public static void Main(string[] args) { //Object to Hold Task Parameters TaskDimensions task = new TaskDimensions(); //Dictionary that contains a list of top ten jobs compared with other jobs for each user Dictionary <int, List <TopJobData> > finalList = new Dictionary <int, List <TopJobData> >(); //User number to start proccessing int user_number = 1; IFileSystemSvc svc = new FileSystemSvcImpl(); //Method call to get the number of jobs and users from the file Y svc.detectSizeOfJobsColumns(task, Directory.GetCurrentDirectory() + "/files/Y1.txt"); //Method call to get the number of features from the file X, and allocating the X matrix double[,] X = svc.getNumberOfFeaturesX(Directory.GetCurrentDirectory() + "/files/X1.txt", task); svc.readFeaturesX(X, Directory.GetCurrentDirectory() + "/files/X1.txt", task); //Method call to get the jobs names String[] job_list = svc.readJobNames(Directory.GetCurrentDirectory() + "/files/job_names1.txt", task); //Creating a variable to write in a File the job recommendations and comparisons StreamWriter writeText = svc.getResultStreamWriter(); while (user_number <= task.num_users_init) { // Movie rating file for a user double[,] my_ratings = new double[task.num_jobs_init, 1]; //Now we read R and Y from theirs files (-1 because I will remove the chosen user from the matrixes) double[,] Y = svc.readTrainingY(Directory.GetCurrentDirectory() + "/files/Y1.txt", task, my_ratings, user_number); double[,] R = svc.readTrainingR(Directory.GetCurrentDirectory() + "/files/R1.txt", task, user_number); //Creating a MatLab reference to execute the recommended job script IMatlabSvc matSvc = new MatlabSvcImpl(); object[] res = matSvc.executeFilter(task, job_list, Directory.GetCurrentDirectory() + "/files", my_ratings, Y, R, X, user_number); //Each time creates a to be used to write the recommended jobs in a file List <TopJobData> mylist = svc.writeValuesToFile(writeText, res, job_list, user_number); //adding the list at the Dictionary for each user finalList.Add(user_number, mylist); user_number++; } writeText.Close(); //creating a instance of DataResult to be used to write the averages in a file DataResult avgs = new DataResult(finalList, 10); avgs.calculateAverages(); Console.WriteLine("DONE"); // Wait until fisnih Console.ReadLine(); }
public static void Main(string[] args) { //Object to Hold Task Parameters TaskDimensions task = new TaskDimensions(); //User number to start proccessing int user_number = 1; //Load File System Service IFileSystemSvc svc = new FileSystemSvcImpl(); //Method call to get the number of jobs and users from the file Y svc.detectSizeOfJobsColumns(task, Directory.GetCurrentDirectory() + "/files/Y.txt"); //Method call to get the number of features from the file X, and allocating the X matrix double[,] X = svc.getNumberOfFeaturesX(Directory.GetCurrentDirectory() + "/files/X.txt", task); svc.readFeaturesX(X, Directory.GetCurrentDirectory() + "/files/X.txt", task); //Method call to get the jobs names String[] job_list = svc.readJobNames(Directory.GetCurrentDirectory() + "/files/expressions.txt", task); //method that return the users profile UserProfile[] users_profile = svc.readUserProfile(Directory.GetCurrentDirectory() + "/files/user_table.txt", task); //Creating a variable to write in a File the job recommendations and comparisons //Load File Writer StreamWriter writeTextResult = svc.getResultStreamWriter(); StreamWriter writeTextAverages = svc.getAverageStreamWriter(); StreamWriter writeText = svc.getIdandAvgStreamWriter(); StreamWriter writeTextDiff = svc.getDifficultyStreamWriter(); int numUnderEstimated = 0, numOverEstimated = 0; double[] users_calculated_raitings = new double[task.num_users_init]; double total_rating_avg_system = 0; double total_similarity_avg_system = 0; double total_inaccuracy_system = 0; while (user_number <= task.num_users_init) { // Movie rating file for a user double[,] my_ratings = new double[task.num_jobs_init, 1]; //Now we read R and Y from theirs files (-1 because I will remove the chosen user from the matrixes) double[,] Y = svc.readTrainingY(Directory.GetCurrentDirectory() + "/files/Y.txt", task, my_ratings, user_number); double[,] R = svc.readTrainingR(Directory.GetCurrentDirectory() + "/files/R.txt", task, user_number); //Creating a MatLab reference to execute the recommended job script IMatlabSvc matSvc = new MatlabSvcImpl(); object[] res = matSvc.executeFilter(task, job_list, Directory.GetCurrentDirectory() + "/files", my_ratings, Y, R, X, user_number); //Each time creates a to be used to write the recommended jobs in a file List <TopJobData> mylist = svc.writeValuesToFile(writeTextResult, res, job_list, user_number, X); //Calculate Averages for Jobs for a User DataResult avgs = new DataResult(mylist, mylist.Count, users_profile[user_number - 1]); avgs.AverageForEachJob(); svc.writeAveragesToFile(avgs, writeTextAverages, users_profile[user_number - 1]); total_rating_avg_system += avgs.Rating_total_avg; total_similarity_avg_system += avgs.Percentage_total_avg; total_inaccuracy_system += avgs.Self_inaccuracy; //adding the list at the Dictionary for each user //ID and AVGs file writeText.WriteLine(users_profile[user_number - 1].UserID + "\t" + avgs.Rating_total_avg); //people who under and overestimated themselves if (avgs.Self_inaccuracy > 0) { numOverEstimated++; } else { numUnderEstimated++; } users_calculated_raitings[user_number - 1] = avgs.Rating_total_avg; //writing in the difficulty file svc.writeDifficultyToFile(writeTextDiff, avgs); user_number++; } total_rating_avg_system /= task.num_users_init; total_similarity_avg_system /= task.num_users_init; total_inaccuracy_system /= task.num_users_init; //writing some more global information svc.writeGlobalAveragesInformation(total_rating_avg_system, total_similarity_avg_system, total_inaccuracy_system, numUnderEstimated, numOverEstimated, task, writeTextAverages, users_profile, users_calculated_raitings); //closing the three files writeText.Close(); writeTextResult.Close(); writeTextAverages.Close(); writeTextDiff.Close(); //creating a instance of DataResult to be used to write the averages in a file Console.WriteLine("DONE"); //Wait until fisnih Console.ReadLine(); }
public static void Main(string[] args) { //Object to Hold Task Parameters TaskDimensions task = new TaskDimensions(); //Dictionary that contains a list of top ten jobs compared with other jobs for each user Dictionary <int, List <TopJobData> > finalList = new Dictionary <int, List <TopJobData> >(); //User number to start proccessing int user_number = 1; //Load File System Service IFileSystemSvc svc = new FileSystemSvcImpl(); //Method call to get the number of jobs and users from the file Y svc.detectSizeOfJobsColumns(task, Directory.GetCurrentDirectory() + "/files/Y1.txt"); //Method call to get the number of features from the file X, and allocating the X matrix double[,] X = svc.getNumberOfFeaturesX(Directory.GetCurrentDirectory() + "/files/X1.txt", task); svc.readFeaturesX(X, Directory.GetCurrentDirectory() + "/files/X1.txt", task); //Method call to get the jobs names String[] job_list = svc.readJobNames(Directory.GetCurrentDirectory() + "/files/job_names1.txt", task); //method that return the users profile UserProfile[] users_profile = svc.readUserProfile(Directory.GetCurrentDirectory() + "/files/user_table.txt", task); //Creating a variable to write in a File the job recommendations and comparisons //Load File Writer StreamWriter writeTextResult = svc.getResultStreamWriter(); StreamWriter writeTextAverages = svc.getAverageStreamWriter(); double total_avg_system = 0; double total_user_inaccuracy = 0; while (user_number <= task.num_users_init) { // Movie rating file for a user double[,] my_ratings = new double[task.num_jobs_init, 1]; //Now we read R and Y from theirs files (-1 because I will remove the chosen user from the matrixes) double[,] Y = svc.readTrainingY(Directory.GetCurrentDirectory() + "/files/Y1.txt", task, my_ratings, user_number); double[,] R = svc.readTrainingR(Directory.GetCurrentDirectory() + "/files/R1.txt", task, user_number); //Creating a MatLab reference to execute the recommended job script IMatlabSvc matSvc = new MatlabSvcImpl(); object[] res = matSvc.executeFilter(task, job_list, Directory.GetCurrentDirectory() + "/files", my_ratings, Y, R, X, user_number); //Each time creates a to be used to write the recommended jobs in a file List <TopJobData> mylist = svc.writeValuesToFile(writeTextResult, res, job_list, user_number); //Calculate Averages for Jobs for a User DataResult avgs = new DataResult(mylist, 10, users_profile[user_number - 1]); avgs.AverageForEachJob(); svc.writeAveragesToFile(avgs, writeTextAverages, users_profile[user_number - 1]); total_avg_system += avgs.Percentage_total_avg; total_user_inaccuracy += avgs.Self_inaccuracy; //adding the list at the Dictionary for each user user_number++; } total_avg_system /= task.num_users_init; writeTextAverages.WriteLine("AVGS TOTAL\t" + total_avg_system); total_user_inaccuracy /= task.num_users_init; writeTextAverages.WriteLine("COMMUNITY INACCURACY\t" + total_user_inaccuracy); writeTextResult.Close(); writeTextAverages.Close(); //creating a instance of DataResult to be used to write the averages in a file Console.WriteLine("DONE"); //Wait until fisnih Console.ReadLine(); }