/// <summary> /// 1Dヘルムホルツ方程式固有値問題の要素行列を加算する /// </summary> /// <param name="waveLength">波長(E面の場合のみ使用する)</param> /// <param name="element">線要素</param> /// <param name="coords">座標リスト</param> /// <param name="toSorted">節点番号→ソート済み節点インデックスマップ</param> /// <param name="Medias">媒質情報リスト</param> /// <param name="WaveModeDv">計算する波のモード区分</param> /// <param name="txx_1d">txx行列</param> /// <param name="ryy_1d">ryy行列</param> /// <param name="uzz_1d">uzz行列</param> public static void AddElementMatOf1dEigenValueProblem( double waveLength, FemLineElement element, IList <double> coords, Dictionary <int, int> toSorted, MediaInfo[] Medias, FemSolver.WGStructureDV WGStructureDv, FemSolver.WaveModeDV WaveModeDv, double waveguideWidthForEPlane, ref MyDoubleMatrix txx_1d, ref MyDoubleMatrix ryy_1d, ref MyDoubleMatrix uzz_1d) { // 定数 const double pi = Constants.pi; const double c0 = Constants.c0; // 波数 double k0 = 2.0 * pi / waveLength; // 角周波数 double omega = k0 * c0; // 1次線要素 const int nno = Constants.LineNodeCnt_FirstOrder; // 2; int[] nodeNumbers = element.NodeNumbers; System.Diagnostics.Debug.Assert(nno == nodeNumbers.Length); // 座標の取得 double[] elementCoords = new double[nno]; for (int n = 0; n < nno; n++) { int nodeIndex = nodeNumbers[n] - 1; elementCoords[n] = coords[nodeIndex]; } // 線要素の長さ double elen = Math.Abs(elementCoords[1] - elementCoords[0]); // 媒質インデックス int mediaIndex = element.MediaIndex; // 媒質 MediaInfo media = Medias[mediaIndex]; double[,] media_P = null; double[,] media_Q = null; // ヘルムホルツ方程式のパラメータP,Qを取得する FemSolver.GetHelmholtzMediaPQ( k0, media, WGStructureDv, WaveModeDv, waveguideWidthForEPlane, out media_P, out media_Q); double[,] integralN = new double[nno, nno] { { elen / 3.0, elen / 6.0 }, { elen / 6.0, elen / 3.0 }, }; double[,] integralDNDY = new double[nno, nno] { { 1.0 / elen, -1.0 / elen }, { -1.0 / elen, 1.0 / elen }, }; for (int ino = 0; ino < nno; ino++) { int inoBoundary = nodeNumbers[ino]; int inoSorted; if (!toSorted.ContainsKey(inoBoundary)) { continue; } inoSorted = toSorted[inoBoundary]; for (int jno = 0; jno < nno; jno++) { int jnoBoundary = nodeNumbers[jno]; int jnoSorted; if (!toSorted.ContainsKey(jnoBoundary)) { continue; } jnoSorted = toSorted[jnoBoundary]; // 対称バンド行列対応 if (ryy_1d is MyDoubleSymmetricBandMatrix && jnoSorted < inoSorted) { continue; } double e_txx_1d_inojno = media_P[0, 0] * integralDNDY[ino, jno]; double e_ryy_1d_inojno = media_P[1, 1] * integralN[ino, jno]; double e_uzz_1d_inojno = media_Q[2, 2] * integralN[ino, jno]; //txx_1d[inoSorted, jnoSorted] += e_txx_1d_inojno; //ryy_1d[inoSorted, jnoSorted] += e_ryy_1d_inojno; //uzz_1d[inoSorted, jnoSorted] += e_uzz_1d_inojno; txx_1d._body[txx_1d.GetBufferIndex(inoSorted, jnoSorted)] += e_txx_1d_inojno; ryy_1d._body[ryy_1d.GetBufferIndex(inoSorted, jnoSorted)] += e_ryy_1d_inojno; uzz_1d._body[uzz_1d.GetBufferIndex(inoSorted, jnoSorted)] += e_uzz_1d_inojno; } } }
/// <summary> /// ヘルムホルツ方程式に対する有限要素マトリクス作成 /// </summary> /// <param name="waveLength">波長</param> /// <param name="toSorted">ソートされた節点インデックス( 2D節点番号→ソート済みリストインデックスのマップ)</param> /// <param name="element">有限要素</param> /// <param name="Nodes">節点リスト</param> /// <param name="Medias">媒質リスト</param> /// <param name="ForceNodeNumberH">強制境界節点ハッシュ</param> /// <param name="WGStructureDv">導波路構造区分</param> /// <param name="WaveModeDv">計算する波のモード区分</param> /// <param name="waveguideWidthForEPlane">導波路幅(E面解析用)</param> /// <param name="mat">マージされる全体行列(clapack使用時)</param> /// <param name="mat_cc">マージされる全体行列(DelFEM使用時)</param> /// <param name="res_c">マージされる残差ベクトル(DelFEM使用時)</param> /// <param name="tmpBuffer">一時バッファ(DelFEM使用時)</param> public static void AddElementMat(double waveLength, Dictionary <int, int> toSorted, FemElement element, IList <FemNode> Nodes, MediaInfo[] Medias, Dictionary <int, bool> ForceNodeNumberH, FemSolver.WGStructureDV WGStructureDv, FemSolver.WaveModeDV WaveModeDv, double waveguideWidthForEPlane, ref MyComplexMatrix mat, ref DelFEM4NetMatVec.CZMatDia_BlkCrs_Ptr mat_cc, ref DelFEM4NetMatVec.CZVector_Blk_Ptr res_c, ref int[] tmpBuffer) { // 定数 const double pi = Constants.pi; const double c0 = Constants.c0; // 波数 double k0 = 2.0 * pi / waveLength; // 角周波数 double omega = k0 * c0; // 要素頂点数 //const int vertexCnt = Constants.TriVertexCnt; //3; // 要素内節点数 const int nno = Constants.TriNodeCnt_FirstOrder; //3; // 1次三角形要素 // 座標次元数 const int ndim = Constants.CoordDim2D; //2; int[] nodeNumbers = element.NodeNumbers; int[] no_c = new int[nno]; MediaInfo media = Medias[element.MediaIndex]; // ver1.1.0.0 媒質情報の取得 double[,] media_P = null; double[,] media_Q = null; // ヘルムホルツ方程式のパラメータP,Qを取得する FemSolver.GetHelmholtzMediaPQ( k0, media, WGStructureDv, WaveModeDv, waveguideWidthForEPlane, out media_P, out media_Q); // 節点座標(IFの都合上配列の配列形式の2次元配列を作成) double[][] pp = new double[nno][]; for (int ino = 0; ino < nno; ino++) { int nodeNumber = nodeNumbers[ino]; int nodeIndex = nodeNumber - 1; FemNode node = Nodes[nodeIndex]; no_c[ino] = nodeNumber; pp[ino] = new double[ndim]; for (int n = 0; n < ndim; n++) { pp[ino][n] = node.Coord[n]; } } // 面積を求める double area = KerEMatTri.TriArea(pp[0], pp[1], pp[2]); //System.Diagnostics.Debug.WriteLine("Elem No {0} area: {1}", element.No, area); System.Diagnostics.Debug.Assert(area >= 0.0); // 面積座標の微分を求める // dldx[k, n] k面積座標Lkのn方向微分 double[,] dldx = null; double[] const_term = null; KerEMatTri.TriDlDx(out dldx, out const_term, pp[0], pp[1], pp[2]); // ∫dN/dndN/dn dxdy // integralDNDX[n, ino, jno] n = 0 --> ∫dN/dxdN/dx dxdy // n = 1 --> ∫dN/dydN/dy dxdy double[, ,] integralDNDX = new double[ndim, nno, nno]; for (int ino = 0; ino < nno; ino++) { for (int jno = 0; jno < nno; jno++) { integralDNDX[0, ino, jno] = area * dldx[ino, 0] * dldx[jno, 0]; integralDNDX[1, ino, jno] = area * dldx[ino, 1] * dldx[jno, 1]; } } // ∫N N dxdy double[,] integralN = new double[nno, nno] { { area / 6.0, area / 12.0, area / 12.0 }, { area / 12.0, area / 6.0, area / 12.0 }, { area / 12.0, area / 12.0, area / 6.0 }, }; // 要素剛性行列を作る double[,] emat = new double[nno, nno]; for (int ino = 0; ino < nno; ino++) { for (int jno = 0; jno < nno; jno++) { emat[ino, jno] = media_P[0, 0] * integralDNDX[1, ino, jno] + media_P[1, 1] * integralDNDX[0, ino, jno] - k0 * k0 * media_Q[2, 2] * integralN[ino, jno]; } } // 要素剛性行列にマージする if (mat_cc != null) { // 全体節点番号→要素内節点インデックスマップ Dictionary <uint, int> inoGlobalDic = new Dictionary <uint, int>(); for (int ino = 0; ino < nno; ino++) { int iNodeNumber = no_c[ino]; if (ForceNodeNumberH.ContainsKey(iNodeNumber)) { continue; } uint inoGlobal = (uint)toSorted[iNodeNumber]; inoGlobalDic.Add(inoGlobal, ino); } // マージ用の節点番号リスト uint[] no_c_tmp = inoGlobalDic.Keys.ToArray <uint>(); // マージする節点数("col"と"row"のサイズ) uint ncolrow_tmp = (uint)no_c_tmp.Length; // Note: // 要素の節点がすべて強制境界の場合がある.その場合は、ncolrow_tmpが0 if (ncolrow_tmp > 0) { // マージする要素行列 DelFEM4NetCom.Complex[] ematBuffer = new DelFEM4NetCom.Complex[ncolrow_tmp * ncolrow_tmp]; for (int ino_tmp = 0; ino_tmp < ncolrow_tmp; ino_tmp++) { int ino = inoGlobalDic[no_c_tmp[ino_tmp]]; for (int jno_tmp = 0; jno_tmp < ncolrow_tmp; jno_tmp++) { int jno = inoGlobalDic[no_c_tmp[jno_tmp]]; double value = emat[ino, jno]; DelFEM4NetCom.Complex cvalueDelFEM = new DelFEM4NetCom.Complex(value, 0); // ematBuffer[ino_tmp, jno_tmp] 横ベクトルを先に埋める(clapack方式でないことに注意) ematBuffer[ino_tmp * ncolrow_tmp + jno_tmp] = cvalueDelFEM; } } // 全体行列に要素行列をマージする mat_cc.Mearge(ncolrow_tmp, no_c_tmp, ncolrow_tmp, no_c_tmp, 1, ematBuffer, ref tmpBuffer); } } else if (mat != null) { for (int ino = 0; ino < nno; ino++) { int iNodeNumber = no_c[ino]; if (ForceNodeNumberH.ContainsKey(iNodeNumber)) { continue; } int inoGlobal = toSorted[iNodeNumber]; for (int jno = 0; jno < nno; jno++) { int jNodeNumber = no_c[jno]; if (ForceNodeNumberH.ContainsKey(jNodeNumber)) { continue; } int jnoGlobal = toSorted[jNodeNumber]; //mat[inoGlobal, jnoGlobal] += emat[ino, jno]; //mat._body[inoGlobal + jnoGlobal * mat.RowSize] += emat[ino, jno]; // 実数部に加算する //mat._body[inoGlobal + jnoGlobal * mat.RowSize].Real += emat[ino, jno]; // バンドマトリクス対応 mat._body[mat.GetBufferIndex(inoGlobal, jnoGlobal)].Real += emat[ino, jno]; } } } }
/// <summary> /// ヘルムホルツ方程式に対する有限要素マトリクス作成 /// </summary> /// <param name="waveLength">波長</param> /// <param name="toSorted">ソートされた節点インデックス( 2D節点番号→ソート済みリストインデックスのマップ)</param> /// <param name="element">有限要素</param> /// <param name="Nodes">節点リスト</param> /// <param name="Medias">媒質リスト</param> /// <param name="ForceNodeNumberH">強制境界節点ハッシュ</param> /// <param name="WGStructureDv">導波路構造区分</param> /// <param name="WaveModeDv">計算する波のモード区分</param> /// <param name="waveguideWidthForEPlane">導波路幅(E面解析用)</param> /// <param name="mat">マージされる全体行列</param> public static void AddElementMat(double waveLength, Dictionary <int, int> toSorted, FemElement element, IList <FemNode> Nodes, MediaInfo[] Medias, Dictionary <int, bool> ForceNodeNumberH, FemSolver.WGStructureDV WGStructureDv, FemSolver.WaveModeDV WaveModeDv, double waveguideWidthForEPlane, ref MyComplexMatrix mat) { // 定数 const double pi = Constants.pi; const double c0 = Constants.c0; // 波数 double k0 = 2.0 * pi / waveLength; // 角周波数 double omega = k0 * c0; // 要素頂点数 const int vertexCnt = Constants.TriVertexCnt; //3; // 要素内節点数 const int nno = Constants.TriNodeCnt_SecondOrder; //6; // 2次三角形要素 // 座標次元数 const int ndim = Constants.CoordDim2D; //2; int[] nodeNumbers = element.NodeNumbers; int[] no_c = new int[nno]; MediaInfo media = Medias[element.MediaIndex]; // ver1.1.0.0 媒質情報の取得 double[,] media_P = null; double[,] media_Q = null; // ヘルムホルツ方程式のパラメータP,Qを取得する FemSolver.GetHelmholtzMediaPQ( k0, media, WGStructureDv, WaveModeDv, waveguideWidthForEPlane, out media_P, out media_Q); // 節点座標(IFの都合上配列の配列形式の2次元配列を作成) double[][] pp = new double[nno][]; for (int ino = 0; ino < nno; ino++) { int nodeNumber = nodeNumbers[ino]; int nodeIndex = nodeNumber - 1; FemNode node = Nodes[nodeIndex]; no_c[ino] = nodeNumber; pp[ino] = new double[ndim]; for (int n = 0; n < ndim; n++) { pp[ino][n] = node.Coord[n]; } } // 面積を求める double area = KerEMatTri.TriArea(pp[0], pp[1], pp[2]); //System.Diagnostics.Debug.WriteLine("Elem No {0} area: {1}", element.No, area); System.Diagnostics.Debug.Assert(area >= 0.0); // 面積座標の微分を求める // dldx[k, n] k面積座標Lkのn方向微分 double[,] dldx = null; double[] const_term = null; KerEMatTri.TriDlDx(out dldx, out const_term, pp[0], pp[1], pp[2]); // 形状関数の微分の係数を求める // dndxC[ino,n,k] ino節点のn方向微分のLk(k面積座標)の係数 // dNino/dn = dndxC[ino, n, 0] * L0 + dndxC[ino, n, 1] * L1 + dndxC[ino, n, 2] * L2 + dndxC[ino, n, 3] double[, ,] dndxC = new double[nno, ndim, vertexCnt + 1] { { { 4.0 * dldx[0, 0], 0.0, 0.0, -1.0 * dldx[0, 0] }, { 4.0 * dldx[0, 1], 0.0, 0.0, -1.0 * dldx[0, 1] }, }, { { 0.0, 4.0 * dldx[1, 0], 0.0, -1.0 * dldx[1, 0] }, { 0.0, 4.0 * dldx[1, 1], 0.0, -1.0 * dldx[1, 1] }, }, { { 0.0, 0.0, 4.0 * dldx[2, 0], -1.0 * dldx[2, 0] }, { 0.0, 0.0, 4.0 * dldx[2, 1], -1.0 * dldx[2, 1] }, }, { { 4.0 * dldx[1, 0], 4.0 * dldx[0, 0], 0.0, 0.0 }, { 4.0 * dldx[1, 1], 4.0 * dldx[0, 1], 0.0, 0.0 }, }, { { 0.0, 4.0 * dldx[2, 0], 4.0 * dldx[1, 0], 0.0 }, { 0.0, 4.0 * dldx[2, 1], 4.0 * dldx[1, 1], 0.0 }, }, { { 4.0 * dldx[2, 0], 0.0, 4.0 * dldx[0, 0], 0.0 }, { 4.0 * dldx[2, 1], 0.0, 4.0 * dldx[0, 1], 0.0 }, }, }; // ∫dN/dndN/dn dxdy // integralDNDX[n, ino, jno] n = 0 --> ∫dN/dxdN/dx dxdy // n = 1 --> ∫dN/dydN/dy dxdy double[, ,] integralDNDX = new double[ndim, nno, nno]; for (int n = 0; n < ndim; n++) { for (int ino = 0; ino < nno; ino++) { for (int jno = 0; jno < nno; jno++) { integralDNDX[n, ino, jno] = area / 6.0 * (dndxC[ino, n, 0] * dndxC[jno, n, 0] + dndxC[ino, n, 1] * dndxC[jno, n, 1] + dndxC[ino, n, 2] * dndxC[jno, n, 2]) + area / 12.0 * (dndxC[ino, n, 0] * dndxC[jno, n, 1] + dndxC[ino, n, 0] * dndxC[jno, n, 2] + dndxC[ino, n, 1] * dndxC[jno, n, 0] + dndxC[ino, n, 1] * dndxC[jno, n, 2] + dndxC[ino, n, 2] * dndxC[jno, n, 0] + dndxC[ino, n, 2] * dndxC[jno, n, 1]) + area / 3.0 * (dndxC[ino, n, 0] * dndxC[jno, n, 3] + dndxC[ino, n, 1] * dndxC[jno, n, 3] + dndxC[ino, n, 2] * dndxC[jno, n, 3] + dndxC[ino, n, 3] * dndxC[jno, n, 0] + dndxC[ino, n, 3] * dndxC[jno, n, 1] + dndxC[ino, n, 3] * dndxC[jno, n, 2]) + area * dndxC[ino, n, 3] * dndxC[jno, n, 3]; } } } // ∫N N dxdy double[,] integralN = new double[nno, nno] { { 6.0 * area / 180.0, -1.0 * area / 180.0, -1.0 * area / 180.0, 0.0, -4.0 * area / 180.0, 0.0 }, { -1.0 * area / 180.0, 6.0 * area / 180.0, -1.0 * area / 180.0, 0.0, 0.0, -4.0 * area / 180.0 }, { -1.0 * area / 180.0, -1.0 * area / 180.0, 6.0 * area / 180.0, -4.0 * area / 180.0, 0.0, 0.0 }, { 0.0, 0.0, -4.0 * area / 180.0, 32.0 * area / 180.0, 16.0 * area / 180.0, 16.0 * area / 180.0 }, { -4.0 * area / 180.0, 0.0, 0.0, 16.0 * area / 180.0, 32.0 * area / 180.0, 16.0 * area / 180.0 }, { 0.0, -4.0 * area / 180.0, 0.0, 16.0 * area / 180.0, 16.0 * area / 180.0, 32.0 * area / 180.0 }, }; // 要素剛性行列を作る double[,] emat = new double[nno, nno]; for (int ino = 0; ino < nno; ino++) { for (int jno = 0; jno < nno; jno++) { emat[ino, jno] = media_P[0, 0] * integralDNDX[1, ino, jno] + media_P[1, 1] * integralDNDX[0, ino, jno] - k0 * k0 * media_Q[2, 2] * integralN[ino, jno]; } } // 要素剛性行列にマージする for (int ino = 0; ino < nno; ino++) { int iNodeNumber = no_c[ino]; if (ForceNodeNumberH.ContainsKey(iNodeNumber)) { continue; } int inoGlobal = toSorted[iNodeNumber]; for (int jno = 0; jno < nno; jno++) { int jNodeNumber = no_c[jno]; if (ForceNodeNumberH.ContainsKey(jNodeNumber)) { continue; } int jnoGlobal = toSorted[jNodeNumber]; //mat[inoGlobal, jnoGlobal] += emat[ino, jno]; //mat._body[inoGlobal + jnoGlobal * mat.RowSize] += emat[ino, jno]; // 実数部に加算する //mat._body[inoGlobal + jnoGlobal * mat.RowSize].Real += emat[ino, jno]; // バンドマトリクス対応 mat._body[mat.GetBufferIndex(inoGlobal, jnoGlobal)].Real += emat[ino, jno]; } } }
/* 数値積分版 * /// <summary> * /// ヘルムホルツ方程式に対する有限要素マトリクス作成 * /// </summary> * /// <param name="waveLength">波長</param> * /// <param name="toSorted">ソートされた節点インデックス( 2D節点番号→ソート済みリストインデックスのマップ)</param> * /// <param name="element">有限要素</param> * /// <param name="Nodes">節点リスト</param> * /// <param name="Medias">媒質リスト</param> * /// <param name="ForceNodeNumberH">強制境界節点ハッシュ</param> * /// <param name="WaveModeDv">計算する波のモード区分</param> * /// <param name="mat">マージされる全体行列</param> * public static void AddElementMat(double waveLength, * Dictionary<int, int> toSorted, * FemElement element, * IList<FemNode> Nodes, * MediaInfo[] Medias, * Dictionary<int, bool> ForceNodeNumberH, * FemSolver.WaveModeDv WaveModeDv, * ref MyComplexMatrix mat) * { * // 定数 * const double pi = Constants.pi; * const double c0 = Constants.c0; * // 波数 * double k0 = 2.0 * pi / waveLength; * // 角周波数 * double omega = k0 * c0; * * // 要素頂点数 * const int vertexCnt = Constants.QuadVertexCnt; //4; * // 要素内節点数 * const int nno = Constants.QuadNodeCnt_SecondOrder_Type2; //8; // 2次セレンディピティ * // 座標次元数 * const int ndim = Constants.CoordDim2D; //2; * * int[] nodeNumbers = element.NodeNumbers; * int[] no_c = new int[nno]; * MediaInfo media = Medias[element.MediaIndex]; * double[,] media_P = null; * double[,] media_Q = null; * if (WaveModeDv == FemSolver.WaveModeDv.TE) * { * media_P = media.P; * media_Q = media.Q; * } * else if (WaveModeDv == FemSolver.WaveModeDv.TM) * { * media_P = media.Q; * media_Q = media.P; * } * else * { * System.Diagnostics.Debug.Assert(false); * } * // [p]は逆数をとる * media_P = MyMatrixUtil.matrix_Inverse(media_P); * * // 節点座標(IFの都合上配列の配列形式の2次元配列を作成) * double[][] pp = new double[nno][]; * for (int ino = 0; ino < nno; ino++) * { * int nodeNumber = nodeNumbers[ino]; * int nodeIndex = nodeNumber - 1; * FemNode node = Nodes[nodeIndex]; * * no_c[ino] = nodeNumber; * pp[ino] = new double[ndim]; * for (int n = 0; n < ndim; n++) * { * pp[ino][n] = node.Coord[n]; * } * } * * //// 四角形の辺の長さを求める * //double[] le = new double[4]; * //le[0] = FemMeshLogic.GetDistance(pp[0], pp[1]); * //le[1] = FemMeshLogic.GetDistance(pp[1], pp[2]); * //le[2] = FemMeshLogic.GetDistance(pp[2], pp[3]); * //le[3] = FemMeshLogic.GetDistance(pp[3], pp[0]); * * // 要素節点座標( 局所r,s成分 ) * // s * // | * // 3+ 6 +2 * // | | | * // ---7---+---5-->r * // | | | * // 0+ 4 +1 * // | * // * double[][] n_pts = * { * // r, s * new double[] {-1.0, -1.0}, //0 * new double[] { 1.0, -1.0}, //1 * new double[] { 1.0, 1.0}, //2 * new double[] {-1.0, 1.0}, //3 * new double[] { 0, -1.0}, //4 * new double[] { 1.0, 0}, //5 * new double[] { 0, 1.0}, //6 * new double[] {-1.0, 0}, //7 * }; * * * // ガウスルジャンドルの積分公式 * double[][] g_pts = new double[5][] * { * // ポイント(ξ: [-1 +1]区間)、重み * new double[] { -0.90617985, 0.23692689}, * new double[] { -0.53846931, 0.47862867}, * new double[] {0.0, 0.56888889}, * new double[] {0.53846931, 0.47862867}, * new double[] {0.90617985, 0.23692689} * }; * * // 要素剛性行列を作る * double[,] emat = new Complex[nno, nno]; * for (int ino = 0; ino < nno; ino++) * { * for (int jno = 0; jno < nno; jno++) * { * emat[ino, jno] = 0.0; * double detjsum = 0; //check * foreach (double[] s_g_pt in g_pts) * { * foreach (double[] r_g_pt in g_pts) * { * // 積分点 * double r = r_g_pt[0]; * double s = s_g_pt[0]; * // 重み(2次元) * double weight = r_g_pt[1] * s_g_pt[1]; * // 形状関数 * double[] N = new double[nno]; * // 形状関数のr, s方向微分 * double[] dNdr = new double[nno]; * double[] dNds = new double[nno]; * // 節点0~3 : 四角形の頂点 * for (int i = 0; i < 4; i++) * { * // 節点の局所座標 * double ri = n_pts[i][0]; * double si = n_pts[i][1]; * // 形状関数N * N[i] = 0.25 * (1.0 + ri * r) * (1.0 + si * s) * (ri* r + si * s - 1.0); * // 形状関数のr方向微分 * dNdr[i] = 0.25 * ri * (1.0 + si * s) * (2.0 * ri * r + si * s); * // 形状関数のs方向微分 * dNds[i] = 0.25 * si * (1.0 + ri * r) * (ri * r + 2.0 * si * s); * } * // 節点4,6 : r方向辺上中点 * foreach (int i in new int[]{ 4, 6}) * { * // 節点の局所座標 * double ri = n_pts[i][0]; * double si = n_pts[i][1]; * // 形状関数N * N[i] = 0.5 * (1.0 - r * r) * (1.0 + si * s); * // 形状関数のr方向微分 * dNdr[i] = -1.0 * r * (1.0 + si * s); * // 形状関数のs方向微分 * dNds[i] = 0.5 * si * (1.0 - r * r); * } * // 節点5,7 : s方向辺上中点 * foreach (int i in new int[] { 5, 7 }) * { * // 節点の局所座標 * double ri = n_pts[i][0]; * double si = n_pts[i][1]; * // 形状関数N * N[i] = 0.5 * (1.0 + ri * r) * (1.0 - s * s); * // 形状関数のr方向微分 * dNdr[i] = 0.5 * ri * (1.0 - s * s); * // 形状関数のs方向微分 * dNds[i] = -1.0 * s * (1.0 + ri * r); * } * * // ヤコビアン行列 * double j11; * double j12; * double j21; * double j22; * j11 = 0; * j12 = 0; * j21 = 0; * j22 = 0; * * //for (int i = 0; i < vertexCnt; i++) * //{ * // // 頂点の座標の微分 * // // 座標の形状関数は一次四角形のものを使用する * // // 節点の局所座標 * // double ri = n_pts[i][0]; * // double si = n_pts[i][1]; * // double dNdr_1stOrder = 0.25 * ri * (1.0 + si * s); * // double dNds_1stOrder = 0.25 * (1.0 + ri * r) * si; * // j11 += dNdr_1stOrder * pp[i][0]; * // j12 += dNdr_1stOrder * pp[i][1]; * // j21 += dNds_1stOrder * pp[i][0]; * // j22 += dNds_1stOrder * pp[i][1]; * //} * * for (int i = 0; i < nno; i++) * { * j11 += dNdr[i] * pp[i][0]; * j12 += dNdr[i] * pp[i][1]; * j21 += dNds[i] * pp[i][0]; * j22 += dNds[i] * pp[i][1]; * } * // ヤコビアン * double detj = j11 * j22 - j12 * j21; * detjsum += detj * weight; * //System.Diagnostics.Debug.WriteLine("det:{0}", detj); * * // gradr[0] : gradrのx成分 grad[1] : gradrのy成分 * // grads[0] : gradsのx成分 grads[1] : gradsのy成分 * double[] gradr = new double[2]; * double[] grads = new double[2]; * gradr[0] = j22 / detj; * gradr[1] = - j21 / detj; * grads[0] = - j12 / detj; * grads[1] = j11 / detj; * * // 形状関数のx, y方向微分 * double[,] dNdX = new double[ndim, nno]; * for (int i = 0; i < nno; i++) * { * for (int direction = 0; direction < ndim; direction++) * { * dNdX[direction, i] = dNdr[i] * gradr[direction] + dNds[i] * grads[direction]; * } * } * * // 汎関数 * double functional = media_P[0, 0] * dNdX[1, ino] * dNdX[1, jno] + media_P[1, 1] * dNdX[0, ino] * dNdX[0, jno] * - k0 * k0 * media_Q[2, 2] * N[ino] * N[jno]; * emat[ino, jno] += detj * weight * functional; * } * } * //System.Diagnostics.Debug.WriteLine("detsum: {0}", detjsum); * } * } * * // 要素剛性行列にマージする * for (int ino = 0; ino < nno; ino++) * { * int iNodeNumber = no_c[ino]; * if (ForceNodeNumberH.ContainsKey(iNodeNumber)) continue; * int inoGlobal = toSorted[iNodeNumber]; * for (int jno = 0; jno < nno; jno++) * { * int jNodeNumber = no_c[jno]; * if (ForceNodeNumberH.ContainsKey(jNodeNumber)) continue; * int jnoGlobal = toSorted[jNodeNumber]; * * mat[inoGlobal, jnoGlobal] += emat[ino, jno]; * } * } * } */ /// <summary> /// ヘルムホルツ方程式に対する有限要素マトリクス作成 /// </summary> /// <param name="waveLength">波長</param> /// <param name="toSorted">ソートされた節点インデックス( 2D節点番号→ソート済みリストインデックスのマップ)</param> /// <param name="element">有限要素</param> /// <param name="Nodes">節点リスト</param> /// <param name="Medias">媒質リスト</param> /// <param name="ForceNodeNumberH">強制境界節点ハッシュ</param> /// <param name="WGStructureDv">導波路構造区分</param> /// <param name="WaveModeDv">計算する波のモード区分</param> /// <param name="waveguideWidthForEPlane">導波路幅(E面解析用)</param> /// <param name="mat">マージされる全体行列</param> public static void AddElementMat(double waveLength, Dictionary <int, int> toSorted, FemElement element, IList <FemNode> Nodes, MediaInfo[] Medias, Dictionary <int, bool> ForceNodeNumberH, FemSolver.WGStructureDV WGStructureDv, FemSolver.WaveModeDV WaveModeDv, double waveguideWidthForEPlane, ref MyComplexMatrix mat) { // 定数 const double pi = Constants.pi; const double c0 = Constants.c0; // 波数 double k0 = 2.0 * pi / waveLength; // 角周波数 double omega = k0 * c0; // 要素頂点数 //const int vertexCnt = Constants.QuadVertexCnt; //4; // 要素内節点数 const int nno = Constants.QuadNodeCnt_SecondOrder_Type2; //8; // 2次セレンディピティ // 座標次元数 const int ndim = Constants.CoordDim2D; //2; int[] nodeNumbers = element.NodeNumbers; int[] no_c = new int[nno]; MediaInfo media = Medias[element.MediaIndex]; double[,] media_P = null; double[,] media_Q = null; // ヘルムホルツ方程式のパラメータP,Qを取得する FemSolver.GetHelmholtzMediaPQ( k0, media, WGStructureDv, WaveModeDv, waveguideWidthForEPlane, out media_P, out media_Q); // 節点座標(IFの都合上配列の配列形式の2次元配列を作成) double[][] pp = new double[nno][]; for (int ino = 0; ino < nno; ino++) { int nodeNumber = nodeNumbers[ino]; int nodeIndex = nodeNumber - 1; FemNode node = Nodes[nodeIndex]; no_c[ino] = nodeNumber; pp[ino] = new double[ndim]; for (int n = 0; n < ndim; n++) { pp[ino][n] = node.Coord[n]; } } // 四角形の辺の長さを求める double[] le = new double[4]; le[0] = FemMeshLogic.GetDistance(pp[0], pp[1]); le[1] = FemMeshLogic.GetDistance(pp[1], pp[2]); le[2] = FemMeshLogic.GetDistance(pp[2], pp[3]); le[3] = FemMeshLogic.GetDistance(pp[3], pp[0]); System.Diagnostics.Debug.Assert(Math.Abs(le[0] - le[2]) < Constants.PrecisionLowerLimit); System.Diagnostics.Debug.Assert(Math.Abs(le[1] - le[3]) < Constants.PrecisionLowerLimit); double lx = le[0]; double ly = le[1]; // 要素節点座標( 局所r,s成分 ) // s // | // 3+ 6 +2 // | | | // ---7---+---5-->r // | | | // 0+ 4 +1 // | // double[][] n_pts = { // r, s new double[] { -1.0, -1.0 }, //0 new double[] { 1.0, -1.0 }, //1 new double[] { 1.0, 1.0 }, //2 new double[] { -1.0, 1.0 }, //3 new double[] { 0, -1.0 }, //4 new double[] { 1.0, 0 }, //5 new double[] { 0, 1.0 }, //6 new double[] { -1.0, 0 }, //7 }; // Ni = a0(r^2*s) + a1(r^2) + a2(r) + a3(rs) + a4(rs^2) + a5(s^2) + a6(s) + a7 double[,] Ni_a = new double[nno, 8]; for (int i = 0; i < 4; i++) { // 節点の局所座標 double ri = n_pts[i][0]; double si = n_pts[i][1]; Ni_a[i, 0] = 0.25 * ri * ri * si; Ni_a[i, 1] = 0.25 * ri * ri; Ni_a[i, 2] = 0.0; Ni_a[i, 3] = 0.25 * ri * si; Ni_a[i, 4] = 0.25 * ri * si * si; Ni_a[i, 5] = 0.25 * si * si; Ni_a[i, 6] = 0.0; Ni_a[i, 7] = -0.25; } foreach (int i in new int[] { 4, 6 }) { // 節点の局所座標 double ri = n_pts[i][0]; double si = n_pts[i][1]; Ni_a[i, 0] = -0.5 * si; Ni_a[i, 1] = -0.5; Ni_a[i, 2] = 0.0; Ni_a[i, 3] = 0.0; Ni_a[i, 4] = 0.0; Ni_a[i, 5] = 0.0; Ni_a[i, 6] = 0.5 * si; Ni_a[i, 7] = 0.5; } foreach (int i in new int[] { 5, 7 }) { // 節点の局所座標 double ri = n_pts[i][0]; double si = n_pts[i][1]; Ni_a[i, 0] = 0.0; Ni_a[i, 1] = 0.0; Ni_a[i, 2] = 0.5 * ri; Ni_a[i, 3] = 0.0; Ni_a[i, 4] = -0.5 * ri; Ni_a[i, 5] = -0.5; Ni_a[i, 6] = 0.0; Ni_a[i, 7] = 0.5; } // dNidr = a0(r^2*s) + a1(r^2) + a2(r) + a3(rs) + a4(rs^2) + a5(s^2) + a6(s) + a7 double[,] dNidr_a = new double[nno, 8]; for (int i = 0; i < 4; i++) { // 節点の局所座標 double ri = n_pts[i][0]; double si = n_pts[i][1]; dNidr_a[i, 0] = 0.0; dNidr_a[i, 1] = 0.0; // r^2 dNidr_a[i, 2] = 0.25 * 2.0 * ri * ri; // r dNidr_a[i, 3] = 0.25 * 2.0 * ri * ri * si; // rs dNidr_a[i, 4] = 0.0; dNidr_a[i, 5] = 0.25 * ri * si * si; // s^2 dNidr_a[i, 6] = 0.25 * ri * si; // s dNidr_a[i, 7] = 0.0; //1 } foreach (int i in new int[] { 4, 6 }) { // 節点の局所座標 double ri = n_pts[i][0]; double si = n_pts[i][1]; dNidr_a[i, 0] = 0.0; dNidr_a[i, 1] = 0.0; // r^2 dNidr_a[i, 2] = -1.0; // r dNidr_a[i, 3] = -si; // rs dNidr_a[i, 4] = 0.0; dNidr_a[i, 5] = 0.0; // s^2 dNidr_a[i, 6] = 0.0; // s dNidr_a[i, 7] = 0.0; // 1 } foreach (int i in new int[] { 5, 7 }) { // 節点の局所座標 double ri = n_pts[i][0]; double si = n_pts[i][1]; dNidr_a[i, 0] = 0.0; dNidr_a[i, 1] = 0.0; // r^2 dNidr_a[i, 2] = 0.0; // r dNidr_a[i, 3] = 0.0; // rs dNidr_a[i, 4] = 0.0; dNidr_a[i, 5] = -0.5 * ri; // s^2 dNidr_a[i, 6] = 0.0; // s dNidr_a[i, 7] = 0.5 * ri; // 1 } // dNids = a0(r^2*s) + a1(r^2) + a2(r) + a3(rs) + a4(rs^2) + a5(s^2) + a6(s) + a7 double[,] dNids_a = new double[nno, 8]; for (int i = 0; i < 4; i++) { // 節点の局所座標 double ri = n_pts[i][0]; double si = n_pts[i][1]; dNids_a[i, 0] = 0.0; dNids_a[i, 1] = 0.25 * ri * ri * si; // r^2 dNids_a[i, 2] = 0.25 * ri * si; // r dNids_a[i, 3] = 0.25 * 2.0 * ri * si * si; // rs dNids_a[i, 4] = 0.0; dNids_a[i, 5] = 0.0; // s^2 dNids_a[i, 6] = 0.25 * 2.0 * si * si; // s dNids_a[i, 7] = 0.0; //1 } foreach (int i in new int[] { 4, 6 }) { // 節点の局所座標 double ri = n_pts[i][0]; double si = n_pts[i][1]; dNids_a[i, 0] = 0.0; dNids_a[i, 1] = -0.5 * si; // r^2 dNids_a[i, 2] = 0.0; // r dNids_a[i, 3] = 0.0; // rs dNids_a[i, 4] = 0.0; dNids_a[i, 5] = 0.0; // s^2 dNids_a[i, 6] = 0.0; // s dNids_a[i, 7] = 0.5 * si; //1 } foreach (int i in new int[] { 5, 7 }) { // 節点の局所座標 double ri = n_pts[i][0]; double si = n_pts[i][1]; dNids_a[i, 0] = 0.0; dNids_a[i, 1] = 0.0; // r^2 dNids_a[i, 2] = 0.0; // r dNids_a[i, 3] = -ri; // rs dNids_a[i, 4] = 0.0; dNids_a[i, 5] = 0.0; // s^2 dNids_a[i, 6] = -1.0; // s dNids_a[i, 7] = 0.0; //1 } // ∫dN/dndN/dn dxdy // integralDNDX[n, ino, jno] n = 0 --> ∫dN/dxdN/dx dxdy // n = 1 --> ∫dN/dydN/dy dxdy double[, ,] integralDNDX = new double[ndim, nno, nno]; // ∫N N dxdy double[,] integralN = new double[nno, nno]; for (int ino = 0; ino < nno; ino++) { for (int jno = 0; jno < nno; jno++) { integralN[ino, jno] = lx * ly / 4.0 * ( // r^4s^2 4.0 / 15.0 * Ni_a[ino, 0] * Ni_a[jno, 0] // r^2s^2 + 4.0 / 9.0 * (Ni_a[ino, 6] * Ni_a[jno, 0] + Ni_a[ino, 5] * Ni_a[jno, 1] + Ni_a[ino, 4] * Ni_a[jno, 2] + Ni_a[ino, 3] * Ni_a[jno, 3] + Ni_a[ino, 2] * Ni_a[jno, 4] + Ni_a[ino, 1] * Ni_a[jno, 5] + Ni_a[ino, 0] * Ni_a[jno, 6]) // r^4 + 4.0 / 5.0 * Ni_a[ino, 1] * Ni_a[jno, 1] // r^2 + 4.0 / 3.0 * (Ni_a[ino, 7] * Ni_a[jno, 1] + Ni_a[ino, 2] * Ni_a[jno, 2] + Ni_a[ino, 1] * Ni_a[jno, 7]) // r^2s^4 + 4.0 / 15.0 * Ni_a[ino, 4] * Ni_a[jno, 4] // s^4 + 4.0 / 5.0 * Ni_a[ino, 5] * Ni_a[jno, 5] // s^2 + 4.0 / 3.0 * (Ni_a[ino, 7] * Ni_a[jno, 5] + Ni_a[ino, 6] * Ni_a[jno, 6] + Ni_a[ino, 5] * Ni_a[jno, 7]) // 1 + 4.0 * Ni_a[ino, 7] * Ni_a[jno, 7] ); integralDNDX[0, ino, jno] = ly / lx * ( // r^4s^2 4.0 / 15.0 * dNidr_a[ino, 0] * dNidr_a[jno, 0] // r^2s^2 + 4.0 / 9.0 * (dNidr_a[ino, 6] * dNidr_a[jno, 0] + dNidr_a[ino, 5] * dNidr_a[jno, 1] + dNidr_a[ino, 4] * dNidr_a[jno, 2] + dNidr_a[ino, 3] * dNidr_a[jno, 3] + dNidr_a[ino, 2] * dNidr_a[jno, 4] + dNidr_a[ino, 1] * dNidr_a[jno, 5] + dNidr_a[ino, 0] * dNidr_a[jno, 6]) // r^4 + 4.0 / 5.0 * dNidr_a[ino, 1] * dNidr_a[jno, 1] // r^2 + 4.0 / 3.0 * (dNidr_a[ino, 7] * dNidr_a[jno, 1] + dNidr_a[ino, 2] * dNidr_a[jno, 2] + dNidr_a[ino, 1] * dNidr_a[jno, 7]) // r^2s^4 + 4.0 / 15.0 * dNidr_a[ino, 4] * dNidr_a[jno, 4] // s^4 + 4.0 / 5.0 * dNidr_a[ino, 5] * dNidr_a[jno, 5] // s^2 + 4.0 / 3.0 * (dNidr_a[ino, 7] * dNidr_a[jno, 5] + dNidr_a[ino, 6] * dNidr_a[jno, 6] + dNidr_a[ino, 5] * dNidr_a[jno, 7]) // 1 + 4.0 * dNidr_a[ino, 7] * dNidr_a[jno, 7] ); integralDNDX[1, ino, jno] = lx / ly * ( // r^4s^2 4.0 / 15.0 * dNids_a[ino, 0] * dNids_a[jno, 0] // r^2s^2 + 4.0 / 9.0 * (dNids_a[ino, 6] * dNids_a[jno, 0] + dNids_a[ino, 5] * dNids_a[jno, 1] + dNids_a[ino, 4] * dNids_a[jno, 2] + dNids_a[ino, 3] * dNids_a[jno, 3] + dNids_a[ino, 2] * dNids_a[jno, 4] + dNids_a[ino, 1] * dNids_a[jno, 5] + dNids_a[ino, 0] * dNids_a[jno, 6]) // r^4 + 4.0 / 5.0 * dNids_a[ino, 1] * dNids_a[jno, 1] // r^2 + 4.0 / 3.0 * (dNids_a[ino, 7] * dNids_a[jno, 1] + dNids_a[ino, 2] * dNids_a[jno, 2] + dNids_a[ino, 1] * dNids_a[jno, 7]) // r^2s^4 + 4.0 / 15.0 * dNids_a[ino, 4] * dNids_a[jno, 4] // s^4 + 4.0 / 5.0 * dNids_a[ino, 5] * dNids_a[jno, 5] // s^2 + 4.0 / 3.0 * (dNids_a[ino, 7] * dNids_a[jno, 5] + dNids_a[ino, 6] * dNids_a[jno, 6] + dNids_a[ino, 5] * dNids_a[jno, 7]) // 1 + 4.0 * dNids_a[ino, 7] * dNids_a[jno, 7] ); } } // 要素剛性行列を作る double[,] emat = new double[nno, nno]; for (int ino = 0; ino < nno; ino++) { for (int jno = 0; jno < nno; jno++) { emat[ino, jno] = media_P[0, 0] * integralDNDX[1, ino, jno] + media_P[1, 1] * integralDNDX[0, ino, jno] - k0 * k0 * media_Q[2, 2] * integralN[ino, jno]; } } // 要素剛性行列にマージする for (int ino = 0; ino < nno; ino++) { int iNodeNumber = no_c[ino]; if (ForceNodeNumberH.ContainsKey(iNodeNumber)) { continue; } int inoGlobal = toSorted[iNodeNumber]; for (int jno = 0; jno < nno; jno++) { int jNodeNumber = no_c[jno]; if (ForceNodeNumberH.ContainsKey(jNodeNumber)) { continue; } int jnoGlobal = toSorted[jNodeNumber]; //mat[inoGlobal, jnoGlobal] += emat[ino, jno]; //mat._body[inoGlobal + jnoGlobal * mat.RowSize] += emat[ino, jno]; // 実数部に加算する //mat._body[inoGlobal + jnoGlobal * mat.RowSize].Real += emat[ino, jno]; // バンドマトリクス対応 mat._body[mat.GetBufferIndex(inoGlobal, jnoGlobal)].Real += emat[ino, jno]; } } }
/// <summary> /// 周期構造導波路固有値問題用FEM行列の追加 /// </summary> /// <param name="isYDirectionPeriodic"></param> /// <param name="waveLength"></param> /// <param name="nodeCntPeriodic"></param> /// <param name="freeNodeCntPeriodic_0"></param> /// <param name="toSortedPeriodic"></param> /// <param name="element"></param> /// <param name="Nodes"></param> /// <param name="Medias"></param> /// <param name="ForceNodeNumberH"></param> /// <param name="WaveModeDv"></param> /// <param name="KMat"></param> public static void AddElementMatPeriodic( bool isYDirectionPeriodic, bool isSVEA, double waveLength, int nodeCntPeriodic, int freeNodeCntPeriodic_0, Dictionary <int, int> toSortedPeriodic, FemElement element, IList <FemNode> Nodes, MediaInfo[] Medias, Dictionary <int, bool> ForceNodeNumberH, FemSolver.WaveModeDV WaveModeDv, ref double[] KMat, ref double[] CMat, ref double[] MMat) { // 定数 const double pi = Constants.pi; const double c0 = Constants.c0; // 波数 double k0 = 2.0 * pi / waveLength; // 角周波数 double omega = k0 * c0; // 要素頂点数 const int vertexCnt = Constants.TriVertexCnt; //3; // 要素内節点数 const int nno = Constants.TriNodeCnt_SecondOrder; //6; // 2次三角形要素 // 座標次元数 const int ndim = Constants.CoordDim2D; //2; int[] nodeNumbers = element.NodeNumbers; int[] no_c = new int[nno]; MediaInfo media = Medias[element.MediaIndex]; // ver1.1.0.0 媒質情報の取得 double[,] media_P = null; double[,] media_Q = null; // ヘルムホルツ方程式のパラメータP,Qを取得する FemSolver.GetHelmholtzMediaPQ( k0, media, WaveModeDv, out media_P, out media_Q); // 節点座標(IFの都合上配列の配列形式の2次元配列を作成) double[][] pp = new double[nno][]; for (int ino = 0; ino < nno; ino++) { int nodeNumber = nodeNumbers[ino]; int nodeIndex = nodeNumber - 1; FemNode node = Nodes[nodeIndex]; no_c[ino] = nodeNumber; pp[ino] = new double[ndim]; for (int n = 0; n < ndim; n++) { pp[ino][n] = node.Coord[n]; } } // 面積を求める double area = KerEMatTri.TriArea(pp[0], pp[1], pp[2]); //System.Diagnostics.Debug.WriteLine("Elem No {0} area: {1}", element.No, area); System.Diagnostics.Debug.Assert(area >= 0.0); // 面積座標の微分を求める // dldx[k, n] k面積座標Lkのn方向微分 double[,] dldx = null; double[] const_term = null; KerEMatTri.TriDlDx(out dldx, out const_term, pp[0], pp[1], pp[2]); // 形状関数の微分の係数を求める // dndxC[ino,n,k] ino節点のn方向微分のLk(k面積座標)の係数 // dNino/dn = dndxC[ino, n, 0] * L0 + dndxC[ino, n, 1] * L1 + dndxC[ino, n, 2] * L2 + dndxC[ino, n, 3] double[, ,] dndxC = new double[nno, ndim, vertexCnt + 1] { { { 4.0 * dldx[0, 0], 0.0, 0.0, -1.0 * dldx[0, 0] }, { 4.0 * dldx[0, 1], 0.0, 0.0, -1.0 * dldx[0, 1] }, }, { { 0.0, 4.0 * dldx[1, 0], 0.0, -1.0 * dldx[1, 0] }, { 0.0, 4.0 * dldx[1, 1], 0.0, -1.0 * dldx[1, 1] }, }, { { 0.0, 0.0, 4.0 * dldx[2, 0], -1.0 * dldx[2, 0] }, { 0.0, 0.0, 4.0 * dldx[2, 1], -1.0 * dldx[2, 1] }, }, { { 4.0 * dldx[1, 0], 4.0 * dldx[0, 0], 0.0, 0.0 }, { 4.0 * dldx[1, 1], 4.0 * dldx[0, 1], 0.0, 0.0 }, }, { { 0.0, 4.0 * dldx[2, 0], 4.0 * dldx[1, 0], 0.0 }, { 0.0, 4.0 * dldx[2, 1], 4.0 * dldx[1, 1], 0.0 }, }, { { 4.0 * dldx[2, 0], 0.0, 4.0 * dldx[0, 0], 0.0 }, { 4.0 * dldx[2, 1], 0.0, 4.0 * dldx[0, 1], 0.0 }, }, }; // ∫dN/dndN/dn dxdy // integralDNDX[n, ino, jno] n = 0 --> ∫dN/dxdN/dx dxdy // n = 1 --> ∫dN/dydN/dy dxdy double[, ,] integralDNDX = new double[ndim, nno, nno]; for (int n = 0; n < ndim; n++) { for (int ino = 0; ino < nno; ino++) { for (int jno = 0; jno < nno; jno++) { integralDNDX[n, ino, jno] = area / 6.0 * (dndxC[ino, n, 0] * dndxC[jno, n, 0] + dndxC[ino, n, 1] * dndxC[jno, n, 1] + dndxC[ino, n, 2] * dndxC[jno, n, 2]) + area / 12.0 * (dndxC[ino, n, 0] * dndxC[jno, n, 1] + dndxC[ino, n, 0] * dndxC[jno, n, 2] + dndxC[ino, n, 1] * dndxC[jno, n, 0] + dndxC[ino, n, 1] * dndxC[jno, n, 2] + dndxC[ino, n, 2] * dndxC[jno, n, 0] + dndxC[ino, n, 2] * dndxC[jno, n, 1]) + area / 3.0 * (dndxC[ino, n, 0] * dndxC[jno, n, 3] + dndxC[ino, n, 1] * dndxC[jno, n, 3] + dndxC[ino, n, 2] * dndxC[jno, n, 3] + dndxC[ino, n, 3] * dndxC[jno, n, 0] + dndxC[ino, n, 3] * dndxC[jno, n, 1] + dndxC[ino, n, 3] * dndxC[jno, n, 2]) + area * dndxC[ino, n, 3] * dndxC[jno, n, 3]; } } } // ∫(dNi/dx)Nj dxdy // ∫(dNi/dy)Nj dxdy double[, ,] integralDNDXL = new double[2, nno, nno]; for (int ino = 0; ino < nno; ino++) { for (int n = 0; n < ndim; n++) { integralDNDXL[n, ino, 0] = (area / 30.0) * dndxC[ino, n, 0] - (area / 60.0) * (dndxC[ino, n, 1] + dndxC[ino, n, 2]); integralDNDXL[n, ino, 1] = (area / 30.0) * dndxC[ino, n, 1] - (area / 60.0) * (dndxC[ino, n, 0] + dndxC[ino, n, 2]); integralDNDXL[n, ino, 2] = (area / 30.0) * dndxC[ino, n, 2] - (area / 60.0) * (dndxC[ino, n, 0] + dndxC[ino, n, 1]); integralDNDXL[n, ino, 3] = (area / 15.0) * (2.0 * dndxC[ino, n, 0] + 2.0 * dndxC[ino, n, 1] + dndxC[ino, n, 2] + 5.0 * dndxC[ino, n, 3]); integralDNDXL[n, ino, 4] = (area / 15.0) * (dndxC[ino, n, 0] + 2.0 * dndxC[ino, n, 1] + 2.0 * dndxC[ino, n, 2] + 5.0 * dndxC[ino, n, 3]); integralDNDXL[n, ino, 5] = (area / 15.0) * (2.0 * dndxC[ino, n, 0] + dndxC[ino, n, 1] + 2.0 * dndxC[ino, n, 2] + 5.0 * dndxC[ino, n, 3]); } } // ∫N N dxdy double[,] integralN = new double[nno, nno] { { 6.0 * area / 180.0, -1.0 * area / 180.0, -1.0 * area / 180.0, 0.0, -4.0 * area / 180.0, 0.0 }, { -1.0 * area / 180.0, 6.0 * area / 180.0, -1.0 * area / 180.0, 0.0, 0.0, -4.0 * area / 180.0 }, { -1.0 * area / 180.0, -1.0 * area / 180.0, 6.0 * area / 180.0, -4.0 * area / 180.0, 0.0, 0.0 }, { 0.0, 0.0, -4.0 * area / 180.0, 32.0 * area / 180.0, 16.0 * area / 180.0, 16.0 * area / 180.0 }, { -4.0 * area / 180.0, 0.0, 0.0, 16.0 * area / 180.0, 32.0 * area / 180.0, 16.0 * area / 180.0 }, { 0.0, -4.0 * area / 180.0, 0.0, 16.0 * area / 180.0, 16.0 * area / 180.0, 32.0 * area / 180.0 }, }; // 要素剛性行列を作る double[,] eKMat = new double[nno, nno]; double[,] eCMat = new double[nno, nno]; double[,] eMMat = new double[nno, nno]; for (int ino = 0; ino < nno; ino++) { for (int jno = 0; jno < nno; jno++) { eKMat[ino, jno] = -media_P[0, 0] * integralDNDX[1, ino, jno] - media_P[1, 1] * integralDNDX[0, ino, jno] + k0 * k0 * media_Q[2, 2] * integralN[ino, jno]; if (isSVEA) { if (isYDirectionPeriodic) { eCMat[ino, jno] = -media.P[1, 1] * (integralDNDXL[1, ino, jno] - integralDNDXL[1, jno, ino]); } else { eCMat[ino, jno] = -media.P[1, 1] * (integralDNDXL[0, ino, jno] - integralDNDXL[0, jno, ino]); } // 要素質量行列 eMMat[ino, jno] = media.P[1, 1] * integralN[ino, jno]; } } } // 要素剛性行列にマージする for (int ino = 0; ino < nno; ino++) { int iNodeNumber = no_c[ino]; if (ForceNodeNumberH.ContainsKey(iNodeNumber)) { continue; } int inoGlobal = toSortedPeriodic[iNodeNumber]; for (int jno = 0; jno < nno; jno++) { int jNodeNumber = no_c[jno]; if (ForceNodeNumberH.ContainsKey(jNodeNumber)) { continue; } int jnoGlobal = toSortedPeriodic[jNodeNumber]; KMat[inoGlobal + freeNodeCntPeriodic_0 * jnoGlobal] += eKMat[ino, jno]; if (isSVEA) { CMat[inoGlobal + freeNodeCntPeriodic_0 * jnoGlobal] += eCMat[ino, jno]; MMat[inoGlobal + freeNodeCntPeriodic_0 * jnoGlobal] += eMMat[ino, jno]; } } } }
/// <summary> /// ヘルムホルツ方程式に対する有限要素マトリクス作成 /// </summary> /// <param name="waveLength">波長</param> /// <param name="toSorted">ソートされた節点インデックス( 2D節点番号→ソート済みリストインデックスのマップ)</param> /// <param name="element">有限要素</param> /// <param name="Nodes">節点リスト</param> /// <param name="Medias">媒質リスト</param> /// <param name="ForceNodeNumberH">強制境界節点ハッシュ</param> /// <param name="WGStructureDv">導波路構造区分</param> /// <param name="WaveModeDv">計算する波のモード区分</param> /// <param name="waveguideWidthForEPlane">導波路幅(E面解析用)</param> /// <param name="mat">マージされる全体行列(clapack使用時)</param> /// <param name="mat_cc">マージされる全体行列(DelFEM使用時)</param> /// <param name="res_c">マージされる残差ベクトル(DelFEM使用時)</param> /// <param name="tmpBuffer">一時バッファ(DelFEM使用時)</param> public static void AddElementMat(double waveLength, Dictionary <int, int> toSorted, FemElement element, IList <FemNode> Nodes, MediaInfo[] Medias, Dictionary <int, bool> ForceNodeNumberH, FemSolver.WGStructureDV WGStructureDv, FemSolver.WaveModeDV WaveModeDv, double waveguideWidthForEPlane, ref MyComplexMatrix mat, ref DelFEM4NetMatVec.CZMatDia_BlkCrs_Ptr mat_cc, ref DelFEM4NetMatVec.CZVector_Blk_Ptr res_c, ref int[] tmpBuffer) { // 定数 const double pi = Constants.pi; const double c0 = Constants.c0; // 波数 double k0 = 2.0 * pi / waveLength; // 角周波数 double omega = k0 * c0; // 要素頂点数 //const int vertexCnt = Constants.QuadVertexCnt; //4; // 要素内節点数 const int nno = Constants.QuadNodeCnt_FirstOrder; //4; // 1次セレンディピティ // 座標次元数 const int ndim = Constants.CoordDim2D; //2; int[] nodeNumbers = element.NodeNumbers; int[] no_c = new int[nno]; MediaInfo media = Medias[element.MediaIndex]; double[,] media_P = null; double[,] media_Q = null; // ヘルムホルツ方程式のパラメータP,Qを取得する FemSolver.GetHelmholtzMediaPQ( k0, media, WGStructureDv, WaveModeDv, waveguideWidthForEPlane, out media_P, out media_Q); // 節点座標(IFの都合上配列の配列形式の2次元配列を作成) double[][] pp = new double[nno][]; for (int ino = 0; ino < nno; ino++) { int nodeNumber = nodeNumbers[ino]; int nodeIndex = nodeNumber - 1; FemNode node = Nodes[nodeIndex]; no_c[ino] = nodeNumber; pp[ino] = new double[ndim]; for (int n = 0; n < ndim; n++) { pp[ino][n] = node.Coord[n]; } } // 四角形の辺の長さを求める double[] le = new double[4]; le[0] = FemMeshLogic.GetDistance(pp[0], pp[1]); le[1] = FemMeshLogic.GetDistance(pp[1], pp[2]); le[2] = FemMeshLogic.GetDistance(pp[2], pp[3]); le[3] = FemMeshLogic.GetDistance(pp[3], pp[0]); System.Diagnostics.Debug.Assert(Math.Abs(le[0] - le[2]) < Constants.PrecisionLowerLimit); System.Diagnostics.Debug.Assert(Math.Abs(le[1] - le[3]) < Constants.PrecisionLowerLimit); double lx = le[0]; double ly = le[1]; // 要素節点座標( 局所r,s成分 ) // s // | // 3+ + +2 // | | | // ---+---+---+-->r // | | | // 0+ + +1 // | // double[][] n_pts = { // r, s new double[] { -1.0, -1.0 }, //0 new double[] { 1.0, -1.0 }, //1 new double[] { 1.0, 1.0 }, //2 new double[] { -1.0, 1.0 }, //3 }; // ∫dN/dndN/dn dxdy // integralDNDX[n, ino, jno] n = 0 --> ∫dN/dxdN/dx dxdy // n = 1 --> ∫dN/dydN/dy dxdy double[, ,] integralDNDX = new double[ndim, nno, nno] { { { 2.0 * ly / (6.0 * lx), -2.0 * ly / (6.0 * lx), -1.0 * ly / (6.0 * lx), 1.0 * ly / (6.0 * lx) }, { -2.0 * ly / (6.0 * lx), 2.0 * ly / (6.0 * lx), 1.0 * ly / (6.0 * lx), -1.0 * ly / (6.0 * lx) }, { -1.0 * ly / (6.0 * lx), 1.0 * ly / (6.0 * lx), 2.0 * ly / (6.0 * lx), -2.0 * ly / (6.0 * lx) }, { 1.0 * ly / (6.0 * lx), -1.0 * ly / (6.0 * lx), -2.0 * ly / (6.0 * lx), 2.0 * ly / (6.0 * lx) }, }, { { 2.0 * lx / (6.0 * ly), 1.0 * lx / (6.0 * ly), -1.0 * lx / (6.0 * ly), -2.0 * lx / (6.0 * ly) }, { 1.0 * lx / (6.0 * ly), 2.0 * lx / (6.0 * ly), -2.0 * lx / (6.0 * ly), -1.0 * lx / (6.0 * ly) }, { -1.0 * lx / (6.0 * ly), -2.0 * lx / (6.0 * ly), 2.0 * lx / (6.0 * ly), 1.0 * lx / (6.0 * ly) }, { -2.0 * lx / (6.0 * ly), -1.0 * lx / (6.0 * ly), 1.0 * lx / (6.0 * ly), 2.0 * lx / (6.0 * ly) }, } }; // ∫N N dxdy double[,] integralN = new double[nno, nno] { { 4.0 * lx * ly / 36.0, 2.0 * lx * ly / 36.0, 1.0 * lx * ly / 36.0, 2.0 * lx * ly / 36.0 }, { 2.0 * lx * ly / 36.0, 4.0 * lx * ly / 36.0, 2.0 * lx * ly / 36.0, 1.0 * lx * ly / 36.0 }, { 1.0 * lx * ly / 36.0, 2.0 * lx * ly / 36.0, 4.0 * lx * ly / 36.0, 2.0 * lx * ly / 36.0 }, { 2.0 * lx * ly / 36.0, 1.0 * lx * ly / 36.0, 2.0 * lx * ly / 36.0, 4.0 * lx * ly / 36.0 }, }; // 要素剛性行列を作る double[,] emat = new double[nno, nno]; for (int ino = 0; ino < nno; ino++) { for (int jno = 0; jno < nno; jno++) { emat[ino, jno] = media_P[0, 0] * integralDNDX[1, ino, jno] + media_P[1, 1] * integralDNDX[0, ino, jno] - k0 * k0 * media_Q[2, 2] * integralN[ino, jno]; } } // 要素剛性行列にマージする if (mat_cc != null) { // 全体節点番号→要素内節点インデックスマップ Dictionary <uint, int> inoGlobalDic = new Dictionary <uint, int>(); for (int ino = 0; ino < nno; ino++) { int iNodeNumber = no_c[ino]; if (ForceNodeNumberH.ContainsKey(iNodeNumber)) { continue; } uint inoGlobal = (uint)toSorted[iNodeNumber]; inoGlobalDic.Add(inoGlobal, ino); } // マージ用の節点番号リスト uint[] no_c_tmp = inoGlobalDic.Keys.ToArray <uint>(); // マージする節点数("col"と"row"のサイズ) uint ncolrow_tmp = (uint)no_c_tmp.Length; // Note: // 要素の節点がすべて強制境界の場合がある.その場合は、ncolrow_tmpが0 if (ncolrow_tmp > 0) { // マージする要素行列 DelFEM4NetCom.Complex[] ematBuffer = new DelFEM4NetCom.Complex[ncolrow_tmp * ncolrow_tmp]; for (int ino_tmp = 0; ino_tmp < ncolrow_tmp; ino_tmp++) { int ino = inoGlobalDic[no_c_tmp[ino_tmp]]; for (int jno_tmp = 0; jno_tmp < ncolrow_tmp; jno_tmp++) { int jno = inoGlobalDic[no_c_tmp[jno_tmp]]; double value = emat[ino, jno]; DelFEM4NetCom.Complex cvalueDelFEM = new DelFEM4NetCom.Complex(value, 0); // ematBuffer[ino_tmp, jno_tmp] 横ベクトルを先に埋める(clapack方式でないことに注意) ematBuffer[ino_tmp * ncolrow_tmp + jno_tmp] = cvalueDelFEM; } } // 全体行列に要素行列をマージする mat_cc.Mearge(ncolrow_tmp, no_c_tmp, ncolrow_tmp, no_c_tmp, 1, ematBuffer, ref tmpBuffer); } } else if (mat != null) { for (int ino = 0; ino < nno; ino++) { int iNodeNumber = no_c[ino]; if (ForceNodeNumberH.ContainsKey(iNodeNumber)) { continue; } int inoGlobal = toSorted[iNodeNumber]; for (int jno = 0; jno < nno; jno++) { int jNodeNumber = no_c[jno]; if (ForceNodeNumberH.ContainsKey(jNodeNumber)) { continue; } int jnoGlobal = toSorted[jNodeNumber]; //mat[inoGlobal, jnoGlobal] += emat[ino, jno]; //mat._body[inoGlobal + jnoGlobal * mat.RowSize] += emat[ino, jno]; // 実数部に加算する //mat._body[inoGlobal + jnoGlobal * mat.RowSize].Real += emat[ino, jno]; // バンドマトリクス対応 mat._body[mat.GetBufferIndex(inoGlobal, jnoGlobal)].Real += emat[ino, jno]; } } } }
/* 数値積分版 * /// <summary> * /// ヘルムホルツ方程式に対する有限要素マトリクス作成 * /// </summary> * /// <param name="waveLength">波長</param> * /// <param name="toSorted">ソートされた節点インデックス( 2D節点番号→ソート済みリストインデックスのマップ)</param> * /// <param name="element">有限要素</param> * /// <param name="Nodes">節点リスト</param> * /// <param name="Medias">媒質リスト</param> * /// <param name="ForceNodeNumberH">強制境界節点ハッシュ</param> * /// <param name="WaveModeDv">計算する波のモード区分</param> * /// <param name="mat">マージされる全体行列</param> * public static void AddElementMat(double waveLength, * Dictionary<int, int> toSorted, * FemElement element, * IList<FemNode> Nodes, * MediaInfo[] Medias, * Dictionary<int, bool> ForceNodeNumberH, * FemSolver.WaveModeDv WaveModeDv, * ref MyComplexMatrix mat) * { * // 定数 * const double pi = Constants.pi; * const double c0 = Constants.c0; * // 波数 * double k0 = 2.0 * pi / waveLength; * // 角周波数 * double omega = k0 * c0; * * // 要素頂点数 * const int vertexCnt = Constants.QuadVertexCnt; //4; * // 要素内節点数 * const int nno = Constants.QuadNodeCnt_SecondOrder_Type2; //8; // 2次セレンディピティ * // 座標次元数 * const int ndim = Constants.CoordDim2D; //2; * * int[] nodeNumbers = element.NodeNumbers; * int[] no_c = new int[nno]; * MediaInfo media = Medias[element.MediaIndex]; * double[,] media_P = null; * double[,] media_Q = null; * if (WaveModeDv == FemSolver.WaveModeDv.TE) * { * media_P = media.P; * media_Q = media.Q; * } * else if (WaveModeDv == FemSolver.WaveModeDv.TM) * { * media_P = media.Q; * media_Q = media.P; * } * else * { * System.Diagnostics.Debug.Assert(false); * } * // [p]は逆数をとる * media_P = MyMatrixUtil.matrix_Inverse(media_P); * * // 節点座標(IFの都合上配列の配列形式の2次元配列を作成) * double[][] pp = new double[nno][]; * for (int ino = 0; ino < nno; ino++) * { * int nodeNumber = nodeNumbers[ino]; * int nodeIndex = nodeNumber - 1; * FemNode node = Nodes[nodeIndex]; * * no_c[ino] = nodeNumber; * pp[ino] = new double[ndim]; * for (int n = 0; n < ndim; n++) * { * pp[ino][n] = node.Coord[n]; * } * } * * //// 四角形の辺の長さを求める * //double[] le = new double[4]; * //le[0] = FemMeshLogic.GetDistance(pp[0], pp[1]); * //le[1] = FemMeshLogic.GetDistance(pp[1], pp[2]); * //le[2] = FemMeshLogic.GetDistance(pp[2], pp[3]); * //le[3] = FemMeshLogic.GetDistance(pp[3], pp[0]); * * // 要素節点座標( 局所r,s成分 ) * // s * // | * // 3+ 6 +2 * // | | | * // ---7---+---5-->r * // | | | * // 0+ 4 +1 * // | * // * double[][] n_pts = * { * // r, s * new double[] {-1.0, -1.0}, //0 * new double[] { 1.0, -1.0}, //1 * new double[] { 1.0, 1.0}, //2 * new double[] {-1.0, 1.0}, //3 * new double[] { 0, -1.0}, //4 * new double[] { 1.0, 0}, //5 * new double[] { 0, 1.0}, //6 * new double[] {-1.0, 0}, //7 * }; * * * // ガウスルジャンドルの積分公式 * double[][] g_pts = new double[5][] * { * // ポイント(ξ: [-1 +1]区間)、重み * new double[] { -0.90617985, 0.23692689}, * new double[] { -0.53846931, 0.47862867}, * new double[] {0.0, 0.56888889}, * new double[] {0.53846931, 0.47862867}, * new double[] {0.90617985, 0.23692689} * }; * * // 要素剛性行列を作る * double[,] emat = new Complex[nno, nno]; * for (int ino = 0; ino < nno; ino++) * { * for (int jno = 0; jno < nno; jno++) * { * emat[ino, jno] = 0.0; * double detjsum = 0; //check * foreach (double[] s_g_pt in g_pts) * { * foreach (double[] r_g_pt in g_pts) * { * // 積分点 * double r = r_g_pt[0]; * double s = s_g_pt[0]; * // 重み(2次元) * double weight = r_g_pt[1] * s_g_pt[1]; * // 形状関数 * double[] N = new double[nno]; * // 形状関数のr, s方向微分 * double[] dNdr = new double[nno]; * double[] dNds = new double[nno]; * // 節点0~3 : 四角形の頂点 * for (int i = 0; i < 4; i++) * { * // 節点の局所座標 * double ri = n_pts[i][0]; * double si = n_pts[i][1]; * // 形状関数N * N[i] = 0.25 * (1.0 + ri * r) * (1.0 + si * s) * (ri* r + si * s - 1.0); * // 形状関数のr方向微分 * dNdr[i] = 0.25 * ri * (1.0 + si * s) * (2.0 * ri * r + si * s); * // 形状関数のs方向微分 * dNds[i] = 0.25 * si * (1.0 + ri * r) * (ri * r + 2.0 * si * s); * } * // 節点4,6 : r方向辺上中点 * foreach (int i in new int[]{ 4, 6}) * { * // 節点の局所座標 * double ri = n_pts[i][0]; * double si = n_pts[i][1]; * // 形状関数N * N[i] = 0.5 * (1.0 - r * r) * (1.0 + si * s); * // 形状関数のr方向微分 * dNdr[i] = -1.0 * r * (1.0 + si * s); * // 形状関数のs方向微分 * dNds[i] = 0.5 * si * (1.0 - r * r); * } * // 節点5,7 : s方向辺上中点 * foreach (int i in new int[] { 5, 7 }) * { * // 節点の局所座標 * double ri = n_pts[i][0]; * double si = n_pts[i][1]; * // 形状関数N * N[i] = 0.5 * (1.0 + ri * r) * (1.0 - s * s); * // 形状関数のr方向微分 * dNdr[i] = 0.5 * ri * (1.0 - s * s); * // 形状関数のs方向微分 * dNds[i] = -1.0 * s * (1.0 + ri * r); * } * * // ヤコビアン行列 * double j11; * double j12; * double j21; * double j22; * j11 = 0; * j12 = 0; * j21 = 0; * j22 = 0; * * //for (int i = 0; i < vertexCnt; i++) * //{ * // // 頂点の座標の微分 * // // 座標の形状関数は一次四角形のものを使用する * // // 節点の局所座標 * // double ri = n_pts[i][0]; * // double si = n_pts[i][1]; * // double dNdr_1stOrder = 0.25 * ri * (1.0 + si * s); * // double dNds_1stOrder = 0.25 * (1.0 + ri * r) * si; * // j11 += dNdr_1stOrder * pp[i][0]; * // j12 += dNdr_1stOrder * pp[i][1]; * // j21 += dNds_1stOrder * pp[i][0]; * // j22 += dNds_1stOrder * pp[i][1]; * //} * * for (int i = 0; i < nno; i++) * { * j11 += dNdr[i] * pp[i][0]; * j12 += dNdr[i] * pp[i][1]; * j21 += dNds[i] * pp[i][0]; * j22 += dNds[i] * pp[i][1]; * } * // ヤコビアン * double detj = j11 * j22 - j12 * j21; * detjsum += detj * weight; * //System.Diagnostics.Debug.WriteLine("det:{0}", detj); * * // gradr[0] : gradrのx成分 grad[1] : gradrのy成分 * // grads[0] : gradsのx成分 grads[1] : gradsのy成分 * double[] gradr = new double[2]; * double[] grads = new double[2]; * gradr[0] = j22 / detj; * gradr[1] = - j21 / detj; * grads[0] = - j12 / detj; * grads[1] = j11 / detj; * * // 形状関数のx, y方向微分 * double[,] dNdX = new double[ndim, nno]; * for (int i = 0; i < nno; i++) * { * for (int direction = 0; direction < ndim; direction++) * { * dNdX[direction, i] = dNdr[i] * gradr[direction] + dNds[i] * grads[direction]; * } * } * * // 汎関数 * double functional = media_P[0, 0] * dNdX[1, ino] * dNdX[1, jno] + media_P[1, 1] * dNdX[0, ino] * dNdX[0, jno] * - k0 * k0 * media_Q[2, 2] * N[ino] * N[jno]; * emat[ino, jno] += detj * weight * functional; * } * } * //System.Diagnostics.Debug.WriteLine("detsum: {0}", detjsum); * } * } * * // 要素剛性行列にマージする * for (int ino = 0; ino < nno; ino++) * { * int iNodeNumber = no_c[ino]; * if (ForceNodeNumberH.ContainsKey(iNodeNumber)) continue; * int inoGlobal = toSorted[iNodeNumber]; * for (int jno = 0; jno < nno; jno++) * { * int jNodeNumber = no_c[jno]; * if (ForceNodeNumberH.ContainsKey(jNodeNumber)) continue; * int jnoGlobal = toSorted[jNodeNumber]; * * mat[inoGlobal, jnoGlobal] += emat[ino, jno]; * } * } * } */ /// <summary> /// ヘルムホルツ方程式に対する有限要素マトリクス作成 /// </summary> /// <param name="waveLength">波長</param> /// <param name="toSorted">ソートされた節点インデックス( 2D節点番号→ソート済みリストインデックスのマップ)</param> /// <param name="element">有限要素</param> /// <param name="Nodes">節点リスト</param> /// <param name="Medias">媒質リスト</param> /// <param name="ForceNodeNumberH">強制境界節点ハッシュ</param> /// <param name="WGStructureDv">導波路構造区分</param> /// <param name="WaveModeDv">計算する波のモード区分</param> /// <param name="waveguideWidthForEPlane">導波路幅(E面解析用)</param> /// <param name="mat">マージされる全体行列(clapack使用時)</param> /// <param name="mat_cc">マージされる全体行列(DelFEM使用時)</param> /// <param name="res_c">マージされる残差ベクトル(DelFEM使用時)</param> /// <param name="tmpBuffer">一時バッファ(DelFEM使用時)</param> public static void AddElementMat(double waveLength, Dictionary <int, int> toSorted, FemElement element, IList <FemNode> Nodes, MediaInfo[] Medias, Dictionary <int, bool> ForceNodeNumberH, FemSolver.WGStructureDV WGStructureDv, FemSolver.WaveModeDV WaveModeDv, double waveguideWidthForEPlane, ref MyComplexMatrix mat, ref DelFEM4NetMatVec.CZMatDia_BlkCrs_Ptr mat_cc, ref DelFEM4NetMatVec.CZVector_Blk_Ptr res_c, ref int[] tmpBuffer) { // 定数 const double pi = Constants.pi; const double c0 = Constants.c0; // 波数 double k0 = 2.0 * pi / waveLength; // 角周波数 double omega = k0 * c0; // 要素頂点数 //const int vertexCnt = Constants.QuadVertexCnt; //4; // 要素内節点数 const int nno = Constants.QuadNodeCnt_SecondOrder_Type2; //8; // 2次セレンディピティ // 座標次元数 const int ndim = Constants.CoordDim2D; //2; int[] nodeNumbers = element.NodeNumbers; int[] no_c = new int[nno]; MediaInfo media = Medias[element.MediaIndex]; double[,] media_P = null; double[,] media_Q = null; // ヘルムホルツ方程式のパラメータP,Qを取得する FemSolver.GetHelmholtzMediaPQ( k0, media, WGStructureDv, WaveModeDv, waveguideWidthForEPlane, out media_P, out media_Q); // 節点座標(IFの都合上配列の配列形式の2次元配列を作成) double[][] pp = new double[nno][]; for (int ino = 0; ino < nno; ino++) { int nodeNumber = nodeNumbers[ino]; int nodeIndex = nodeNumber - 1; FemNode node = Nodes[nodeIndex]; no_c[ino] = nodeNumber; pp[ino] = new double[ndim]; for (int n = 0; n < ndim; n++) { pp[ino][n] = node.Coord[n]; } } // 四角形の辺の長さを求める double[] le = new double[4]; le[0] = FemMeshLogic.GetDistance(pp[0], pp[1]); le[1] = FemMeshLogic.GetDistance(pp[1], pp[2]); le[2] = FemMeshLogic.GetDistance(pp[2], pp[3]); le[3] = FemMeshLogic.GetDistance(pp[3], pp[0]); System.Diagnostics.Debug.Assert(Math.Abs(le[0] - le[2]) < Constants.PrecisionLowerLimit); System.Diagnostics.Debug.Assert(Math.Abs(le[1] - le[3]) < Constants.PrecisionLowerLimit); double lx = le[0]; double ly = le[1]; // 要素節点座標( 局所r,s成分 ) // s // | // 3+ 6 +2 // | | | // ---7---+---5-->r // | | | // 0+ 4 +1 // | // double[][] n_pts = { // r, s new double[] { -1.0, -1.0 }, //0 new double[] { 1.0, -1.0 }, //1 new double[] { 1.0, 1.0 }, //2 new double[] { -1.0, 1.0 }, //3 new double[] { 0, -1.0 }, //4 new double[] { 1.0, 0 }, //5 new double[] { 0, 1.0 }, //6 new double[] { -1.0, 0 }, //7 }; // Ni = a0(r^2*s) + a1(r^2) + a2(r) + a3(rs) + a4(rs^2) + a5(s^2) + a6(s) + a7 double[,] Ni_a = new double[nno, 8]; for (int i = 0; i < 4; i++) { // 節点の局所座標 double ri = n_pts[i][0]; double si = n_pts[i][1]; Ni_a[i, 0] = 0.25 * ri * ri * si; Ni_a[i, 1] = 0.25 * ri * ri; Ni_a[i, 2] = 0.0; Ni_a[i, 3] = 0.25 * ri * si; Ni_a[i, 4] = 0.25 * ri * si * si; Ni_a[i, 5] = 0.25 * si * si; Ni_a[i, 6] = 0.0; Ni_a[i, 7] = -0.25; } foreach (int i in new int[] { 4, 6 }) { // 節点の局所座標 double ri = n_pts[i][0]; double si = n_pts[i][1]; Ni_a[i, 0] = -0.5 * si; Ni_a[i, 1] = -0.5; Ni_a[i, 2] = 0.0; Ni_a[i, 3] = 0.0; Ni_a[i, 4] = 0.0; Ni_a[i, 5] = 0.0; Ni_a[i, 6] = 0.5 * si; Ni_a[i, 7] = 0.5; } foreach (int i in new int[] { 5, 7 }) { // 節点の局所座標 double ri = n_pts[i][0]; double si = n_pts[i][1]; Ni_a[i, 0] = 0.0; Ni_a[i, 1] = 0.0; Ni_a[i, 2] = 0.5 * ri; Ni_a[i, 3] = 0.0; Ni_a[i, 4] = -0.5 * ri; Ni_a[i, 5] = -0.5; Ni_a[i, 6] = 0.0; Ni_a[i, 7] = 0.5; } // dNidr = a0(r^2*s) + a1(r^2) + a2(r) + a3(rs) + a4(rs^2) + a5(s^2) + a6(s) + a7 double[,] dNidr_a = new double[nno, 8]; for (int i = 0; i < 4; i++) { // 節点の局所座標 double ri = n_pts[i][0]; double si = n_pts[i][1]; dNidr_a[i, 0] = 0.0; dNidr_a[i, 1] = 0.0; // r^2 dNidr_a[i, 2] = 0.25 * 2.0 * ri * ri; // r dNidr_a[i, 3] = 0.25 * 2.0 * ri * ri * si; // rs dNidr_a[i, 4] = 0.0; dNidr_a[i, 5] = 0.25 * ri * si * si; // s^2 dNidr_a[i, 6] = 0.25 * ri * si; // s dNidr_a[i, 7] = 0.0; //1 } foreach (int i in new int[] { 4, 6 }) { // 節点の局所座標 double ri = n_pts[i][0]; double si = n_pts[i][1]; dNidr_a[i, 0] = 0.0; dNidr_a[i, 1] = 0.0; // r^2 dNidr_a[i, 2] = -1.0; // r dNidr_a[i, 3] = -si; // rs dNidr_a[i, 4] = 0.0; dNidr_a[i, 5] = 0.0; // s^2 dNidr_a[i, 6] = 0.0; // s dNidr_a[i, 7] = 0.0; // 1 } foreach (int i in new int[] { 5, 7 }) { // 節点の局所座標 double ri = n_pts[i][0]; double si = n_pts[i][1]; dNidr_a[i, 0] = 0.0; dNidr_a[i, 1] = 0.0; // r^2 dNidr_a[i, 2] = 0.0; // r dNidr_a[i, 3] = 0.0; // rs dNidr_a[i, 4] = 0.0; dNidr_a[i, 5] = -0.5 * ri; // s^2 dNidr_a[i, 6] = 0.0; // s dNidr_a[i, 7] = 0.5 * ri; // 1 } // dNids = a0(r^2*s) + a1(r^2) + a2(r) + a3(rs) + a4(rs^2) + a5(s^2) + a6(s) + a7 double[,] dNids_a = new double[nno, 8]; for (int i = 0; i < 4; i++) { // 節点の局所座標 double ri = n_pts[i][0]; double si = n_pts[i][1]; dNids_a[i, 0] = 0.0; dNids_a[i, 1] = 0.25 * ri * ri * si; // r^2 dNids_a[i, 2] = 0.25 * ri * si; // r dNids_a[i, 3] = 0.25 * 2.0 * ri * si * si; // rs dNids_a[i, 4] = 0.0; dNids_a[i, 5] = 0.0; // s^2 dNids_a[i, 6] = 0.25 * 2.0 * si * si; // s dNids_a[i, 7] = 0.0; //1 } foreach (int i in new int[] { 4, 6 }) { // 節点の局所座標 double ri = n_pts[i][0]; double si = n_pts[i][1]; dNids_a[i, 0] = 0.0; dNids_a[i, 1] = -0.5 * si; // r^2 dNids_a[i, 2] = 0.0; // r dNids_a[i, 3] = 0.0; // rs dNids_a[i, 4] = 0.0; dNids_a[i, 5] = 0.0; // s^2 dNids_a[i, 6] = 0.0; // s dNids_a[i, 7] = 0.5 * si; //1 } foreach (int i in new int[] { 5, 7 }) { // 節点の局所座標 double ri = n_pts[i][0]; double si = n_pts[i][1]; dNids_a[i, 0] = 0.0; dNids_a[i, 1] = 0.0; // r^2 dNids_a[i, 2] = 0.0; // r dNids_a[i, 3] = -ri; // rs dNids_a[i, 4] = 0.0; dNids_a[i, 5] = 0.0; // s^2 dNids_a[i, 6] = -1.0; // s dNids_a[i, 7] = 0.0; //1 } // ∫dN/dndN/dn dxdy // integralDNDX[n, ino, jno] n = 0 --> ∫dN/dxdN/dx dxdy // n = 1 --> ∫dN/dydN/dy dxdy double[, ,] integralDNDX = new double[ndim, nno, nno]; // ∫N N dxdy double[,] integralN = new double[nno, nno]; for (int ino = 0; ino < nno; ino++) { for (int jno = 0; jno < nno; jno++) { integralN[ino, jno] = lx * ly / 4.0 * ( // r^4s^2 4.0 / 15.0 * Ni_a[ino, 0] * Ni_a[jno, 0] // r^2s^2 + 4.0 / 9.0 * (Ni_a[ino, 6] * Ni_a[jno, 0] + Ni_a[ino, 5] * Ni_a[jno, 1] + Ni_a[ino, 4] * Ni_a[jno, 2] + Ni_a[ino, 3] * Ni_a[jno, 3] + Ni_a[ino, 2] * Ni_a[jno, 4] + Ni_a[ino, 1] * Ni_a[jno, 5] + Ni_a[ino, 0] * Ni_a[jno, 6]) // r^4 + 4.0 / 5.0 * Ni_a[ino, 1] * Ni_a[jno, 1] // r^2 + 4.0 / 3.0 * (Ni_a[ino, 7] * Ni_a[jno, 1] + Ni_a[ino, 2] * Ni_a[jno, 2] + Ni_a[ino, 1] * Ni_a[jno, 7]) // r^2s^4 + 4.0 / 15.0 * Ni_a[ino, 4] * Ni_a[jno, 4] // s^4 + 4.0 / 5.0 * Ni_a[ino, 5] * Ni_a[jno, 5] // s^2 + 4.0 / 3.0 * (Ni_a[ino, 7] * Ni_a[jno, 5] + Ni_a[ino, 6] * Ni_a[jno, 6] + Ni_a[ino, 5] * Ni_a[jno, 7]) // 1 + 4.0 * Ni_a[ino, 7] * Ni_a[jno, 7] ); integralDNDX[0, ino, jno] = ly / lx * ( // r^4s^2 4.0 / 15.0 * dNidr_a[ino, 0] * dNidr_a[jno, 0] // r^2s^2 + 4.0 / 9.0 * (dNidr_a[ino, 6] * dNidr_a[jno, 0] + dNidr_a[ino, 5] * dNidr_a[jno, 1] + dNidr_a[ino, 4] * dNidr_a[jno, 2] + dNidr_a[ino, 3] * dNidr_a[jno, 3] + dNidr_a[ino, 2] * dNidr_a[jno, 4] + dNidr_a[ino, 1] * dNidr_a[jno, 5] + dNidr_a[ino, 0] * dNidr_a[jno, 6]) // r^4 + 4.0 / 5.0 * dNidr_a[ino, 1] * dNidr_a[jno, 1] // r^2 + 4.0 / 3.0 * (dNidr_a[ino, 7] * dNidr_a[jno, 1] + dNidr_a[ino, 2] * dNidr_a[jno, 2] + dNidr_a[ino, 1] * dNidr_a[jno, 7]) // r^2s^4 + 4.0 / 15.0 * dNidr_a[ino, 4] * dNidr_a[jno, 4] // s^4 + 4.0 / 5.0 * dNidr_a[ino, 5] * dNidr_a[jno, 5] // s^2 + 4.0 / 3.0 * (dNidr_a[ino, 7] * dNidr_a[jno, 5] + dNidr_a[ino, 6] * dNidr_a[jno, 6] + dNidr_a[ino, 5] * dNidr_a[jno, 7]) // 1 + 4.0 * dNidr_a[ino, 7] * dNidr_a[jno, 7] ); integralDNDX[1, ino, jno] = lx / ly * ( // r^4s^2 4.0 / 15.0 * dNids_a[ino, 0] * dNids_a[jno, 0] // r^2s^2 + 4.0 / 9.0 * (dNids_a[ino, 6] * dNids_a[jno, 0] + dNids_a[ino, 5] * dNids_a[jno, 1] + dNids_a[ino, 4] * dNids_a[jno, 2] + dNids_a[ino, 3] * dNids_a[jno, 3] + dNids_a[ino, 2] * dNids_a[jno, 4] + dNids_a[ino, 1] * dNids_a[jno, 5] + dNids_a[ino, 0] * dNids_a[jno, 6]) // r^4 + 4.0 / 5.0 * dNids_a[ino, 1] * dNids_a[jno, 1] // r^2 + 4.0 / 3.0 * (dNids_a[ino, 7] * dNids_a[jno, 1] + dNids_a[ino, 2] * dNids_a[jno, 2] + dNids_a[ino, 1] * dNids_a[jno, 7]) // r^2s^4 + 4.0 / 15.0 * dNids_a[ino, 4] * dNids_a[jno, 4] // s^4 + 4.0 / 5.0 * dNids_a[ino, 5] * dNids_a[jno, 5] // s^2 + 4.0 / 3.0 * (dNids_a[ino, 7] * dNids_a[jno, 5] + dNids_a[ino, 6] * dNids_a[jno, 6] + dNids_a[ino, 5] * dNids_a[jno, 7]) // 1 + 4.0 * dNids_a[ino, 7] * dNids_a[jno, 7] ); } } // 要素剛性行列を作る double[,] emat = new double[nno, nno]; for (int ino = 0; ino < nno; ino++) { for (int jno = 0; jno < nno; jno++) { emat[ino, jno] = media_P[0, 0] * integralDNDX[1, ino, jno] + media_P[1, 1] * integralDNDX[0, ino, jno] - k0 * k0 * media_Q[2, 2] * integralN[ino, jno]; } } // 要素剛性行列にマージする if (mat_cc != null) { // 全体節点番号→要素内節点インデックスマップ Dictionary <uint, int> inoGlobalDic = new Dictionary <uint, int>(); for (int ino = 0; ino < nno; ino++) { int iNodeNumber = no_c[ino]; if (ForceNodeNumberH.ContainsKey(iNodeNumber)) { continue; } uint inoGlobal = (uint)toSorted[iNodeNumber]; inoGlobalDic.Add(inoGlobal, ino); } // マージ用の節点番号リスト uint[] no_c_tmp = inoGlobalDic.Keys.ToArray <uint>(); // マージする節点数("col"と"row"のサイズ) uint ncolrow_tmp = (uint)no_c_tmp.Length; // Note: // 要素の節点がすべて強制境界の場合がある.その場合は、ncolrow_tmpが0 if (ncolrow_tmp > 0) { // マージする要素行列 DelFEM4NetCom.Complex[] ematBuffer = new DelFEM4NetCom.Complex[ncolrow_tmp * ncolrow_tmp]; for (int ino_tmp = 0; ino_tmp < ncolrow_tmp; ino_tmp++) { int ino = inoGlobalDic[no_c_tmp[ino_tmp]]; for (int jno_tmp = 0; jno_tmp < ncolrow_tmp; jno_tmp++) { int jno = inoGlobalDic[no_c_tmp[jno_tmp]]; double value = emat[ino, jno]; DelFEM4NetCom.Complex cvalueDelFEM = new DelFEM4NetCom.Complex(value, 0); // ematBuffer[ino_tmp, jno_tmp] 横ベクトルを先に埋める(clapack方式でないことに注意) ematBuffer[ino_tmp * ncolrow_tmp + jno_tmp] = cvalueDelFEM; } } // 全体行列に要素行列をマージする mat_cc.Mearge(ncolrow_tmp, no_c_tmp, ncolrow_tmp, no_c_tmp, 1, ematBuffer, ref tmpBuffer); } } else if (mat != null) { for (int ino = 0; ino < nno; ino++) { int iNodeNumber = no_c[ino]; if (ForceNodeNumberH.ContainsKey(iNodeNumber)) { continue; } int inoGlobal = toSorted[iNodeNumber]; for (int jno = 0; jno < nno; jno++) { int jNodeNumber = no_c[jno]; if (ForceNodeNumberH.ContainsKey(jNodeNumber)) { continue; } int jnoGlobal = toSorted[jNodeNumber]; //mat[inoGlobal, jnoGlobal] += emat[ino, jno]; //mat._body[inoGlobal + jnoGlobal * mat.RowSize] += emat[ino, jno]; // 実数部に加算する //mat._body[inoGlobal + jnoGlobal * mat.RowSize].Real += emat[ino, jno]; // バンドマトリクス対応 mat._body[mat.GetBufferIndex(inoGlobal, jnoGlobal)].Real += emat[ino, jno]; } } } }
/// <summary> /// ヘルムホルツ方程式に対する有限要素マトリクス作成 /// </summary> /// <param name="waveLength">波長</param> /// <param name="toSorted">ソートされた節点インデックス( 2D節点番号→ソート済みリストインデックスのマップ)</param> /// <param name="element">有限要素</param> /// <param name="Nodes">節点リスト</param> /// <param name="Medias">媒質リスト</param> /// <param name="ForceNodeNumberH">強制境界節点ハッシュ</param> /// <param name="WGStructureDv">導波路構造区分</param> /// <param name="WaveModeDv">計算する波のモード区分</param> /// <param name="waveguideWidthForEPlane">導波路幅(E面解析用)</param> /// <param name="mat">マージされる全体行列</param> public static void AddElementMat(double waveLength, Dictionary <int, int> toSorted, FemElement element, IList <FemNode> Nodes, MediaInfo[] Medias, Dictionary <int, bool> ForceNodeNumberH, FemSolver.WGStructureDV WGStructureDv, FemSolver.WaveModeDV WaveModeDv, double waveguideWidthForEPlane, ref MyComplexMatrix mat) { // 定数 const double pi = Constants.pi; const double c0 = Constants.c0; // 波数 double k0 = 2.0 * pi / waveLength; // 角周波数 double omega = k0 * c0; // 要素頂点数 //const int vertexCnt = Constants.QuadVertexCnt; //4; // 要素内節点数 const int nno = Constants.QuadNodeCnt_FirstOrder; //4; // 1次セレンディピティ // 座標次元数 const int ndim = Constants.CoordDim2D; //2; int[] nodeNumbers = element.NodeNumbers; int[] no_c = new int[nno]; MediaInfo media = Medias[element.MediaIndex]; double[,] media_P = null; double[,] media_Q = null; // ヘルムホルツ方程式のパラメータP,Qを取得する FemSolver.GetHelmholtzMediaPQ( k0, media, WGStructureDv, WaveModeDv, waveguideWidthForEPlane, out media_P, out media_Q); // 節点座標(IFの都合上配列の配列形式の2次元配列を作成) double[][] pp = new double[nno][]; for (int ino = 0; ino < nno; ino++) { int nodeNumber = nodeNumbers[ino]; int nodeIndex = nodeNumber - 1; FemNode node = Nodes[nodeIndex]; no_c[ino] = nodeNumber; pp[ino] = new double[ndim]; for (int n = 0; n < ndim; n++) { pp[ino][n] = node.Coord[n]; } } // 四角形の辺の長さを求める double[] le = new double[4]; le[0] = FemMeshLogic.GetDistance(pp[0], pp[1]); le[1] = FemMeshLogic.GetDistance(pp[1], pp[2]); le[2] = FemMeshLogic.GetDistance(pp[2], pp[3]); le[3] = FemMeshLogic.GetDistance(pp[3], pp[0]); System.Diagnostics.Debug.Assert(Math.Abs(le[0] - le[2]) < Constants.PrecisionLowerLimit); System.Diagnostics.Debug.Assert(Math.Abs(le[1] - le[3]) < Constants.PrecisionLowerLimit); double lx = le[0]; double ly = le[1]; // 要素節点座標( 局所r,s成分 ) // s // | // 3+ + +2 // | | | // ---+---+---+-->r // | | | // 0+ + +1 // | // double[][] n_pts = { // r, s new double[] { -1.0, -1.0 }, //0 new double[] { 1.0, -1.0 }, //1 new double[] { 1.0, 1.0 }, //2 new double[] { -1.0, 1.0 }, //3 }; // ∫dN/dndN/dn dxdy // integralDNDX[n, ino, jno] n = 0 --> ∫dN/dxdN/dx dxdy // n = 1 --> ∫dN/dydN/dy dxdy double[, ,] integralDNDX = new double[ndim, nno, nno] { { { 2.0 * ly / (6.0 * lx), -2.0 * ly / (6.0 * lx), -1.0 * ly / (6.0 * lx), 1.0 * ly / (6.0 * lx) }, { -2.0 * ly / (6.0 * lx), 2.0 * ly / (6.0 * lx), 1.0 * ly / (6.0 * lx), -1.0 * ly / (6.0 * lx) }, { -1.0 * ly / (6.0 * lx), 1.0 * ly / (6.0 * lx), 2.0 * ly / (6.0 * lx), -2.0 * ly / (6.0 * lx) }, { 1.0 * ly / (6.0 * lx), -1.0 * ly / (6.0 * lx), -2.0 * ly / (6.0 * lx), 2.0 * ly / (6.0 * lx) }, }, { { 2.0 * lx / (6.0 * ly), 1.0 * lx / (6.0 * ly), -1.0 * lx / (6.0 * ly), -2.0 * lx / (6.0 * ly) }, { 1.0 * lx / (6.0 * ly), 2.0 * lx / (6.0 * ly), -2.0 * lx / (6.0 * ly), -1.0 * lx / (6.0 * ly) }, { -1.0 * lx / (6.0 * ly), -2.0 * lx / (6.0 * ly), 2.0 * lx / (6.0 * ly), 1.0 * lx / (6.0 * ly) }, { -2.0 * lx / (6.0 * ly), -1.0 * lx / (6.0 * ly), 1.0 * lx / (6.0 * ly), 2.0 * lx / (6.0 * ly) }, } }; // ∫N N dxdy double[,] integralN = new double[nno, nno] { { 4.0 * lx * ly / 36.0, 2.0 * lx * ly / 36.0, 1.0 * lx * ly / 36.0, 2.0 * lx * ly / 36.0 }, { 2.0 * lx * ly / 36.0, 4.0 * lx * ly / 36.0, 2.0 * lx * ly / 36.0, 1.0 * lx * ly / 36.0 }, { 1.0 * lx * ly / 36.0, 2.0 * lx * ly / 36.0, 4.0 * lx * ly / 36.0, 2.0 * lx * ly / 36.0 }, { 2.0 * lx * ly / 36.0, 1.0 * lx * ly / 36.0, 2.0 * lx * ly / 36.0, 4.0 * lx * ly / 36.0 }, }; // 要素剛性行列を作る double[,] emat = new double[nno, nno]; for (int ino = 0; ino < nno; ino++) { for (int jno = 0; jno < nno; jno++) { emat[ino, jno] = media_P[0, 0] * integralDNDX[1, ino, jno] + media_P[1, 1] * integralDNDX[0, ino, jno] - k0 * k0 * media_Q[2, 2] * integralN[ino, jno]; } } // 要素剛性行列にマージする for (int ino = 0; ino < nno; ino++) { int iNodeNumber = no_c[ino]; if (ForceNodeNumberH.ContainsKey(iNodeNumber)) { continue; } int inoGlobal = toSorted[iNodeNumber]; for (int jno = 0; jno < nno; jno++) { int jNodeNumber = no_c[jno]; if (ForceNodeNumberH.ContainsKey(jNodeNumber)) { continue; } int jnoGlobal = toSorted[jNodeNumber]; //mat[inoGlobal, jnoGlobal] += emat[ino, jno]; //mat._body[inoGlobal + jnoGlobal * mat.RowSize] += emat[ino, jno]; // 実数部に加算する //mat._body[inoGlobal + jnoGlobal * mat.RowSize].Real += emat[ino, jno]; // バンドマトリクス対応 mat._body[mat.GetBufferIndex(inoGlobal, jnoGlobal)].Real += emat[ino, jno]; } } }