skeleton connection lines based on the returned results,
            // which consist of indexes of two ends, for example, [p0,p1;p0,p3;p0,p5;p1,p2].
            // The loop takes out the 3D coordinates of the end points of the valid connection
            // line and saves them in sequence.
            for (int j = 0; j < connections.Length; j += 2)
            {
                if (isExists[connections[j]] != 0 && isExists[connections[j + 1]] != 0)
                {
                    linePoints[mPointsLineNum * 3]     = coors[3 * connections[j]];
                    linePoints[mPointsLineNum * 3 + 1] = coors[3 * connections[j] + 1];
                    linePoints[mPointsLineNum * 3 + 2] = coors[3 * connections[j] + 2];
                    linePoints[mPointsLineNum * 3 + 3] = coors[3 * connections[j + 1]];
                    linePoints[mPointsLineNum * 3 + 4] = coors[3 * connections[j + 1] + 1];
                    linePoints[mPointsLineNum * 3 + 5] = coors[3 * connections[j + 1] + 2];
                    mPointsLineNum += 2;
                }
            }
            mLinePoints = FloatBuffer.Wrap(linePoints);
        }
示例#15
0
        public NinePatch(object tx, int x, int y, int w, int h, int Left, int Top, int Right, int Bottom)
            : base(0, 0, 0, 0)
        {
            texture = TextureCache.Get(tx);
            w       = w == 0 ? texture.Width : w;
            h       = h == 0 ? texture.Height : h;

            nWidth  = _Width = w;
            nHeight = _Height = h;

            vertices       = new float[16];
            verticesBuffer = Quad.CreateSet(9);

            marginLeft   = Left;
            marginRight  = Right;
            marginTop    = Top;
            marginBottom = Bottom;

            outterF = texture.UvRect(x, y, x + w, y + h);
            innerF  = texture.UvRect(x + Left, y + Top, x + w - Right, y + h - Bottom);

            UpdateVertices();
        }
示例#16
0
            public MyRenderer()
            {
                ByteBuffer bb = ByteBuffer.allocateDirect(mXYZCoords.Length * 4);

                bb.order(ByteOrder.nativeOrder());
                mVertexBuffer = bb.asFloatBuffer();
                mVertexBuffer.put(mXYZCoords);
                mVertexBuffer.position(0);

                ByteBuffer tb = ByteBuffer.allocateDirect(mUVCoords.Length * 4);

                tb.order(ByteOrder.nativeOrder());
                mTextureBuffer = tb.asFloatBuffer();
                mTextureBuffer.put(mUVCoords);
                mTextureBuffer.position(0);

                ByteBuffer dlb = ByteBuffer.allocateDirect(mVertexIndex.Length * 2);

                dlb.order(ByteOrder.nativeOrder());
                mDrawListBuffer = dlb.asShortBuffer();
                mDrawListBuffer.put(mVertexIndex);
                mDrawListBuffer.position(0);
            }
        public void Init()
        {
            try
            {
                // Create program
                MProgram = GlToolbox.CreateProgram(VertexShader, FragmentShader);

                // Bind attributes and uniforms
                MTexSamplerHandle = GLES20.GlGetUniformLocation(MProgram, "tex_sampler");
                MTexCoordHandle   = GLES20.GlGetAttribLocation(MProgram, "a_texcoord");
                MPosCoordHandle   = GLES20.GlGetAttribLocation(MProgram, "a_position");

                // Setup coordinate buffers
                MTexVertices = ByteBuffer.AllocateDirect(TexVertices.Length * FloatSizeBytes).Order(ByteOrder.NativeOrder()).AsFloatBuffer();
                MTexVertices.Put(TexVertices).Position(0);
                MPosVertices = ByteBuffer.AllocateDirect(PosVertices.Length * FloatSizeBytes).Order(ByteOrder.NativeOrder()).AsFloatBuffer();
                MPosVertices.Put(PosVertices).Position(0);
            }
            catch (Exception e)
            {
                Methods.DisplayReportResultTrack(e);
            }
        }
示例#18
0
        /**
         * Expands a buffer of indexed triangle strip vertices to a buffer of non-indexed general-triangle vertices.
         *
         * @param indices the triangle indices.
         * @param inBuf   the vertex buffer the indices refer to, in the order x, y, z, x, y, z, ...
         * @param outBuf  the buffer in which to place the expanded triangle vertices. The buffer must have a limit
         *                sufficient to hold the output vertices.
         *
         * @throws ArgumentException if the index list or the input or output buffer is null, or if the output buffer
         *                                  size is insufficient.
         */
        public static void expandTriangleStrip(List <int> indices, FloatBuffer inBuf, FloatBuffer outBuf)
        {
            if (indices == null)
            {
                string msg = Logging.getMessage("nullValue.ListIsNull");
                Logging.logger().severe(msg);
                throw new ArgumentException(msg);
            }

            if (inBuf == null || outBuf == null)
            {
                string msg = Logging.getMessage("nullValue.BufferIsNull");
                Logging.logger().severe(msg);
                throw new ArgumentException(msg);
            }

            int nunTriangles = indices.Count - 2;

            if (nunTriangles * 3 * 3 > outBuf.limit() - outBuf.position())
            {
                string msg = Logging.getMessage("generic.BufferSize", outBuf.limit() - outBuf.position());
                Logging.logger().severe(msg);
                throw new ArgumentException(msg);
            }

            for (int i = 2; i < indices.Count; i++)
            {
                int k = indices[i - 2] * 3;
                outBuf.put(inBuf.get(k)).put(inBuf.get(k + 1)).put(inBuf.get(k + 2));

                k = indices[i % 2 == 0 ? i : i - 1] * 3;
                outBuf.put(inBuf.get(k)).put(inBuf.get(k + 1)).put(inBuf.get(k + 2));

                k = indices[i % 2 == 0 ? i - 1 : i] * 3;
                outBuf.put(inBuf.get(k)).put(inBuf.get(k + 1)).put(inBuf.get(k + 2));
            }
        }
示例#19
0
        public void OnSurfaceCreated(Javax.Microedition.Khronos.Egl.EGLConfig config)
        {
            Log.Info(Tag, "onSurfaceCreated");
            GLES20.GlClearColor(0.1f, 0.1f, 0.1f, 0.5f);             // Dark background so text shows up well

            cubeVertices      = PrepareBuffer(WorldLayoutData.CubeCoords);
            cubeColors        = PrepareBuffer(WorldLayoutData.CubeColors);
            cubeFoundColors   = PrepareBuffer(WorldLayoutData.CubeFoundColors);
            cubeNormals       = PrepareBuffer(WorldLayoutData.CubeNormals);
            cubeTextureCoords = PrepareBuffer(WorldLayoutData.CubeTexCoords);

            floorVertices = PrepareBuffer(WorldLayoutData.FloorCoords);
            floorNormals  = PrepareBuffer(WorldLayoutData.FloorNormals);
            floorColors   = PrepareBuffer(WorldLayoutData.FloorColors);

            monkeyFound    = LoadGlTexture(Resource.Drawable.texture2);
            monkeyNotFound = LoadGlTexture(Resource.Drawable.texture1);

            int vertexShader = LoadGlShader(GLES20.GlVertexShader, Resource.Raw.vertex);
            int gridShader   = LoadGlShader(GLES20.GlFragmentShader, Resource.Raw.fragment);

            glProgram = GLES20.GlCreateProgram();
            GLES20.GlAttachShader(glProgram, vertexShader);
            GLES20.GlAttachShader(glProgram, gridShader);
            GLES20.GlLinkProgram(glProgram);

            GLES20.GlEnable(GLES20.GlDepthTest);

            // Object first appears directly in front of user
            Matrix.SetIdentityM(modelCube, 0);
            Matrix.TranslateM(modelCube, 0, 0, 0, -mObjectDistance);

            Matrix.SetIdentityM(modelFloor, 0);
            Matrix.TranslateM(modelFloor, 0, 0, -mFloorDepth, 0);             // Floor appears below user

            CheckGlError("onSurfaceCreated");
        }
        private void InitBuffers()
        {
            // Initialize the size of the vertex buffer.
            ByteBuffer byteBufferForVer = ByteBuffer.AllocateDirect(32);

            byteBufferForVer.Order(ByteOrder.NativeOrder());
            mVerBuffer = byteBufferForVer.AsFloatBuffer();
            mVerBuffer.Put(POS);
            mVerBuffer.Position(0);

            // Initialize the size of the texture buffer.
            ByteBuffer byteBufferForTex = ByteBuffer.AllocateDirect(32);

            byteBufferForTex.Order(ByteOrder.NativeOrder());
            mTexBuffer = byteBufferForTex.AsFloatBuffer();
            mTexBuffer.Put(COORD);
            mTexBuffer.Position(0);

            // Initialize the size of the transformed texture buffer.
            ByteBuffer byteBufferForTransformedTex = ByteBuffer.AllocateDirect(32);

            byteBufferForTransformedTex.Order(ByteOrder.NativeOrder());
            mTexTransformedBuffer = byteBufferForTransformedTex.AsFloatBuffer();
        }
示例#21
0
        public void Init()
        {
            // Create program
            _program = GLToolbox.CreateProgram (VertexShader, FragmentShader);

            // Bind attributes and uniforms
            _texSamplerHandle = GLES20.GlGetUniformLocation (_program,
                                                             "tex_sampler");
            _texCoordHandle = GLES20.GlGetAttribLocation (_program, "a_texcoord");
            _posCoordHandle = GLES20.GlGetAttribLocation (_program, "a_position");

            // Setup coordinate buffers
            _texVertices = ByteBuffer.AllocateDirect (
                TexVertices.Length * FloatSizeBytes)
                    .Order (ByteOrder.NativeOrder ()).AsFloatBuffer ();

            _texVertices.Put (TexVertices).Position (0);

            _posVertices = ByteBuffer.AllocateDirect (
                PosVertices.Length * FloatSizeBytes)
                    .Order (ByteOrder.NativeOrder ()).AsFloatBuffer ();

            _posVertices.Put (PosVertices).Position (0);
        }
示例#22
0
        /**
         * Updates the plane model transform matrix and extents.
         */
        private void updatePlaneParameters(float[] planeMatrix, float extentX, float extentZ,
                                           FloatBuffer boundary)
        {
            Array.Copy(planeMatrix, 0, mModelMatrix, 0, 16);
            if (boundary == null)
            {
                mVertexBuffer.Limit(0);
                mIndexBuffer.Limit(0);
                return;
            }

            // Generate a new set of vertices and a corresponding triangle strip index set so that
            // the plane boundary polygon has a fading edge. This is done by making a copy of the
            // boundary polygon vertices and scaling it down around center to push it inwards. Then
            // the index buffer is setup accordingly.
            boundary.Rewind();
            int boundaryVertices = boundary.Limit() / 2;
            int numVertices;
            int numIndices;

            numVertices = boundaryVertices * VERTS_PER_BOUNDARY_VERT;
            // drawn as GL_TRIANGLE_STRIP with 3n-2 triangles (n-2 for fill, 2n for perimeter).
            numIndices = boundaryVertices * INDICES_PER_BOUNDARY_VERT;

            if (mVertexBuffer.Capacity() < numVertices * COORDS_PER_VERTEX)
            {
                int size = mVertexBuffer.Capacity();
                while (size < numVertices * COORDS_PER_VERTEX)
                {
                    size *= 2;
                }
                mVertexBuffer = ByteBuffer.AllocateDirect(BYTES_PER_FLOAT * size)
                                .Order(ByteOrder.NativeOrder()).AsFloatBuffer();
            }
            mVertexBuffer.Rewind();
            mVertexBuffer.Limit(numVertices * COORDS_PER_VERTEX);


            if (mIndexBuffer.Capacity() < numIndices)
            {
                int size = mIndexBuffer.Capacity();
                while (size < numIndices)
                {
                    size *= 2;
                }
                mIndexBuffer = ByteBuffer.AllocateDirect(BYTES_PER_SHORT * size)
                               .Order(ByteOrder.NativeOrder()).AsShortBuffer();
            }
            mIndexBuffer.Rewind();
            mIndexBuffer.Limit(numIndices);

            // Note: when either dimension of the bounding box is smaller than 2*FADE_RADIUS_M we
            // generate a bunch of 0-area triangles.  These don't get rendered though so it works
            // out ok.
            float xScale = Math.Max((extentX - 2 * FADE_RADIUS_M) / extentX, 0.0f);
            float zScale = Math.Max((extentZ - 2 * FADE_RADIUS_M) / extentZ, 0.0f);

            while (boundary.HasRemaining)
            {
                float x = boundary.Get();
                float z = boundary.Get();
                mVertexBuffer.Put(x);
                mVertexBuffer.Put(z);
                mVertexBuffer.Put(0.0f);
                mVertexBuffer.Put(x * xScale);
                mVertexBuffer.Put(z * zScale);
                mVertexBuffer.Put(1.0f);
            }

            // step 1, perimeter
            mIndexBuffer.Put((short)((boundaryVertices - 1) * 2));
            for (int i = 0; i < boundaryVertices; ++i)
            {
                mIndexBuffer.Put((short)(i * 2));
                mIndexBuffer.Put((short)(i * 2 + 1));
            }
            mIndexBuffer.Put((short)1);
            // This leaves us on the interior edge of the perimeter between the inset vertices
            // for boundary verts n-1 and 0.

            // step 2, interior:
            for (int i = 1; i < boundaryVertices / 2; ++i)
            {
                mIndexBuffer.Put((short)((boundaryVertices - 1 - i) * 2 + 1));
                mIndexBuffer.Put((short)(i * 2 + 1));
            }
            if (boundaryVertices % 2 != 0)
            {
                mIndexBuffer.Put((short)((boundaryVertices / 2) * 2 + 1));
            }
        }
        public void onSurfaceCreated(javax.microedition.khronos.egl.EGLConfig value)
        {
            Console.WriteLine("enter AndroidCardboardExperiment onSurfaceCreated");

            GLES20.glClearColor(0.1f, 0.1f, 0.1f, 0.5f); // Dark background so text shows up well.

            ByteBuffer bbVertices = ByteBuffer.allocateDirect(WorldLayoutData.CUBE_COORDS.Length * 4);

            bbVertices.order(ByteOrder.nativeOrder());
            cubeVertices = bbVertices.asFloatBuffer();
            cubeVertices.put(WorldLayoutData.CUBE_COORDS);
            cubeVertices.position(0);

            ByteBuffer bbColors = ByteBuffer.allocateDirect(WorldLayoutData.CUBE_COLORS.Length * 4);

            bbColors.order(ByteOrder.nativeOrder());
            cubeColors = bbColors.asFloatBuffer();
            cubeColors.put(WorldLayoutData.CUBE_COLORS);
            cubeColors.position(0);

            ByteBuffer bbFoundColors = ByteBuffer.allocateDirect(
                WorldLayoutData.CUBE_FOUND_COLORS.Length * 4);

            bbFoundColors.order(ByteOrder.nativeOrder());
            cubeFoundColors = bbFoundColors.asFloatBuffer();
            cubeFoundColors.put(WorldLayoutData.CUBE_FOUND_COLORS);
            cubeFoundColors.position(0);

            ByteBuffer bbNormals = ByteBuffer.allocateDirect(WorldLayoutData.CUBE_NORMALS.Length * 4);

            bbNormals.order(ByteOrder.nativeOrder());
            cubeNormals = bbNormals.asFloatBuffer();
            cubeNormals.put(WorldLayoutData.CUBE_NORMALS);
            cubeNormals.position(0);

            // make a floor
            ByteBuffer bbFloorVertices = ByteBuffer.allocateDirect(WorldLayoutData.FLOOR_COORDS.Length * 4);

            bbFloorVertices.order(ByteOrder.nativeOrder());
            floorVertices = bbFloorVertices.asFloatBuffer();
            floorVertices.put(WorldLayoutData.FLOOR_COORDS);
            floorVertices.position(0);

            ByteBuffer bbFloorNormals = ByteBuffer.allocateDirect(WorldLayoutData.FLOOR_NORMALS.Length * 4);

            bbFloorNormals.order(ByteOrder.nativeOrder());
            floorNormals = bbFloorNormals.asFloatBuffer();
            floorNormals.put(WorldLayoutData.FLOOR_NORMALS);
            floorNormals.position(0);

            var fcolors = 0xA26D41;

            // rgb to float

            //[javac]         return  __Enumerable.<Float>AsEnumerable(__SZArrayEnumerator_1.<Float>Of(x));
            //[javac]                                                                       ^
            //[javac]   required: T#1[]
            //[javac]   found: float[]
            //[javac]   reason: actual argument float[] cannot be converted to Float[] by method invocation conversion

            //          var FLOOR_COLORS = (
            //              from i in Enumerable.Range(0, 6)
            //              select new float[] { 0xA2 / 1.0f, 0x6D / 1.0f, 0x41 / 1.0f, 1.0f }
            //).SelectMany(x => x).ToArray();

            #region floorColors
            var FLOOR_COLORS = new float[4 * 6];

            for (int i = 0; i < FLOOR_COLORS.Length; i += 4)
            {
                FLOOR_COLORS[i + 0] = 0xA2 / 100.0f;
                FLOOR_COLORS[i + 1] = 0x6D / 100.0f;
                FLOOR_COLORS[i + 2] = 0x41 / 100.0f;
                FLOOR_COLORS[i + 3] = 1.0f;
            }



            FloatBuffer floorColors;

            ByteBuffer bbFloorColors = ByteBuffer.allocateDirect(WorldLayoutData.FLOOR_COLORS.Length * 4);
            bbFloorColors.order(ByteOrder.nativeOrder());
            floorColors = bbFloorColors.asFloatBuffer();
            //floorColors.put(WorldLayoutData.FLOOR_COLORS);
            floorColors.put(FLOOR_COLORS);
            floorColors.position(0);
            #endregion


            #region loadGLShader
            Func <int, ScriptCoreLib.GLSL.Shader, int> loadGLShader = (type, xshader) =>
            {
                var code = xshader.ToString();

                int shader = GLES20.glCreateShader(type);
                GLES20.glShaderSource(shader, code);
                GLES20.glCompileShader(shader);

                // Get the compilation status.
                int[] compileStatus = new int[1];
                GLES20.glGetShaderiv(shader, GLES20.GL_COMPILE_STATUS, compileStatus, 0);

                // If the compilation failed, delete the shader.
                if (compileStatus[0] == 0)
                {
                    Console.WriteLine("Error compiling shader: " + GLES20.glGetShaderInfoLog(shader));
                    GLES20.glDeleteShader(shader);
                    shader = 0;
                }

                if (shader == 0)
                {
                    throw new Exception("Error creating shader.");
                }

                return(shader);
            };
            #endregion


            int vertexShader      = loadGLShader(GLES20.GL_VERTEX_SHADER, new AndroidCardboardExperiment.Shaders.light_vertexVertexShader());
            int gridShader        = loadGLShader(GLES20.GL_FRAGMENT_SHADER, new Shaders.xgrid_fragmentFragmentShader());
            int passthroughShader = loadGLShader(GLES20.GL_FRAGMENT_SHADER, new AndroidCardboardExperiment.Shaders.passthrough_fragmentFragmentShader());

            cubeProgram = GLES20.glCreateProgram();
            GLES20.glAttachShader(cubeProgram, vertexShader);
            GLES20.glAttachShader(cubeProgram, passthroughShader);
            GLES20.glLinkProgram(cubeProgram);
            GLES20.glUseProgram(cubeProgram);

            checkGLError("Cube program");

            cubePositionParam = GLES20.glGetAttribLocation(cubeProgram, "a_Position");
            cubeNormalParam   = GLES20.glGetAttribLocation(cubeProgram, "a_Normal");
            cubeColorParam    = GLES20.glGetAttribLocation(cubeProgram, "a_Color");

            cubeModelParam               = GLES20.glGetUniformLocation(cubeProgram, "u_Model");
            cubeModelViewParam           = GLES20.glGetUniformLocation(cubeProgram, "u_MVMatrix");
            cubeModelViewProjectionParam = GLES20.glGetUniformLocation(cubeProgram, "u_MVP");
            cubeLightPosParam            = GLES20.glGetUniformLocation(cubeProgram, "u_LightPos");

            GLES20.glEnableVertexAttribArray(cubePositionParam);
            GLES20.glEnableVertexAttribArray(cubeNormalParam);
            GLES20.glEnableVertexAttribArray(cubeColorParam);

            checkGLError("Cube program params");

            floorProgram = GLES20.glCreateProgram();
            GLES20.glAttachShader(floorProgram, vertexShader);
            GLES20.glAttachShader(floorProgram, gridShader);
            GLES20.glLinkProgram(floorProgram);
            GLES20.glUseProgram(floorProgram);

            checkGLError("Floor program");

            floorModelParam               = GLES20.glGetUniformLocation(floorProgram, "u_Model");
            floorModelViewParam           = GLES20.glGetUniformLocation(floorProgram, "u_MVMatrix");
            floorModelViewProjectionParam = GLES20.glGetUniformLocation(floorProgram, "u_MVP");
            floorLightPosParam            = GLES20.glGetUniformLocation(floorProgram, "u_LightPos");

            floorPositionParam = GLES20.glGetAttribLocation(floorProgram, "a_Position");
            floorNormalParam   = GLES20.glGetAttribLocation(floorProgram, "a_Normal");
            floorColorParam    = GLES20.glGetAttribLocation(floorProgram, "a_Color");

            GLES20.glEnableVertexAttribArray(floorPositionParam);
            GLES20.glEnableVertexAttribArray(floorNormalParam);
            GLES20.glEnableVertexAttribArray(floorColorParam);

            checkGLError("Floor program params");

            GLES20.glEnable(GLES20.GL_DEPTH_TEST);
            //GLES20.glEnable(GLES20.GL_FOG);



            checkGLError("onSurfaceCreated");

            Console.WriteLine("exit AndroidCardboardExperiment onSurfaceCreated");


            vFinishFrame = (com.google.vrtoolkit.cardboard.Viewport v) =>
            {
                // GPU thread stops now..
                FrameOne.Stop();
            };

            // I/System.Console(28103): CardboardForEdgeExperiment { ProcessorCount = 8, MODEL = SM-G925F, CurrentManagedThreadId = 11305, FrameCounter = 28, LastFrameMilliseconds = 40, codeFPS = 25.0, pitch = 1.579644, yaw = 1.6225219 }

            #region vNewFrame
            vNewFrame = (com.google.vrtoolkit.cardboard.HeadTransform headTransform) =>
            {
                // http://stackoverflow.com/questions/11851343/raise-fps-on-android-tablet-above-60-for-opengl-game
                // http://gafferongames.com/game-physics/fix-your-timestep/

                #region FrameWatch
                if (FrameWatch.ElapsedMilliseconds >= 1000)
                {
                    var codeFPS = 1000.0 / FrameOne.ElapsedMilliseconds;

                    // we now know how many frames did fit into it
                    // need 60 or more!
                    Console.WriteLine("CardboardForEdgeExperiment " + new
                    {
                        // static
                        System.Environment.ProcessorCount,

                        android.os.Build.MODEL,

                        System.Environment.CurrentManagedThreadId,

                        FrameCounter,

                        // dynamic
                        LastFrameMilliseconds = FrameOne.ElapsedMilliseconds,
                        codeFPS,

                        // very dynamic
                        pitch,
                        yaw
                    });

                    // I/System.Console(28117): CardboardForEdgeExperiment { ProcessorCount = 2, MODEL = Nexus 9, CurrentManagedThreadId = 1647, FrameCounter = 60, LastFrameMilliseconds = 6, codeFPS = 166.66666666666666, pitch = 1.5978987, yaw = -2.0770574 }

                    FrameWatch.Restart();
                    FrameCounter = 0;
                }

                #endregion
                // GPU thread starts now..
                FrameOne.Restart();
                FrameCounter++;


                //Console.WriteLine("AndroidCardboardExperiment onNewFrame");



                headTransform.getHeadView(headView, 0);

                checkGLError("onReadyToDraw");

                // I/System.Console(27769): CardboardForEdgeExperiment { FrameCounter = 61, LastFrameMilliseconds = 0, codeFPS = Infinity, CurrentManagedThreadId = 1637, ProcessorCount = 2, MODEL = Nexus 9 }

                // add placeholder slowdown
                //System.Threading.Thread.Sleep(5);
                // I/System.Console(27840): CardboardForEdgeExperiment { FrameCounter = 60, LastFrameMilliseconds = 6, codeFPS = 166.66666666666666, CurrentManagedThreadId = 1642, ProcessorCount = 2, MODEL = Nexus 9 }
            };
            #endregion

            // if we define it here, we get to see it in vr...
            var modelCube = new float[16];

            // I/System.Console(19917): CardboardForEdgeExperiment { ProcessorCount = 8, MODEL = SM-G925F, CurrentManagedThreadId = 9959, FrameCounter = 46, LastFrameMilliseconds = 6, codeFPS = 166.66666666666666, pitch = 0.9070491, yaw = -0.3660261 }

            #region vDrawEye
            vDrawEye = (com.google.vrtoolkit.cardboard.Eye eye) =>
            {
                // VIDEO via "X:\util\android-sdk-windows\tools\ddms.bat"

                var camera = new float[16];


                // static void	setLookAtM(float[] rm, int rmOffset, float eyeX, float eyeY, float eyeZ, float centerX, float centerY, float centerZ, float upX, float upY, float upZ)
                // Build the camera matrix and apply it to the ModelView.
                Matrix.setLookAtM(camera, 0,

                                  0.0f, 0.0f, CAMERA_Z,

                                  0f, 0.0f, 0.0f,

                                  0.0f, 1.0f, 0.0f);


                #region glClearColor
                // skybox/video instead?
                GLES20.glClearColor(
                    0x87 / 255f,
                    0xCE / 255f,
                    0xEB / 255f, 1.0f
                    );

                GLES20.glClear(GLES20.GL_COLOR_BUFFER_BIT | GLES20.GL_DEPTH_BUFFER_BIT);
                #endregion



                var view = new float[16];

                // can we strafe?



                // Apply the eye transformation to the camera.
                Matrix.multiplyMM(view, 0, eye.getEyeView(), 0, camera, 0);


                // we tapped into it. this strafes ius!
                Matrix.translateM(view, 0,

                                  (float)Math.Sin(TotalTime.ElapsedMilliseconds * 0.0001f) * objectDistance * 2.5f,


                                  // up down
                                  //(float)Math.Sin(TotalTime.ElapsedMilliseconds * 0.001f) * floorDepth * 0.5f,
                                  (float)Math.Cos(TotalTime.ElapsedMilliseconds * 0.001f) * floorDepth * 0.1f,

                                  0
                                  );


                // Set the position of the light
                Matrix.multiplyMV(lightPosInEyeSpace, 0, view, 0, LIGHT_POS_IN_WORLD_SPACE, 0);

                // Build the ModelView and ModelViewProjection matrices
                // for calculating cube position and light.
                float[] perspective = eye.getPerspective(Z_NEAR, Z_FAR);


                // just a buffer?
                var modelView = new float[16];


                #region drawCube()
                Action <float, float, float> drawCube = (tx, ty, tz) =>
                {
                    #region isLookingAtObject
                    Func <bool> isLookingAtObject = () =>
                    {
                        float[] initVec = { 0, 0, 0, 1.0f };



                        float[] objPositionVec = new float[4];

                        // Convert object space to camera space. Use the headView from onNewFrame.
                        Matrix.multiplyMM(modelView, 0, headView, 0, modelCube, 0);
                        Matrix.multiplyMV(objPositionVec, 0, modelView, 0, initVec, 0);



                        pitch = (float)Math.Atan2(objPositionVec[1], -objPositionVec[2]);
                        yaw   = (float)Math.Atan2(objPositionVec[0], -objPositionVec[2]);

                        if (Math.Abs(pitch) < PITCH_LIMIT)
                        {
                            if (Math.Abs(yaw) < YAW_LIMIT)
                            {
                                return(true);
                            }
                        }
                        return(false);
                    };
                    #endregion



                    // Object first appears directly in front of user.
                    Matrix.setIdentityM(modelCube, 0);
                    // cant see it?
                    var scale = 5.0f;
                    //Matrix.scaleM(modelCube, 0, scale, scale, scale);

                    Matrix.translateM(modelCube, 0, tx, ty, tz);


                    Matrix.multiplyMM(modelView, 0, view, 0, modelCube, 0);
                    Matrix.multiplyMM(modelViewProjection, 0, perspective, 0, modelView, 0);


                    // public static void scaleM (float[] m, int mOffset, float x, float y, float z)

                    // Build the Model part of the ModelView matrix.
                    //Matrix.rotateM(modelCube, 0, TIME_DELTA, 0.5f, 0.5f, 1.0f);

                    // cant see rotation?
                    Matrix.rotateM(modelCube, 0, TotalTime.ElapsedMilliseconds * 0.01f,
                                   // upwards rot.
                                   //0.5f,

                                   0f,

                                   // sideways, left to right
                                   0.5f
                                   , 0.0f);


                    // http://developer.android.com/reference/android/opengl/Matrix.html#translateM(float[], int, float, float, float)


                    // the cube rotates in front of us.
                    // do we need to use a special program to draw a cube?
                    // how can we make it bigger?

                    GLES20.glUseProgram(cubeProgram);

                    GLES20.glUniform3fv(cubeLightPosParam, 1, lightPosInEyeSpace, 0);

                    // Set the Model in the shader, used to calculate lighting
                    GLES20.glUniformMatrix4fv(cubeModelParam, 1, false, modelCube, 0);

                    // Set the ModelView in the shader, used to calculate lighting
                    GLES20.glUniformMatrix4fv(cubeModelViewParam, 1, false, modelView, 0);

                    // Set the position of the cube
                    GLES20.glVertexAttribPointer(cubePositionParam, COORDS_PER_VERTEX, GLES20.GL_FLOAT, false, 0, cubeVertices);

                    // Set the ModelViewProjection matrix in the shader.
                    GLES20.glUniformMatrix4fv(cubeModelViewProjectionParam, 1, false, modelViewProjection, 0);

                    // Set the normal positions of the cube, again for shading
                    GLES20.glVertexAttribPointer(cubeNormalParam, 3, GLES20.GL_FLOAT, false, 0, cubeNormals);


                    #region cubeColors
                    var cc = cubeColors;
                    if (!isLookingAtObject())
                    {
                        cc = cubeFoundColors;
                    }

                    GLES20.glVertexAttribPointer(cubeColorParam, 4, GLES20.GL_FLOAT, false, 0, cc);
                    #endregion

                    GLES20.glDrawArrays(GLES20.GL_TRIANGLES, 0, 36);
                    checkGLError("Drawing cube");
                };


                #endregion

                #region drawCube
                drawCube(0, objectDistance, objectDistance * -1.0f);


                drawCube(0, 0, objectDistance * -2.0f);

                // looks like an airstrip

                // low fps?
                //var endOfMatrix = 64;
                var endOfMatrix = 20;
                for (int i = -endOfMatrix; i < endOfMatrix; i++)
                {
                    drawCube(objectDistance, -floorDepth, objectDistance * -2.0f * i);
                    drawCube(-objectDistance, -floorDepth, objectDistance * -2.0f * i);


                    drawCube(objectDistance * 0.5f, 0, objectDistance * -2.0f * i);
                    drawCube(objectDistance * -0.5f, 0, objectDistance * -2.0f * i);
                }
                #endregion



                var modelFloor = new float[16];

                Matrix.setIdentityM(modelFloor, 0);
                Matrix.translateM(modelFloor, 0,

                                                      // the floor escapes!
                                                      //TotalTime.ElapsedMilliseconds * 0.01f,
                                  0, -floorDepth, 0); // Floor appears below user.

                // Set modelView for the floor, so we draw floor in the correct location
                Matrix.multiplyMM(modelView, 0, view, 0, modelFloor, 0);
                Matrix.multiplyMM(modelViewProjection, 0, perspective, 0, modelView, 0);

                #region drawFloor
                // called by onDrawEye
                Action drawFloor = delegate
                {
                    GLES20.glUseProgram(floorProgram);

                    // Set ModelView, MVP, position, normals, and color.
                    GLES20.glUniform3fv(floorLightPosParam, 1, lightPosInEyeSpace, 0);
                    GLES20.glUniformMatrix4fv(floorModelParam, 1, false, modelFloor, 0);
                    GLES20.glUniformMatrix4fv(floorModelViewParam, 1, false, modelView, 0);
                    GLES20.glUniformMatrix4fv(floorModelViewProjectionParam, 1, false,
                                              modelViewProjection, 0);
                    GLES20.glVertexAttribPointer(floorPositionParam, COORDS_PER_VERTEX, GLES20.GL_FLOAT,
                                                 false, 0, floorVertices);
                    GLES20.glVertexAttribPointer(floorNormalParam, 3, GLES20.GL_FLOAT, false, 0,
                                                 floorNormals);
                    GLES20.glVertexAttribPointer(floorColorParam, 4, GLES20.GL_FLOAT, false, 0, floorColors);

                    GLES20.glDrawArrays(GLES20.GL_TRIANGLES, 0, 6);

                    checkGLError("drawing floor");
                };

                drawFloor();
                #endregion
            };
            #endregion
        }
        /**
        * Creates the buffers we use to store information about the 3D world.
        *
        * OpenGL doesn't use Java arrays, but rather needs data in a format it can understand.
        * Hence we use ByteBuffers.
        */
        public void OnSurfaceCreated (Javax.Microedition.Khronos.Egl.EGLConfig config)
        {
            Android.Util.Log.Info (TAG, "onSurfaceCreated");

            GLES20.GlClearColor (0.1f, 0.1f, 0.1f, 0.5f); // Dark background so text shows up well.

            var bbVertices = ByteBuffer.AllocateDirect (WorldLayoutData.CUBE_COORDS.Length * 4);
            bbVertices.Order (ByteOrder.NativeOrder ());
            cubeVertices = bbVertices.AsFloatBuffer ();
            cubeVertices.Put (WorldLayoutData.CUBE_COORDS);
            cubeVertices.Position (0);

            var bbColors = ByteBuffer.AllocateDirect (WorldLayoutData.CUBE_COLORS.Length * 4);
            bbColors.Order (ByteOrder.NativeOrder ());
            cubeColors = bbColors.AsFloatBuffer ();
            cubeColors.Put (WorldLayoutData.CUBE_COLORS);
            cubeColors.Position (0);

            var bbFoundColors = ByteBuffer.AllocateDirect (WorldLayoutData.CUBE_FOUND_COLORS.Length * 4);
            bbFoundColors.Order (ByteOrder.NativeOrder ());
            cubeFoundColors = bbFoundColors.AsFloatBuffer ();
            cubeFoundColors.Put (WorldLayoutData.CUBE_FOUND_COLORS);
            cubeFoundColors.Position (0);

            var bbNormals = ByteBuffer.AllocateDirect (WorldLayoutData.CUBE_NORMALS.Length * 4);
            bbNormals.Order (ByteOrder.NativeOrder ());
            cubeNormals = bbNormals.AsFloatBuffer ();
            cubeNormals.Put (WorldLayoutData.CUBE_NORMALS);
            cubeNormals.Position (0);

            // make a floor
            var bbFloorVertices = ByteBuffer.AllocateDirect (WorldLayoutData.FLOOR_COORDS.Length * 4);
            bbFloorVertices.Order (ByteOrder.NativeOrder ());
            floorVertices = bbFloorVertices.AsFloatBuffer ();
            floorVertices.Put (WorldLayoutData.FLOOR_COORDS);
            floorVertices.Position (0);

            var bbFloorNormals = ByteBuffer.AllocateDirect (WorldLayoutData.FLOOR_NORMALS.Length * 4);
            bbFloorNormals.Order (ByteOrder.NativeOrder ());
            floorNormals = bbFloorNormals.AsFloatBuffer ();
            floorNormals.Put (WorldLayoutData.FLOOR_NORMALS);
            floorNormals.Position (0);

            var bbFloorColors = ByteBuffer.AllocateDirect (WorldLayoutData.FLOOR_COLORS.Length * 4);
            bbFloorColors.Order (ByteOrder.NativeOrder ());
            floorColors = bbFloorColors.AsFloatBuffer ();
            floorColors.Put (WorldLayoutData.FLOOR_COLORS);
            floorColors.Position (0);

            int vertexShader = loadGLShader (GLES20.GlVertexShader, Resource.Raw.light_vertex);
            int gridShader = loadGLShader (GLES20.GlFragmentShader, Resource.Raw.grid_fragment);
            int passthroughShader = loadGLShader (GLES20.GlFragmentShader, Resource.Raw.passthrough_fragment);

            cubeProgram = GLES20.GlCreateProgram ();
            GLES20.GlAttachShader (cubeProgram, vertexShader);
            GLES20.GlAttachShader (cubeProgram, passthroughShader);
            GLES20.GlLinkProgram (cubeProgram);
            GLES20.GlUseProgram (cubeProgram);

            CheckGLError ("Cube program");

            cubePositionParam = GLES20.GlGetAttribLocation (cubeProgram, "a_Position");
            cubeNormalParam = GLES20.GlGetAttribLocation (cubeProgram, "a_Normal");
            cubeColorParam = GLES20.GlGetAttribLocation (cubeProgram, "a_Color");

            cubeModelParam = GLES20.GlGetUniformLocation (cubeProgram, "u_Model");
            cubeModelViewParam = GLES20.GlGetUniformLocation (cubeProgram, "u_MVMatrix");
            cubeModelViewProjectionParam = GLES20.GlGetUniformLocation (cubeProgram, "u_MVP");
            cubeLightPosParam = GLES20.GlGetUniformLocation (cubeProgram, "u_LightPos");

            CheckGLError ("Cube program params");

            floorProgram = GLES20.GlCreateProgram ();
            GLES20.GlAttachShader (floorProgram, vertexShader);
            GLES20.GlAttachShader (floorProgram, gridShader);
            GLES20.GlLinkProgram (floorProgram);
            GLES20.GlUseProgram (floorProgram);

            CheckGLError ("Floor program");

            floorModelParam = GLES20.GlGetUniformLocation (floorProgram, "u_Model");
            floorModelViewParam = GLES20.GlGetUniformLocation (floorProgram, "u_MVMatrix");
            floorModelViewProjectionParam = GLES20.GlGetUniformLocation (floorProgram, "u_MVP");
            floorLightPosParam = GLES20.GlGetUniformLocation (floorProgram, "u_LightPos");

            floorPositionParam = GLES20.GlGetAttribLocation (floorProgram, "a_Position");
            floorNormalParam = GLES20.GlGetAttribLocation (floorProgram, "a_Normal");
            floorColorParam = GLES20.GlGetAttribLocation (floorProgram, "a_Color");

            CheckGLError ("Floor program params");

            Matrix.SetIdentityM (modelFloor, 0);
            Matrix.TranslateM (modelFloor, 0, 0, -floorDepth, 0); // Floor appears below user.

            // Avoid any delays during start-up due to decoding of sound files.
            System.Threading.Tasks.Task.Run (() => {
                // Start spatial audio playback of SOUND_FILE at the model postion. The returned
                //soundId handle is stored and allows for repositioning the sound object whenever
                // the cube position changes.
                gvrAudioEngine.PreloadSoundFile (SOUND_FILE);
                soundId = gvrAudioEngine.CreateSoundObject (SOUND_FILE);
                gvrAudioEngine.SetSoundObjectPosition (
                    soundId, modelPosition [0], modelPosition [1], modelPosition [2]);
                gvrAudioEngine.PlaySound (soundId, true /* looped playback */);
            });

            UpdateModelPosition ();

            CheckGLError ("onSurfaceCreated");
        }
            public LessonOneRenderer()
            {
                this.gl = (ScriptCoreLib.JavaScript.WebGL.WebGLRenderingContext)(object) __gl;


                #region Define points for equilateral triangles.

                // This triangle is red, green, and blue.
                float[] triangle1VerticesData =
                {
                    // X, Y, Z,
                    // R, G, B, A
                    -0.5f,       -0.25f, 0.0f,
                    1.0f,          0.0f, 0.0f, 1.0f,

                    0.5f,        -0.25f, 0.0f,
                    0.0f,          0.0f, 1.0f, 1.0f,

                    0.0f,  0.559016994f, 0.0f,
                    0.0f,          1.0f, 0.0f, 1.0f
                };

                // This triangle is yellow, cyan, and magenta.
                float[] triangle2VerticesData =
                {
                    // X, Y, Z,
                    // R, G, B, A
                    -0.5f,       -0.25f, 0.0f,
                    1.0f,          1.0f, 0.0f, 1.0f,

                    0.5f,        -0.25f, 0.0f,
                    0.0f,          1.0f, 1.0f, 1.0f,

                    0.0f,  0.559016994f, 0.0f,
                    1.0f,          0.0f, 1.0f, 1.0f
                };

                // This triangle is white, gray, and black.
                float[] triangle3VerticesData =
                {
                    // X, Y, Z,
                    // R, G, B, A
                    -0.5f,       -0.25f, 0.0f,
                    1.0f,          1.0f, 1.0f, 1.0f,

                    0.5f,        -0.25f, 0.0f,
                    0.5f,          0.5f, 0.5f, 1.0f,

                    0.0f,  0.559016994f, 0.0f,
                    0.0f,          0.0f, 0.0f, 1.0f
                };
                #endregion

                // Initialize the buffers.
                mTriangle1Vertices = ByteBuffer.allocateDirect(triangle1VerticesData.Length * mBytesPerFloat)
                                     .order(ByteOrder.nativeOrder()).asFloatBuffer();
                mTriangle2Vertices = ByteBuffer.allocateDirect(triangle2VerticesData.Length * mBytesPerFloat)
                                     .order(ByteOrder.nativeOrder()).asFloatBuffer();
                mTriangle3Vertices = ByteBuffer.allocateDirect(triangle3VerticesData.Length * mBytesPerFloat)
                                     .order(ByteOrder.nativeOrder()).asFloatBuffer();

                mTriangle1Vertices.put(triangle1VerticesData).position(0);
                mTriangle2Vertices.put(triangle2VerticesData).position(0);
                mTriangle3Vertices.put(triangle3VerticesData).position(0);
            }
示例#26
0
        /// <summary>
        /// Maximum number curl can be divided into. The bigger the value
        /// the smoother curl will be.With the cost of having more
        /// polygons for drawing.
        /// </summary>
        /// <param name="maxCurlSplits"></param>
        public CurlMesh(int maxCurlSplits)
        {
            // There really is no use for 0 splits.
            mMaxCurlSplits = maxCurlSplits < 1 ? 1 : maxCurlSplits;

            mArrScanLines       = new Array <Double>(maxCurlSplits + 2);
            mArrOutputVertices  = new Array <Vertex>(7);
            mArrRotatedVertices = new Array <Vertex>(4);
            mArrIntersections   = new Array <Vertex>(2);
            mArrTempVertices    = new Array <Vertex>(7 + 4);
            for (int i = 0; i < 7 + 4; ++i)
            {
                mArrTempVertices.Add(new Vertex());
            }

            if (DRAW_SHADOW)
            {
                mArrSelfShadowVertices = new Array <ShadowVertex>(
                    (mMaxCurlSplits + 2) * 2);
                mArrDropShadowVertices = new Array <ShadowVertex>(
                    (mMaxCurlSplits + 2) * 2);
                mArrTempShadowVertices = new Array <ShadowVertex>(
                    (mMaxCurlSplits + 2) * 2);
                for (int i = 0; i < (mMaxCurlSplits + 2) * 2; ++i)
                {
                    mArrTempShadowVertices.Add(new ShadowVertex());
                }
            }

            // Rectangle consists of 4 vertices. Index 0 = top-left, index 1 =
            // bottom-left, index 2 = top-right and index 3 = bottom-right.
            for (int i = 0; i < 4; ++i)
            {
                mRectangle[i] = new Vertex();
            }
            // Set up shadow penumbra direction to each vertex. We do fake 'self
            // shadow' calculations based on this information.
            mRectangle[0].mPenumbraX = mRectangle[1].mPenumbraX = mRectangle[1].mPenumbraY = mRectangle[3].mPenumbraY = -1;
            mRectangle[0].mPenumbraY = mRectangle[2].mPenumbraX = mRectangle[2].mPenumbraY = mRectangle[3].mPenumbraX = 1;

            if (DRAW_CURL_POSITION)
            {
                mCurlPositionLinesCount = 3;
                ByteBuffer hvbb = ByteBuffer
                                  .AllocateDirect(mCurlPositionLinesCount * 2 * 2 * 4);
                hvbb.Order(ByteOrder.NativeOrder());
                mBufCurlPositionLines = hvbb.AsFloatBuffer();
                mBufCurlPositionLines.Position(0);
            }

            // There are 4 vertices from bounding rect, max 2 from adding split line
            // to two corners and curl consists of max mMaxCurlSplits lines each
            // outputting 2 vertices.
            int        maxVerticesCount = 4 + 2 + (2 * mMaxCurlSplits);
            ByteBuffer vbb = ByteBuffer.AllocateDirect(maxVerticesCount * 3 * 4);

            vbb.Order(ByteOrder.NativeOrder());
            mBufVertices = vbb.AsFloatBuffer();
            mBufVertices.Position(0);

            if (DRAW_TEXTURE)
            {
                ByteBuffer tbb = ByteBuffer
                                 .AllocateDirect(maxVerticesCount * 2 * 4);
                tbb.Order(ByteOrder.NativeOrder());
                mBufTexCoords = tbb.AsFloatBuffer();
                mBufTexCoords.Position(0);
            }

            ByteBuffer cbb = ByteBuffer.AllocateDirect(maxVerticesCount * 4 * 4);

            cbb.Order(ByteOrder.NativeOrder());
            mBufColors = cbb.AsFloatBuffer();
            mBufColors.Position(0);

            if (DRAW_SHADOW)
            {
                int        maxShadowVerticesCount = (mMaxCurlSplits + 2) * 2 * 2;
                ByteBuffer scbb = ByteBuffer
                                  .AllocateDirect(maxShadowVerticesCount * 4 * 4);
                scbb.Order(ByteOrder.NativeOrder());
                mBufShadowColors = scbb.AsFloatBuffer();
                mBufShadowColors.Position(0);

                ByteBuffer sibb = ByteBuffer
                                  .AllocateDirect(maxShadowVerticesCount * 3 * 4);
                sibb.Order(ByteOrder.NativeOrder());
                mBufShadowVertices = sibb.AsFloatBuffer();
                mBufShadowVertices.Position(0);

                mDropShadowCount = mSelfShadowCount = 0;
            }
        }
示例#27
0
		public void Initialize ()
		{
			GLES20.GlClearColor(0.1f, 0.1f, 0.1f, 0.5f); // Dark background so text shows up well

			cubeVertices = PrepareBuffer (WorldLayoutData.CubeCoords);
			cubeNormals = PrepareBuffer (WorldLayoutData.CubeNormals);
			cubeTextureCoords = PrepareBuffer (WorldLayoutData.CubeTexCoords);

			floorVertices = PrepareBuffer (WorldLayoutData.FloorCoords);
			floorNormals = PrepareBuffer (WorldLayoutData.FloorNormals);
			floorColors = PrepareBuffer (WorldLayoutData.FloorColors);

			monkeyFound = DrawingUtils.LoadGlTexture (resources, Resource.Drawable.texture2);
			monkeyNotFound = DrawingUtils.LoadGlTexture (resources, Resource.Drawable.texture1);

			int vertexShader = DrawingUtils.LoadGlShader(GLES20.GlVertexShader, resources, Resource.Raw.vertex);
			int gridShader = DrawingUtils.LoadGlShader(GLES20.GlFragmentShader, resources, Resource.Raw.fragment);

			glProgram = GLES20.GlCreateProgram();
			GLES20.GlAttachShader(glProgram, vertexShader);
			GLES20.GlAttachShader(glProgram, gridShader);
			GLES20.GlLinkProgram(glProgram);

			GLES20.GlEnable(GLES20.GlDepthTest);

			// Object first appears directly in front of user
			Matrix.SetIdentityM(modelCube, 0);
			Matrix.TranslateM(modelCube, 0, 0, 0, -mObjectDistance);

			Matrix.SetIdentityM(modelFloor, 0);
			Matrix.TranslateM(modelFloor, 0, 0, -mFloorDepth, 0); // Floor appears below user

			CheckGlError("onSurfaceCreated");
		}
            //script: error JSC1000: Java : Opcode not implemented: stelem.r4 at AndroidOpenGLESLesson5Activity.Activities.AndroidOpenGLESLesson5Activity+LessonFiveRenderer+<>c.<.ctor>b__17_0

            public LessonFiveRenderer(Context activityContext)
            {
                this.gl = (ScriptCoreLib.JavaScript.WebGL.WebGLRenderingContext)(object) __gl;

                mActivityContext = activityContext;

                #region generateCubeData
                Func <f[], f[], f[], f[], f[], f[], f[], f[], int, f[]> generateCubeData =
                    (f[] point1,
                     f[] point2,
                     f[] point3,
                     f[] point4,
                     f[] point5,
                     f[] point6,
                     f[] point7,
                     f[] point8,
                     int elementsPerPoint) =>
                {
                    // Given a cube with the points defined as follows:
                    // front left top, front right top, front left bottom, front right bottom,
                    // back left top, back right top, back left bottom, back right bottom,
                    // return an array of 6 sides, 2 triangles per side, 3 vertices per triangle, and 4 floats per vertex.
                    int FRONT  = 0;
                    int RIGHT  = 1;
                    int BACK   = 2;
                    int LEFT   = 3;
                    int TOP    = 4;
                    int BOTTOM = 5;

                    int     size     = elementsPerPoint * 6 * 6;
                    float[] cubeData = new float[size];

                    for (int face = 0; face < 6; face++)
                    {
                        // Relative to the side, p1 = top left, p2 = top right, p3 = bottom left, p4 = bottom right
                        float[] p1, p2, p3, p4;

                        // Select the points for this face
                        if (face == FRONT)
                        {
                            p1 = point1; p2 = point2; p3 = point3; p4 = point4;
                        }
                        else if (face == RIGHT)
                        {
                            p1 = point2; p2 = point6; p3 = point4; p4 = point8;
                        }
                        else if (face == BACK)
                        {
                            p1 = point6; p2 = point5; p3 = point8; p4 = point7;
                        }
                        else if (face == LEFT)
                        {
                            p1 = point5; p2 = point1; p3 = point7; p4 = point3;
                        }
                        else if (face == TOP)
                        {
                            p1 = point5; p2 = point6; p3 = point1; p4 = point2;
                        }
                        else                                 // if (side == BOTTOM)
                        {
                            p1 = point8; p2 = point7; p3 = point4; p4 = point3;
                        }

                        // In OpenGL counter-clockwise winding is default. This means that when we look at a triangle,
                        // if the points are counter-clockwise we are looking at the "front". If not we are looking at
                        // the back. OpenGL has an optimization where all back-facing triangles are culled, since they
                        // usually represent the backside of an object and aren't visible anyways.

                        // Build the triangles
                        //  1---3,6
                        //  | / |
                        // 2,4--5
                        int offset = face * elementsPerPoint * 6;

                        for (int i = 0; i < elementsPerPoint; i++)
                        {
                            cubeData[offset++] = p1[i];
                        }
                        for (int i = 0; i < elementsPerPoint; i++)
                        {
                            cubeData[offset++] = p3[i];
                        }
                        for (int i = 0; i < elementsPerPoint; i++)
                        {
                            cubeData[offset++] = p2[i];
                        }
                        for (int i = 0; i < elementsPerPoint; i++)
                        {
                            cubeData[offset++] = p3[i];
                        }
                        for (int i = 0; i < elementsPerPoint; i++)
                        {
                            cubeData[offset++] = p4[i];
                        }
                        for (int i = 0; i < elementsPerPoint; i++)
                        {
                            cubeData[offset++] = p2[i];
                        }
                    }

                    return(cubeData);
                };
                #endregion


                // Define points for a cube.
                // X, Y, Z
                float[] p1p = { -1.0f, 1.0f, 1.0f };
                float[] p2p = { 1.0f, 1.0f, 1.0f };
                float[] p3p = { -1.0f, -1.0f, 1.0f };
                float[] p4p = { 1.0f, -1.0f, 1.0f };
                float[] p5p = { -1.0f, 1.0f, -1.0f };
                float[] p6p = { 1.0f, 1.0f, -1.0f };
                float[] p7p = { -1.0f, -1.0f, -1.0f };
                float[] p8p = { 1.0f, -1.0f, -1.0f };

                float[] cubePositionData = generateCubeData(p1p, p2p, p3p, p4p, p5p, p6p, p7p, p8p, p1p.Length);

                // Points of the cube: color information
                // R, G, B, A
                float[] p1c = { 1.0f, 0.0f, 0.0f, 1.0f };                               // red
                float[] p2c = { 1.0f, 0.0f, 1.0f, 1.0f };                               // magenta
                float[] p3c = { 0.0f, 0.0f, 0.0f, 1.0f };                               // black
                float[] p4c = { 0.0f, 0.0f, 1.0f, 1.0f };                               // blue
                float[] p5c = { 1.0f, 1.0f, 0.0f, 1.0f };                               // yellow
                float[] p6c = { 1.0f, 1.0f, 1.0f, 1.0f };                               // white
                float[] p7c = { 0.0f, 1.0f, 0.0f, 1.0f };                               // green
                float[] p8c = { 0.0f, 1.0f, 1.0f, 1.0f };                               // cyan

                float[] cubeColorData = generateCubeData(p1c, p2c, p3c, p4c, p5c, p6c, p7c, p8c, p1c.Length);

                // Initialize the buffers.
                mCubePositions = ByteBuffer.allocateDirect(cubePositionData.Length * mBytesPerFloat)
                                 .order(ByteOrder.nativeOrder()).asFloatBuffer();
                mCubePositions.put(cubePositionData).position(0);

                mCubeColors = ByteBuffer.allocateDirect(cubeColorData.Length * mBytesPerFloat)
                              .order(ByteOrder.nativeOrder()).asFloatBuffer();
                mCubeColors.put(cubeColorData).position(0);
            }
示例#29
0
        /**
         * Allocates a new direct {@link java.nio.FloatBuffer} of the specified size, in chars.
         *
         * @param size           the new FloatBuffer's size.
         * @param allocateDirect true to allocate and return a direct buffer, false to allocate and return a non-direct
         *                       buffer.
         *
         * @return the new buffer.
         *
         * @throws ArgumentException if size is negative.
         */
        public static FloatBuffer newFloatBuffer(int size, bool allocateDirect)
        {
            if (size < 0)
            {
                String message = Logging.getMessage("generic.SizeOutOfRange", size);
                Logging.logger().severe(message);
                throw new ArgumentException(message);
            }

            return(allocateDirect ? newDirectByteBuffer(SIZEOF_FLOAT * size).asFloatBuffer() : FloatBuffer.allocate(size));
        }
示例#30
0
 public override FloatBuffer Put(FloatBuffer src)
 {
     throw new ReadOnlyBufferException();
 }
        /**
         * Creates the buffers we use to store information about the 3D world.
         *
         * OpenGL doesn't use Java arrays, but rather needs data in a format it can understand.
         * Hence we use ByteBuffers.
         */
        public void OnSurfaceCreated(Javax.Microedition.Khronos.Egl.EGLConfig config)
        {
            Android.Util.Log.Info(TAG, "onSurfaceCreated");

            GLES20.GlClearColor(0.1f, 0.1f, 0.1f, 0.5f);  // Dark background so text shows up well.

            var bbVertices = ByteBuffer.AllocateDirect(WorldLayoutData.CUBE_COORDS.Length * 4);

            bbVertices.Order(ByteOrder.NativeOrder());
            cubeVertices = bbVertices.AsFloatBuffer();
            cubeVertices.Put(WorldLayoutData.CUBE_COORDS);
            cubeVertices.Position(0);

            var bbColors = ByteBuffer.AllocateDirect(WorldLayoutData.CUBE_COLORS.Length * 4);

            bbColors.Order(ByteOrder.NativeOrder());
            cubeColors = bbColors.AsFloatBuffer();
            cubeColors.Put(WorldLayoutData.CUBE_COLORS);
            cubeColors.Position(0);

            var bbFoundColors = ByteBuffer.AllocateDirect(WorldLayoutData.CUBE_FOUND_COLORS.Length * 4);

            bbFoundColors.Order(ByteOrder.NativeOrder());
            cubeFoundColors = bbFoundColors.AsFloatBuffer();
            cubeFoundColors.Put(WorldLayoutData.CUBE_FOUND_COLORS);
            cubeFoundColors.Position(0);

            var bbNormals = ByteBuffer.AllocateDirect(WorldLayoutData.CUBE_NORMALS.Length * 4);

            bbNormals.Order(ByteOrder.NativeOrder());
            cubeNormals = bbNormals.AsFloatBuffer();
            cubeNormals.Put(WorldLayoutData.CUBE_NORMALS);
            cubeNormals.Position(0);

            // make a floor
            var bbFloorVertices = ByteBuffer.AllocateDirect(WorldLayoutData.FLOOR_COORDS.Length * 4);

            bbFloorVertices.Order(ByteOrder.NativeOrder());
            floorVertices = bbFloorVertices.AsFloatBuffer();
            floorVertices.Put(WorldLayoutData.FLOOR_COORDS);
            floorVertices.Position(0);

            var bbFloorNormals = ByteBuffer.AllocateDirect(WorldLayoutData.FLOOR_NORMALS.Length * 4);

            bbFloorNormals.Order(ByteOrder.NativeOrder());
            floorNormals = bbFloorNormals.AsFloatBuffer();
            floorNormals.Put(WorldLayoutData.FLOOR_NORMALS);
            floorNormals.Position(0);

            var bbFloorColors = ByteBuffer.AllocateDirect(WorldLayoutData.FLOOR_COLORS.Length * 4);

            bbFloorColors.Order(ByteOrder.NativeOrder());
            floorColors = bbFloorColors.AsFloatBuffer();
            floorColors.Put(WorldLayoutData.FLOOR_COLORS);
            floorColors.Position(0);

            int vertexShader      = loadGLShader(GLES20.GlVertexShader, Resource.Raw.light_vertex);
            int gridShader        = loadGLShader(GLES20.GlFragmentShader, Resource.Raw.grid_fragment);
            int passthroughShader = loadGLShader(GLES20.GlFragmentShader, Resource.Raw.passthrough_fragment);

            cubeProgram = GLES20.GlCreateProgram();
            GLES20.GlAttachShader(cubeProgram, vertexShader);
            GLES20.GlAttachShader(cubeProgram, passthroughShader);
            GLES20.GlLinkProgram(cubeProgram);
            GLES20.GlUseProgram(cubeProgram);

            CheckGLError("Cube program");

            cubePositionParam = GLES20.GlGetAttribLocation(cubeProgram, "a_Position");
            cubeNormalParam   = GLES20.GlGetAttribLocation(cubeProgram, "a_Normal");
            cubeColorParam    = GLES20.GlGetAttribLocation(cubeProgram, "a_Color");

            cubeModelParam               = GLES20.GlGetUniformLocation(cubeProgram, "u_Model");
            cubeModelViewParam           = GLES20.GlGetUniformLocation(cubeProgram, "u_MVMatrix");
            cubeModelViewProjectionParam = GLES20.GlGetUniformLocation(cubeProgram, "u_MVP");
            cubeLightPosParam            = GLES20.GlGetUniformLocation(cubeProgram, "u_LightPos");

            CheckGLError("Cube program params");

            floorProgram = GLES20.GlCreateProgram();
            GLES20.GlAttachShader(floorProgram, vertexShader);
            GLES20.GlAttachShader(floorProgram, gridShader);
            GLES20.GlLinkProgram(floorProgram);
            GLES20.GlUseProgram(floorProgram);

            CheckGLError("Floor program");

            floorModelParam               = GLES20.GlGetUniformLocation(floorProgram, "u_Model");
            floorModelViewParam           = GLES20.GlGetUniformLocation(floorProgram, "u_MVMatrix");
            floorModelViewProjectionParam = GLES20.GlGetUniformLocation(floorProgram, "u_MVP");
            floorLightPosParam            = GLES20.GlGetUniformLocation(floorProgram, "u_LightPos");

            floorPositionParam = GLES20.GlGetAttribLocation(floorProgram, "a_Position");
            floorNormalParam   = GLES20.GlGetAttribLocation(floorProgram, "a_Normal");
            floorColorParam    = GLES20.GlGetAttribLocation(floorProgram, "a_Color");

            CheckGLError("Floor program params");

            Matrix.SetIdentityM(modelFloor, 0);
            Matrix.TranslateM(modelFloor, 0, 0, -floorDepth, 0);  // Floor appears below user.

            // Avoid any delays during start-up due to decoding of sound files.
            System.Threading.Tasks.Task.Run(() => {
                // Start spatial audio playback of SOUND_FILE at the model postion. The returned
                //soundId handle is stored and allows for repositioning the sound object whenever
                // the cube position changes.
                gvrAudioEngine.PreloadSoundFile(SOUND_FILE);
                soundId = gvrAudioEngine.CreateSoundObject(SOUND_FILE);
                gvrAudioEngine.SetSoundObjectPosition(
                    soundId, modelPosition [0], modelPosition [1], modelPosition [2]);
                gvrAudioEngine.PlaySound(soundId, true /* looped playback */);
            });

            UpdateModelPosition();

            CheckGLError("onSurfaceCreated");
        }
        // Draw |textures| using |vertices| (X,Y coordinates).
        private void drawRectangle(int[] textures, FloatBuffer vertices)
        {
            for (int i = 0; i < 3; ++i)
            {
                GLES20.GlActiveTexture(GLES20.GlTexture0 + i);
                GLES20.GlBindTexture(GLES20.GlTexture2d, textures[i]);
            }

            GLES20.GlVertexAttribPointer(posLocation, 2, GLES20.GlFloat, false, 0, vertices);
            GLES20.GlEnableVertexAttribArray(posLocation);

            GLES20.GlDrawArrays(GLES20.GlTriangleStrip, 0, 4);
            checkNoGLES2Error();
        }
 /**
  * Retrieves the coordinates of vertices in this geometry.
  *
  * @param buffer Buffer to receive coordinates.
  */
 public void getVertices(FloatBuffer buffer)
 {
     this.getFloatFromAccessor(buffer, this.getVertexAccessor(), "VERTEX", COORDS_PER_VERTEX);
 }
示例#34
0
 public override FloatBuffer put(FloatBuffer prm1)
 {
     return(default(FloatBuffer));
 }
 /**
  * Retrieves normal vectors in this geometry.
  *
  * @param buffer Buffer to receive coordinates.
  */
 public void getNormals(FloatBuffer buffer)
 {
     this.getFloatFromAccessor(buffer, this.getNormalAccessor(), "NORMAL", COORDS_PER_VERTEX);
 }
示例#36
0
            public LessonTwoRenderer()
            {
                this.gl = (ScriptCoreLib.JavaScript.WebGL.WebGLRenderingContext)(object) __gl;

                #region  Define points for a cube.

                // X, Y, Z
                float[] cubePositionData =
                {
                    // In OpenGL counter-clockwise winding is default. This means that when we look at a triangle,
                    // if the points are counter-clockwise we are looking at the "front". If not we are looking at
                    // the back. OpenGL has an optimization where all back-facing triangles are culled, since they
                    // usually represent the backside of an object and aren't visible anyways.

                    // Front face
                    -1.0f,  1.0f,  1.0f,
                    -1.0f, -1.0f,  1.0f,
                    1.0f,   1.0f,  1.0f,
                    -1.0f, -1.0f,  1.0f,
                    1.0f,  -1.0f,  1.0f,
                    1.0f,   1.0f,  1.0f,

                    // Right face
                    1.0f,   1.0f,  1.0f,
                    1.0f,  -1.0f,  1.0f,
                    1.0f,   1.0f, -1.0f,
                    1.0f,  -1.0f,  1.0f,
                    1.0f,  -1.0f, -1.0f,
                    1.0f,   1.0f, -1.0f,

                    // Back face
                    1.0f,   1.0f, -1.0f,
                    1.0f,  -1.0f, -1.0f,
                    -1.0f,  1.0f, -1.0f,
                    1.0f,  -1.0f, -1.0f,
                    -1.0f, -1.0f, -1.0f,
                    -1.0f,  1.0f, -1.0f,

                    // Left face
                    -1.0f,  1.0f, -1.0f,
                    -1.0f, -1.0f, -1.0f,
                    -1.0f,  1.0f,  1.0f,
                    -1.0f, -1.0f, -1.0f,
                    -1.0f, -1.0f,  1.0f,
                    -1.0f,  1.0f,  1.0f,

                    // Top face
                    -1.0f,  1.0f, -1.0f,
                    -1.0f,  1.0f,  1.0f,
                    1.0f,   1.0f, -1.0f,
                    -1.0f,  1.0f,  1.0f,
                    1.0f,   1.0f,  1.0f,
                    1.0f,   1.0f, -1.0f,

                    // Bottom face
                    1.0f,  -1.0f, -1.0f,
                    1.0f,  -1.0f,  1.0f,
                    -1.0f, -1.0f, -1.0f,
                    1.0f,  -1.0f,  1.0f,
                    -1.0f, -1.0f,  1.0f,
                    -1.0f, -1.0f, -1.0f,
                };

                // R, G, B, A
                float[] cubeColorData =
                {
                    // Front face (red)
                    1.0f, 0.0f, 0.0f, 1.0f,
                    1.0f, 0.0f, 0.0f, 1.0f,
                    1.0f, 0.0f, 0.0f, 1.0f,
                    1.0f, 0.0f, 0.0f, 1.0f,
                    1.0f, 0.0f, 0.0f, 1.0f,
                    1.0f, 0.0f, 0.0f, 1.0f,

                    // Right face (green)
                    0.0f, 1.0f, 0.0f, 1.0f,
                    0.0f, 1.0f, 0.0f, 1.0f,
                    0.0f, 1.0f, 0.0f, 1.0f,
                    0.0f, 1.0f, 0.0f, 1.0f,
                    0.0f, 1.0f, 0.0f, 1.0f,
                    0.0f, 1.0f, 0.0f, 1.0f,

                    // Back face (blue)
                    0.0f, 0.0f, 1.0f, 1.0f,
                    0.0f, 0.0f, 1.0f, 1.0f,
                    0.0f, 0.0f, 1.0f, 1.0f,
                    0.0f, 0.0f, 1.0f, 1.0f,
                    0.0f, 0.0f, 1.0f, 1.0f,
                    0.0f, 0.0f, 1.0f, 1.0f,

                    // Left face (yellow)
                    1.0f, 1.0f, 0.0f, 1.0f,
                    1.0f, 1.0f, 0.0f, 1.0f,
                    1.0f, 1.0f, 0.0f, 1.0f,
                    1.0f, 1.0f, 0.0f, 1.0f,
                    1.0f, 1.0f, 0.0f, 1.0f,
                    1.0f, 1.0f, 0.0f, 1.0f,

                    // Top face (cyan)
                    0.0f, 1.0f, 1.0f, 1.0f,
                    0.0f, 1.0f, 1.0f, 1.0f,
                    0.0f, 1.0f, 1.0f, 1.0f,
                    0.0f, 1.0f, 1.0f, 1.0f,
                    0.0f, 1.0f, 1.0f, 1.0f,
                    0.0f, 1.0f, 1.0f, 1.0f,

                    // Bottom face (magenta)
                    1.0f, 0.0f, 1.0f, 1.0f,
                    1.0f, 0.0f, 1.0f, 1.0f,
                    1.0f, 0.0f, 1.0f, 1.0f,
                    1.0f, 0.0f, 1.0f, 1.0f,
                    1.0f, 0.0f, 1.0f, 1.0f,
                    1.0f, 0.0f, 1.0f, 1.0f
                };

                // X, Y, Z
                // The normal is used in light calculations and is a vector which points
                // orthogonal to the plane of the surface. For a cube model, the normals
                // should be orthogonal to the points of each face.
                float[] cubeNormalData =
                {
                    // Front face
                    0.0f,   0.0f,  1.0f,
                    0.0f,   0.0f,  1.0f,
                    0.0f,   0.0f,  1.0f,
                    0.0f,   0.0f,  1.0f,
                    0.0f,   0.0f,  1.0f,
                    0.0f,   0.0f,  1.0f,

                    // Right face
                    1.0f,   0.0f,  0.0f,
                    1.0f,   0.0f,  0.0f,
                    1.0f,   0.0f,  0.0f,
                    1.0f,   0.0f,  0.0f,
                    1.0f,   0.0f,  0.0f,
                    1.0f,   0.0f,  0.0f,

                    // Back face
                    0.0f,   0.0f, -1.0f,
                    0.0f,   0.0f, -1.0f,
                    0.0f,   0.0f, -1.0f,
                    0.0f,   0.0f, -1.0f,
                    0.0f,   0.0f, -1.0f,
                    0.0f,   0.0f, -1.0f,

                    // Left face
                    -1.0f,  0.0f,  0.0f,
                    -1.0f,  0.0f,  0.0f,
                    -1.0f,  0.0f,  0.0f,
                    -1.0f,  0.0f,  0.0f,
                    -1.0f,  0.0f,  0.0f,
                    -1.0f,  0.0f,  0.0f,

                    // Top face
                    0.0f,   1.0f,  0.0f,
                    0.0f,   1.0f,  0.0f,
                    0.0f,   1.0f,  0.0f,
                    0.0f,   1.0f,  0.0f,
                    0.0f,   1.0f,  0.0f,
                    0.0f,   1.0f,  0.0f,

                    // Bottom face
                    0.0f,  -1.0f,  0.0f,
                    0.0f,  -1.0f,  0.0f,
                    0.0f,  -1.0f,  0.0f,
                    0.0f,  -1.0f,  0.0f,
                    0.0f,  -1.0f,  0.0f,
                    0.0f,  -1.0f, 0.0f
                };
                #endregion

                // Initialize the buffers.
                mCubePositions = ByteBuffer.allocateDirect(cubePositionData.Length * mBytesPerFloat)
                                 .order(ByteOrder.nativeOrder()).asFloatBuffer();
                mCubePositions.put(cubePositionData).position(0);

                mCubeColors = ByteBuffer.allocateDirect(cubeColorData.Length * mBytesPerFloat)
                              .order(ByteOrder.nativeOrder()).asFloatBuffer();
                mCubeColors.put(cubeColorData).position(0);

                mCubeNormals = ByteBuffer.allocateDirect(cubeNormalData.Length * mBytesPerFloat)
                               .order(ByteOrder.nativeOrder()).asFloatBuffer();
                mCubeNormals.put(cubeNormalData).position(0);
            }
            /**
             * Initialize the model data.
             */
            public LessonFourRenderer(Context activityContext)
            {
                mActivityContext = activityContext;

                // Define points for a cube.

                // X, Y, Z
                float[] cubePositionData =
                {
                    // In OpenGL counter-clockwise winding is default. This means that when we look at a triangle,
                    // if the points are counter-clockwise we are looking at the "front". If not we are looking at
                    // the back. OpenGL has an optimization where all back-facing triangles are culled, since they
                    // usually represent the backside of an object and aren't visible anyways.

                    // Front face
                    -1.0f,  1.0f,  1.0f,
                    -1.0f, -1.0f,  1.0f,
                    1.0f,   1.0f,  1.0f,
                    -1.0f, -1.0f,  1.0f,
                    1.0f,  -1.0f,  1.0f,
                    1.0f,   1.0f,  1.0f,

                    // Right face
                    1.0f,   1.0f,  1.0f,
                    1.0f,  -1.0f,  1.0f,
                    1.0f,   1.0f, -1.0f,
                    1.0f,  -1.0f,  1.0f,
                    1.0f,  -1.0f, -1.0f,
                    1.0f,   1.0f, -1.0f,

                    // Back face
                    1.0f,   1.0f, -1.0f,
                    1.0f,  -1.0f, -1.0f,
                    -1.0f,  1.0f, -1.0f,
                    1.0f,  -1.0f, -1.0f,
                    -1.0f, -1.0f, -1.0f,
                    -1.0f,  1.0f, -1.0f,

                    // Left face
                    -1.0f,  1.0f, -1.0f,
                    -1.0f, -1.0f, -1.0f,
                    -1.0f,  1.0f,  1.0f,
                    -1.0f, -1.0f, -1.0f,
                    -1.0f, -1.0f,  1.0f,
                    -1.0f,  1.0f,  1.0f,

                    // Top face
                    -1.0f,  1.0f, -1.0f,
                    -1.0f,  1.0f,  1.0f,
                    1.0f,   1.0f, -1.0f,
                    -1.0f,  1.0f,  1.0f,
                    1.0f,   1.0f,  1.0f,
                    1.0f,   1.0f, -1.0f,

                    // Bottom face
                    1.0f,  -1.0f, -1.0f,
                    1.0f,  -1.0f,  1.0f,
                    -1.0f, -1.0f, -1.0f,
                    1.0f,  -1.0f,  1.0f,
                    -1.0f, -1.0f,  1.0f,
                    -1.0f, -1.0f, -1.0f,
                };

                // R, G, B, A
                float[] cubeColorData =
                {
                    // Front face (red)
                    1.0f, 0.0f, 0.0f, 0.0f,
                    1.0f, 0.0f, 0.0f, 0.0f,
                    1.0f, 0.0f, 0.0f, 0.0f,
                    1.0f, 0.0f, 0.0f, 0.0f,
                    1.0f, 0.0f, 0.0f, 0.0f,
                    1.0f, 0.0f, 0.0f, 0.0f,

                    // Right face (green)
                    0.0f, 1.0f, 0.0f, 1.0f,
                    0.0f, 1.0f, 0.0f, 1.0f,
                    0.0f, 1.0f, 0.0f, 1.0f,
                    0.0f, 1.0f, 0.0f, 1.0f,
                    0.0f, 1.0f, 0.0f, 1.0f,
                    0.0f, 1.0f, 0.0f, 1.0f,

                    // Back face (blue)
                    0.0f, 0.0f, 1.0f, 1.0f,
                    0.0f, 0.0f, 1.0f, 1.0f,
                    0.0f, 0.0f, 1.0f, 1.0f,
                    0.0f, 0.0f, 1.0f, 1.0f,
                    0.0f, 0.0f, 1.0f, 1.0f,
                    0.0f, 0.0f, 1.0f, 1.0f,

                    // Left face (yellow)
                    1.0f, 1.0f, 0.0f, 1.0f,
                    1.0f, 1.0f, 0.0f, 1.0f,
                    1.0f, 1.0f, 0.0f, 1.0f,
                    1.0f, 1.0f, 0.0f, 1.0f,
                    1.0f, 1.0f, 0.0f, 1.0f,
                    1.0f, 1.0f, 0.0f, 1.0f,

                    // Top face (cyan)
                    0.0f, 1.0f, 1.0f, 1.0f,
                    0.0f, 1.0f, 1.0f, 1.0f,
                    0.0f, 1.0f, 1.0f, 1.0f,
                    0.0f, 1.0f, 1.0f, 1.0f,
                    0.0f, 1.0f, 1.0f, 1.0f,
                    0.0f, 1.0f, 1.0f, 1.0f,

                    // Bottom face (magenta)
                    1.0f, 0.0f, 1.0f, 1.0f,
                    1.0f, 0.0f, 1.0f, 1.0f,
                    1.0f, 0.0f, 1.0f, 1.0f,
                    1.0f, 0.0f, 1.0f, 1.0f,
                    1.0f, 0.0f, 1.0f, 1.0f,
                    1.0f, 0.0f, 1.0f, 1.0f
                };

                // X, Y, Z
                // The normal is used in light calculations and is a vector which points
                // orthogonal to the plane of the surface. For a cube model, the normals
                // should be orthogonal to the points of each face.
                float[] cubeNormalData =
                {
                    // Front face
                    0.0f,   0.0f,  1.0f,
                    0.0f,   0.0f,  1.0f,
                    0.0f,   0.0f,  1.0f,
                    0.0f,   0.0f,  1.0f,
                    0.0f,   0.0f,  1.0f,
                    0.0f,   0.0f,  1.0f,

                    // Right face
                    1.0f,   0.0f,  0.0f,
                    1.0f,   0.0f,  0.0f,
                    1.0f,   0.0f,  0.0f,
                    1.0f,   0.0f,  0.0f,
                    1.0f,   0.0f,  0.0f,
                    1.0f,   0.0f,  0.0f,

                    // Back face
                    0.0f,   0.0f, -1.0f,
                    0.0f,   0.0f, -1.0f,
                    0.0f,   0.0f, -1.0f,
                    0.0f,   0.0f, -1.0f,
                    0.0f,   0.0f, -1.0f,
                    0.0f,   0.0f, -1.0f,

                    // Left face
                    -1.0f,  0.0f,  0.0f,
                    -1.0f,  0.0f,  0.0f,
                    -1.0f,  0.0f,  0.0f,
                    -1.0f,  0.0f,  0.0f,
                    -1.0f,  0.0f,  0.0f,
                    -1.0f,  0.0f,  0.0f,

                    // Top face
                    0.0f,   1.0f,  0.0f,
                    0.0f,   1.0f,  0.0f,
                    0.0f,   1.0f,  0.0f,
                    0.0f,   1.0f,  0.0f,
                    0.0f,   1.0f,  0.0f,
                    0.0f,   1.0f,  0.0f,

                    // Bottom face
                    0.0f,  -1.0f,  0.0f,
                    0.0f,  -1.0f,  0.0f,
                    0.0f,  -1.0f,  0.0f,
                    0.0f,  -1.0f,  0.0f,
                    0.0f,  -1.0f,  0.0f,
                    0.0f,  -1.0f, 0.0f
                };

                // S, T (or X, Y)
                // Texture coordinate data.
                // Because images have a Y axis pointing downward (values increase as you move down the image) while
                // OpenGL has a Y axis pointing upward, we adjust for that here by flipping the Y axis.
                // What's more is that the texture coordinates are the same for every face.
                float[] cubeTextureCoordinateData =
                {
                    // Front face
                    0.0f, 0.0f,
                    0.0f, 1.0f,
                    1.0f, 0.0f,
                    0.0f, 1.0f,
                    1.0f, 1.0f,
                    1.0f, 0.0f,

                    // Right face
                    0.0f, 0.0f,
                    0.0f, 1.0f,
                    1.0f, 0.0f,
                    0.0f, 1.0f,
                    1.0f, 1.0f,
                    1.0f, 0.0f,

                    // Back face
                    0.0f, 0.0f,
                    0.0f, 1.0f,
                    1.0f, 0.0f,
                    0.0f, 1.0f,
                    1.0f, 1.0f,
                    1.0f, 0.0f,

                    // Left face
                    0.0f, 0.0f,
                    0.0f, 1.0f,
                    1.0f, 0.0f,
                    0.0f, 1.0f,
                    1.0f, 1.0f,
                    1.0f, 0.0f,

                    // Top face
                    0.0f, 0.0f,
                    0.0f, 1.0f,
                    1.0f, 0.0f,
                    0.0f, 1.0f,
                    1.0f, 1.0f,
                    1.0f, 0.0f,

                    // Bottom face
                    0.0f, 0.0f,
                    0.0f, 1.0f,
                    1.0f, 0.0f,
                    0.0f, 1.0f,
                    1.0f, 1.0f,
                    1.0f, 0.0f
                };

                // Initialize the buffers.
                mCubePositions = ByteBuffer.allocateDirect(cubePositionData.Length * mBytesPerFloat)
                                 .order(ByteOrder.nativeOrder()).asFloatBuffer();
                mCubePositions.put(cubePositionData).position(0);

                mCubeColors = ByteBuffer.allocateDirect(cubeColorData.Length * mBytesPerFloat)
                              .order(ByteOrder.nativeOrder()).asFloatBuffer();
                mCubeColors.put(cubeColorData).position(0);

                mCubeNormals = ByteBuffer.allocateDirect(cubeNormalData.Length * mBytesPerFloat)
                               .order(ByteOrder.nativeOrder()).asFloatBuffer();
                mCubeNormals.put(cubeNormalData).position(0);

                mCubeTextureCoordinates = ByteBuffer.allocateDirect(cubeTextureCoordinateData.Length * mBytesPerFloat)
                                          .order(ByteOrder.nativeOrder()).asFloatBuffer();
                mCubeTextureCoordinates.put(cubeTextureCoordinateData).position(0);
            }
        /**
         * Creates and initializes OpenGL resources needed for rendering the model.
         *
         * @param context Context for loading the shader and below-named model and texture assets.
         * @param objAssetName  Name of the OBJ file containing the model geometry.
         * @param diffuseTextureAssetName  Name of the PNG file containing the diffuse texture map.
         */
        public void CreateOnGlThread(Context context, string objAssetName, string diffuseTextureAssetName)
        {
            // Read the texture.
            var textureBitmap = BitmapFactory.DecodeStream(context.Assets.Open(diffuseTextureAssetName));

            GLES20.GlActiveTexture(GLES20.GlTexture0);
            GLES20.GlGenTextures(mTextures.Length, mTextures, 0);
            GLES20.GlBindTexture(GLES20.GlTexture2d, mTextures[0]);

            GLES20.GlTexParameteri(GLES20.GlTexture2d,
                                   GLES20.GlTextureMinFilter, GLES20.GlLinearMipmapLinear);
            GLES20.GlTexParameteri(GLES20.GlTexture2d,
                                   GLES20.GlTextureMagFilter, GLES20.GlLinear);
            GLUtils.TexImage2D(GLES20.GlTexture2d, 0, textureBitmap, 0);
            GLES20.GlGenerateMipmap(GLES20.GlTexture2d);
            GLES20.GlBindTexture(GLES20.GlTexture2d, 0);

            textureBitmap.Recycle();

            ShaderUtil.CheckGLError(TAG, "Texture loading");

            // Read the obj file.
            var objInputStream = context.Assets.Open(objAssetName);
            var obj            = ObjReader.Read(objInputStream);

            // Prepare the Obj so that its structure is suitable for
            // rendering with OpenGL:
            // 1. Triangulate it
            // 2. Make sure that texture coordinates are not ambiguous
            // 3. Make sure that normals are not ambiguous
            // 4. Convert it to single-indexed data
            obj = ObjUtils.ConvertToRenderable(obj);

            // OpenGL does not use Java arrays. ByteBuffers are used instead to provide data in a format
            // that OpenGL understands.

            // Obtain the data from the OBJ, as direct buffers:
            IntBuffer   wideIndices = ObjData.GetFaceVertexIndices(obj, 3);
            FloatBuffer vertices    = ObjData.GetVertices(obj);
            FloatBuffer texCoords   = ObjData.GetTexCoords(obj, 2);
            FloatBuffer normals     = ObjData.GetNormals(obj);

            // Convert int indices to shorts for GL ES 2.0 compatibility
            ShortBuffer indices = ByteBuffer.AllocateDirect(2 * wideIndices.Limit())
                                  .Order(ByteOrder.NativeOrder()).AsShortBuffer();

            while (wideIndices.HasRemaining)
            {
                indices.Put((short)wideIndices.Get());
            }
            indices.Rewind();

            var buffers = new int[2];

            GLES20.GlGenBuffers(2, buffers, 0);
            mVertexBufferId = buffers[0];
            mIndexBufferId  = buffers[1];

            // Load vertex buffer
            mVerticesBaseAddress  = 0;
            mTexCoordsBaseAddress = mVerticesBaseAddress + 4 * vertices.Limit();
            mNormalsBaseAddress   = mTexCoordsBaseAddress + 4 * texCoords.Limit();
            int totalBytes = mNormalsBaseAddress + 4 * normals.Limit();

            GLES20.GlBindBuffer(GLES20.GlArrayBuffer, mVertexBufferId);
            GLES20.GlBufferData(GLES20.GlArrayBuffer, totalBytes, null, GLES20.GlStaticDraw);
            GLES20.GlBufferSubData(
                GLES20.GlArrayBuffer, mVerticesBaseAddress, 4 * vertices.Limit(), vertices);
            GLES20.GlBufferSubData(
                GLES20.GlArrayBuffer, mTexCoordsBaseAddress, 4 * texCoords.Limit(), texCoords);
            GLES20.GlBufferSubData(
                GLES20.GlArrayBuffer, mNormalsBaseAddress, 4 * normals.Limit(), normals);
            GLES20.GlBindBuffer(GLES20.GlArrayBuffer, 0);

            // Load index buffer
            GLES20.GlBindBuffer(GLES20.GlElementArrayBuffer, mIndexBufferId);
            mIndexCount = indices.Limit();
            GLES20.GlBufferData(
                GLES20.GlElementArrayBuffer, 2 * mIndexCount, indices, GLES20.GlStaticDraw);
            GLES20.GlBindBuffer(GLES20.GlElementArrayBuffer, 0);

            ShaderUtil.CheckGLError(TAG, "OBJ buffer load");

            int vertexShader = ShaderUtil.LoadGLShader(TAG, context,
                                                       GLES20.GlVertexShader, Resource.Raw.object_vertex);
            int fragmentShader = ShaderUtil.LoadGLShader(TAG, context,
                                                         GLES20.GlFragmentShader, Resource.Raw.object_fragment);

            mProgram = GLES20.GlCreateProgram();
            GLES20.GlAttachShader(mProgram, vertexShader);
            GLES20.GlAttachShader(mProgram, fragmentShader);
            GLES20.GlLinkProgram(mProgram);
            GLES20.GlUseProgram(mProgram);

            ShaderUtil.CheckGLError(TAG, "Program creation");

            mModelViewUniform           = GLES20.GlGetUniformLocation(mProgram, "u_ModelView");
            mModelViewProjectionUniform =
                GLES20.GlGetUniformLocation(mProgram, "u_ModelViewProjection");

            mPositionAttribute = GLES20.GlGetAttribLocation(mProgram, "a_Position");
            mNormalAttribute   = GLES20.GlGetAttribLocation(mProgram, "a_Normal");
            mTexCoordAttribute = GLES20.GlGetAttribLocation(mProgram, "a_TexCoord");

            mTextureUniform = GLES20.GlGetUniformLocation(mProgram, "u_Texture");

            mLightingParametersUniform = GLES20.GlGetUniformLocation(mProgram, "u_LightingParameters");
            mMaterialParametersUniform = GLES20.GlGetUniformLocation(mProgram, "u_MaterialParameters");

            ShaderUtil.CheckGLError(TAG, "Program parameters");

            Android.Opengl.Matrix.SetIdentityM(mModelMatrix, 0);
        }
示例#39
0
        private int[] VBOBuffers = new int[2]; //2 buffers for vertices and colors

        public void OnSurfaceCreated(IGL10 gl, Javax.Microedition.Khronos.Egl.EGLConfig config)
        {
            const float edge = 1.0f;

            // X, Y, Z,
            float[] triangleVerticesData =
            {
                -1.5f,       -0.25f, 0.0f,
                0.5f,        -0.25f, 0.0f,
                0.0f,  0.559016994f, 0.0f
            };

            FloatBuffer mTriangleVertices = ByteBuffer.AllocateDirect(triangleVerticesData.Length * mBytesPerFloat).Order(ByteOrder.NativeOrder()).AsFloatBuffer();

            mTriangleVertices.Put(triangleVerticesData).Flip();

            // R, G, B, A
            float[] triangleColorsData =
            {
                1.0f, 0.0f, 0.0f, 0.5f,
                0.0f, 0.5f, 1.0f, 1.0f,
                0.0f, 1.0f, 0.0f, 1.0f
            };

            FloatBuffer mTriangleColors = ByteBuffer.AllocateDirect(triangleColorsData.Length * mBytesPerFloat).Order(ByteOrder.NativeOrder()).AsFloatBuffer();

            mTriangleColors.Put(triangleColorsData).Flip();

            //Use VBO
            GLES20.GlGenBuffers(2, VBOBuffers, 0); //2 buffers for vertices and colors
            GLES20.GlBindBuffer(GLES20.GlArrayBuffer, VBOBuffers[0]);
            GLES20.GlBufferData(GLES20.GlArrayBuffer, mTriangleVertices.Capacity() * mBytesPerFloat, mTriangleVertices, GLES20.GlStaticDraw);

            GLES20.GlBindBuffer(GLES20.GlArrayBuffer, VBOBuffers[1]);
            GLES20.GlBufferData(GLES20.GlArrayBuffer, mTriangleColors.Capacity() * mBytesPerFloat, mTriangleColors, GLES20.GlStaticDraw);


            GLES20.GlBindBuffer(GLES20.GlArrayBuffer, 0);


            GLES20.GlClearColor(1.0f, 1.0f, 1.0f, 1.0f);

            // Position the eye behind the origin.
            float eyeX = 0.0f;
            float eyeY = 0.0f;
            float eyeZ = 4.5f;

            // We are looking toward the distance
            float lookX = 0.0f;
            float lookY = 0.0f;
            float lookZ = -5.0f;

            // Set our up vector. This is where our head would be pointing were we holding the camera.
            float upX = 0.0f;
            float upY = 1.0f;
            float upZ = 0.0f;

            // Set the view matrix. This matrix can be said to represent the camera position.
            // NOTE: In OpenGL 1, a ModelView matrix is used, which is a combination of a model and
            // view matrix. In OpenGL 2, we can keep track of these matrices separately if we choose.
            Matrix.SetLookAtM(mViewMatrix, 0, eyeX, eyeY, eyeZ, lookX, lookY, lookZ, upX, upY, upZ);

            string vertexShader =
                "uniform mat4 u_MVPMatrix;      \n"         // A constant representing the combined model/view/projection matrix.
                + "attribute vec4 a_Position;     \n"       // Per-vertex position information we will pass in.
                + "attribute vec4 a_Color;        \n"       // Per-vertex color information we will pass in.
                + "varying vec4 v_Color;          \n"       // This will be passed into the fragment shader.
                + "void main()                    \n"       // The entry point for our vertex shader.
                + "{                              \n"
                + "   v_Color = a_Color;          \n"       // Pass the color through to the fragment shader. It will be interpolated across the triangle.
                + "   gl_Position = u_MVPMatrix   \n"       // gl_Position is a special variable used to store the final position.
                + "                 * a_Position; \n"       // Multiply the vertex by the matrix to get the final point in normalized screen coordinates.
                + "}                              \n";

            string fragmentShader =
                "precision mediump float;       \n"     // Set the default precision to medium. We don't need as high of a
                                                        // precision in the fragment shader.
                + "varying vec4 v_Color;          \n"   // This is the color from the vertex shader interpolated across the triangle per fragment.
                + "void main()                    \n"   // The entry point for our fragment shader.
                + "{                              \n"
                + "   gl_FragColor = v_Color;     \n"   // Pass the color directly through the pipeline.
                + "}                              \n";

            int vertexShaderHandle = GLES20.GlCreateShader(GLES20.GlVertexShader);

            if (vertexShaderHandle != 0)
            {
                // Pass in the shader source.
                GLES20.GlShaderSource(vertexShaderHandle, vertexShader);

                // Compile the shader.
                GLES20.GlCompileShader(vertexShaderHandle);

                // Get the compilation status.
                int[] compileStatus = new int[1];
                GLES20.GlGetShaderiv(vertexShaderHandle, GLES20.GlCompileStatus, compileStatus, 0);

                // If the compilation failed, delete the shader.
                if (compileStatus[0] == 0)
                {
                    GLES20.GlDeleteShader(vertexShaderHandle);
                    vertexShaderHandle = 0;
                }
            }

            if (vertexShaderHandle == 0)
            {
                throw new Exception("Error creating vertex shader.");
            }

            // Load in the fragment shader shader.
            int fragmentShaderHandle = GLES20.GlCreateShader(GLES20.GlFragmentShader);

            if (fragmentShaderHandle != 0)
            {
                // Pass in the shader source.
                GLES20.GlShaderSource(fragmentShaderHandle, fragmentShader);

                // Compile the shader.
                GLES20.GlCompileShader(fragmentShaderHandle);

                // Get the compilation status.
                int[] compileStatus = new int[1];
                GLES20.GlGetShaderiv(fragmentShaderHandle, GLES20.GlCompileStatus, compileStatus, 0);

                // If the compilation failed, delete the shader.
                if (compileStatus[0] == 0)
                {
                    GLES20.GlDeleteShader(fragmentShaderHandle);
                    fragmentShaderHandle = 0;
                }
            }

            if (fragmentShaderHandle == 0)
            {
                throw new Exception("Error creating fragment shader.");
            }

            // Create a program object and store the handle to it.
            int programHandle = GLES20.GlCreateProgram();

            if (programHandle != 0)
            {
                // Bind the vertex shader to the program.
                GLES20.GlAttachShader(programHandle, vertexShaderHandle);

                // Bind the fragment shader to the program.
                GLES20.GlAttachShader(programHandle, fragmentShaderHandle);

                // Bind attributes
                GLES20.GlBindAttribLocation(programHandle, 0, "a_Position");
                GLES20.GlBindAttribLocation(programHandle, 1, "a_Color");

                // Link the two shaders together into a program.
                GLES20.GlLinkProgram(programHandle);

                // Get the link status.
                int[] linkStatus = new int[1];
                GLES20.GlGetProgramiv(programHandle, GLES20.GlLinkStatus, linkStatus, 0);

                // If the link failed, delete the program.
                if (linkStatus[0] == 0)
                {
                    GLES20.GlDeleteProgram(programHandle);
                    programHandle = 0;
                }
            }

            if (programHandle == 0)
            {
                throw new Exception("Error creating program.");
            }

            // Set program handles. These will later be used to pass in values to the program.
            mMVPMatrixHandle = GLES20.GlGetUniformLocation(programHandle, "u_MVPMatrix");
            mPositionHandle  = GLES20.GlGetAttribLocation(programHandle, "a_Position");
            mColorHandle     = GLES20.GlGetAttribLocation(programHandle, "a_Color");

            // Tell OpenGL to use this program when rendering.
            GLES20.GlUseProgram(programHandle);
        }
示例#40
0
        public void CreateOnGlThread(Context context, string objAssetName, string diffuseTextureAssetName)
        {
            // Read the texture.
            var textureBitmap = BitmapFactory.DecodeStream(context.Assets.Open(diffuseTextureAssetName));

            GLES20.GlActiveTexture(GLES20.GlTexture0);
            GLES20.GlGenTextures(mTextures.Length, mTextures, 0);
            GLES20.GlBindTexture(GLES20.GlTexture2d, mTextures[0]);

            GLES20.GlTexParameteri(GLES20.GlTexture2d,
                                   GLES20.GlTextureMinFilter, GLES20.GlLinearMipmapLinear);
            GLES20.GlTexParameteri(GLES20.GlTexture2d,
                                   GLES20.GlTextureMagFilter, GLES20.GlLinear);
            GLUtils.TexImage2D(GLES20.GlTexture2d, 0, textureBitmap, 0);
            GLES20.GlGenerateMipmap(GLES20.GlTexture2d);
            GLES20.GlBindTexture(GLES20.GlTexture2d, 0);

            textureBitmap.Recycle();

            ShaderUtil.CheckGLError(TAG, "Texture loading");

            // Read the obj file.
            var objInputStream = context.Assets.Open(objAssetName);
            var obj            = JavaGl.Obj.ObjReader.Read(objInputStream);

            obj = JavaGl.Obj.ObjUtils.ConvertToRenderable(obj);

            IntBuffer   wideIndices = JavaGl.Obj.ObjData.GetFaceVertexIndices(obj, 3);
            FloatBuffer vertices    = JavaGl.Obj.ObjData.GetVertices(obj);
            FloatBuffer texCoords   = JavaGl.Obj.ObjData.GetTexCoords(obj, 2);
            FloatBuffer normals     = JavaGl.Obj.ObjData.GetNormals(obj);

            ShortBuffer indices = ByteBuffer.AllocateDirect(2 * wideIndices.Limit())
                                  .Order(ByteOrder.NativeOrder()).AsShortBuffer();

            while (wideIndices.HasRemaining)
            {
                indices.Put((short)wideIndices.Get());
            }
            indices.Rewind();

            var buffers = new int[2];

            GLES20.GlGenBuffers(2, buffers, 0);
            mVertexBufferId = buffers[0];
            mIndexBufferId  = buffers[1];

            mVerticesBaseAddress  = 0;
            mTexCoordsBaseAddress = mVerticesBaseAddress + 4 * vertices.Limit();
            mNormalsBaseAddress   = mTexCoordsBaseAddress + 4 * texCoords.Limit();
            int totalBytes = mNormalsBaseAddress + 4 * normals.Limit();

            GLES20.GlBindBuffer(GLES20.GlArrayBuffer, mVertexBufferId);
            GLES20.GlBufferData(GLES20.GlArrayBuffer, totalBytes, null, GLES20.GlStaticDraw);
            GLES20.GlBufferSubData(
                GLES20.GlArrayBuffer, mVerticesBaseAddress, 4 * vertices.Limit(), vertices);
            GLES20.GlBufferSubData(
                GLES20.GlArrayBuffer, mTexCoordsBaseAddress, 4 * texCoords.Limit(), texCoords);
            GLES20.GlBufferSubData(
                GLES20.GlArrayBuffer, mNormalsBaseAddress, 4 * normals.Limit(), normals);
            GLES20.GlBindBuffer(GLES20.GlArrayBuffer, 0);

            GLES20.GlBindBuffer(GLES20.GlElementArrayBuffer, mIndexBufferId);
            mIndexCount = indices.Limit();
            GLES20.GlBufferData(
                GLES20.GlElementArrayBuffer, 2 * mIndexCount, indices, GLES20.GlStaticDraw);
            GLES20.GlBindBuffer(GLES20.GlElementArrayBuffer, 0);

            ShaderUtil.CheckGLError(TAG, "OBJ buffer load");

            int vertexShader = ShaderUtil.LoadGLShader(TAG, context,
                                                       GLES20.GlVertexShader, Resource.Raw.object_vertex);
            int fragmentShader = ShaderUtil.LoadGLShader(TAG, context,
                                                         GLES20.GlFragmentShader, Resource.Raw.object_fragment);

            mProgram = GLES20.GlCreateProgram();
            GLES20.GlAttachShader(mProgram, vertexShader);
            GLES20.GlAttachShader(mProgram, fragmentShader);
            GLES20.GlLinkProgram(mProgram);
            GLES20.GlUseProgram(mProgram);

            ShaderUtil.CheckGLError(TAG, "Program creation");

            mModelViewUniform           = GLES20.GlGetUniformLocation(mProgram, "u_ModelView");
            mModelViewProjectionUniform =
                GLES20.GlGetUniformLocation(mProgram, "u_ModelViewProjection");

            mPositionAttribute = GLES20.GlGetAttribLocation(mProgram, "a_Position");
            mNormalAttribute   = GLES20.GlGetAttribLocation(mProgram, "a_Normal");
            mTexCoordAttribute = GLES20.GlGetAttribLocation(mProgram, "a_TexCoord");

            mTextureUniform = GLES20.GlGetUniformLocation(mProgram, "u_Texture");

            mLightingParametersUniform = GLES20.GlGetUniformLocation(mProgram, "u_LightingParameters");
            mMaterialParametersUniform = GLES20.GlGetUniformLocation(mProgram, "u_MaterialParameters");

            ShaderUtil.CheckGLError(TAG, "Program parameters");

            Android.Opengl.Matrix.SetIdentityM(mModelMatrix, 0);
        }