示例#1
0
        /// <summary>
        /// Build Stator in FEMM
        /// </summary>
        /// <param name="MaterialParams"></param>
        public override void BuildInFEMM(FEMM femm = null)
        {
            if (femm == null)
            {
                femm = FEMM.DefaultFEMM;
            }

            AbstractRotor Rotor     = Motor.Rotor;
            bool          fullbuild = Motor.GeneralParams.FullBuildFEMModel;

            // create material
            femm.mi_addmaterialSteel(SteelMaterialName, 1, 1, Lam_d, Lam_fill, FEMM.LaminationType.NotLaminated,
                                     BH.Select(p => p.b).ToArray(), BH.Select(p => p.h).ToArray());
            femm.mi_addmaterialCopper(WireMaterialName, WireConduct, WireType, 1, WireDiameter);

            // create boundary
            femm.mi_addboundprop_Prescribed_A(BoundaryProperty, 0, 0, 0, 0);

            /////// Build half slot
            ////segments - lines
            femm.mi_addSegmentEx(xB, yB, xC, yC, Group_Lines_Stator); //BC
            femm.mi_addSegmentEx(xD, yD, xE, yE, Group_Lines_Stator); //DE
            femm.mi_addSegmentEx(xF, yF, xF, 0, Group_Lines_Stator);  //FF1
            if (yC != yCC)
            {
                femm.mi_addSegmentEx(xC, yC, xCC, yCC, Group_Lines_Stator);//CC'
            }
            //// arcsegments
            //BA
            double a = (Math.Atan(yA / xA) - Math.Atan(yB / xB)) * 180 / Math.PI;

            femm.mi_addArcEx(xB, yB, xA, yA, a, 1, Group_Lines_Stator);
            //DC'
            femm.mi_addArcEx(xD, yD, xCC, yCC, 90, 30, Group_Lines_Stator);
            //EF
            femm.mi_addArcEx(xF, yF, xE, yE, 90, 30, Group_Lines_Stator);

            //// the coil
            femm.mi_addSegmentEx(xD2, yD2, xE2, yE2, Group_Lines_Stator);
            femm.mi_addSegmentEx(xF2, yF2, xF2, 0, Group_Lines_Stator);
            femm.mi_addSegmentEx(xCC2, yCC2, xCC2, 0, Group_Lines_Stator);
            //CC2-D2
            femm.mi_addArcEx(xD2, yD2, xCC2, yCC2, 90, 30, Group_Lines_Stator);
            //EF
            femm.mi_addArcEx(xF2, yF2, xE2, yE2, 90, 30, Group_Lines_Stator);

            ////// mirrored half to one
            femm.mi_clearselected();
            femm.mi_selectgroup(Group_Lines_Stator);
            femm.mi_mirror(0, 0, 1, 0, FEMM.EditMode.group);

            //////// Build Q slots (copy)
            femm.mi_clearselected();
            femm.mi_selectgroup(Group_Lines_Stator);
            femm.mi_selectgroup(Group_BlockLabel_Wire);
            if (fullbuild)
            {
                femm.mi_copyrotate(0, 0, 360.0 / Q, Q - 1, FEMM.EditMode.group);
            }
            else
            {
                femm.mi_copyrotate(0, 0, 360.0 / Q, Q / (2 * Rotor.p) - 1, FEMM.EditMode.group);

                // rotate so they match with rotor
                femm.mi_clearselected();
                femm.mi_selectgroup(Group_Lines_Stator);
                femm.mi_selectgroup(Group_BlockLabel_Wire);
                // rotate angle to
                double shiftangle = -Rotor.alphaDegree + 180.0 / Q;
                femm.mi_moverotate(0, 0, shiftangle, FEMM.EditMode.group);
            }

            ////// Block labels (steel)
            femm.mi_addBlockLabelEx((xF + Rstator) / 2, 0, SteelMaterialName, Group_BlockLabel_Steel);

            /////// Stator outer lines (2 arcs)
            if (fullbuild)
            {
                femm.mi_addArcEx(Rstator, 0, -Rstator, 0, 180, 10, Group_Lines_Stator);
                femm.mi_addArcEx(-Rstator, 0, Rstator, 0, 180, 10, Group_Lines_Stator);
            }
            else
            {
                femm.mi_addArcEx(Rstator * Math.Cos(Rotor.alpha), -Rstator * Math.Sin(Rotor.alpha),
                                 Rstator * Math.Cos(Rotor.alpha), Rstator * Math.Sin(Rotor.alpha), 2 * Rotor.alphaDegree, 10, Group_Lines_Stator);
            }

            // Set boundary condition for outline stator
            femm.mi_clearselected();
            if (fullbuild)
            {
                femm.mi_selectarcsegment(0, Rstator);
                femm.mi_selectarcsegment(0, -Rstator);
            }
            else
            {
                femm.mi_selectarcsegment(Rstator, 0);
            }

            femm.mi_setarcsegmentprop(10, BoundaryProperty, false, Group_Lines_Stator);

            /////// Wire, circuits in slot
            foreach (Circuit c in circuits)
            {
                femm.mi_addcircprop(c.name, c.current, c.circuitType);
            }

            double r = (xD + xE) / 2;

            foreach (Coil sci in coils)
            {
                int i = coils.IndexOf(sci);

                if (fullbuild)
                {
                    //angle go clockwise from 3 o'clock (=0 degree in decarter),
                    double aa = -2 * Math.PI * i / Q;
                    double x  = r * Math.Cos(aa);
                    double y  = r * Math.Sin(aa);
                    femm.mi_addBlockLabelEx(x, y, WireMaterialName, Group_BlockLabel_Wire, sci.inCircuit, sci.Nturns);
                }
                else
                {
                    //angle go clockwise from 3 o'clock (=0 degree in decarter), shift +pi/Q (to match rotor)
                    int    nn = Q / (2 * Rotor.p);
                    double aa = -2 * Math.PI * i / Q + (nn % 2 == 0 ? Math.PI / Q : 0);
                    double x  = r * Math.Cos(aa);
                    double y  = r * Math.Sin(aa);
                    if (aa > -Rotor.alpha || aa < -2 * Math.PI + Rotor.alpha)
                    {
                        femm.mi_addBlockLabelEx(x, y, WireMaterialName, Group_BlockLabel_Wire, sci.inCircuit, sci.Nturns);
                    }
                }
            }

            if (fullbuild)
            {
                //pre-rotate stator (fullbuild only)
                femm.mi_clearselected();
                femm.mi_selectgroup(Group_Lines_Stator);
                femm.mi_selectgroup(Group_BlockLabel_Wire);
                femm.mi_selectgroup(Group_BlockLabel_Steel);
                femm.mi_moverotate(0, 0, PreRotateAngle, FEMM.EditMode.group);
            }

            if (!fullbuild)
            {
                //build boundary of motor: 2 lines, anti-periodic
                String boundaryName = "stator-apb-1";
                double x1           = Rinstator * Math.Cos(Rotor.alpha);
                double y1           = Rinstator * Math.Sin(Rotor.alpha);
                double x2           = Rstator * Math.Cos(Rotor.alpha);
                double y2           = Rstator * Math.Sin(Rotor.alpha);

                femm.mi_addSegmentEx(x1, y1, x2, y2, Group_Lines_Stator);
                femm.mi_addSegmentEx(x1, -y1, x2, -y2, Group_Lines_Stator);

                femm.mi_addboundprop_AntiPeriodic(boundaryName);

                femm.mi_clearselected();
                femm.mi_selectsegment(x2, y2);
                femm.mi_selectsegment(x2, -y2);
                femm.mi_setsegmentprop(boundaryName, 0, true, false, Group_Lines_Stator);
            }
        }
示例#2
0
        /// <summary>
        /// Call this AFTER rotating rotor to make sure boundary conditional in airgap is solid
        /// Assuming the file FEMM was created using the same motor
        /// </summary>
        public override void AddBoundaryAtAngle(double rotateAngleDeg, FEMM femm = null)
        {
            if (Motor.GeneralParams.FullBuildFEMModel)
            {
                return;
            }

            if (femm == null)
            {
                femm = FEMM.DefaultFEMM;
            }

            var Rotor  = Motor.Rotor;
            var Stator = Motor.Stator;

            //build boundary of motor: 2 lines, anti-periodic
            String[] boundaryNames = new String[] { "airgap-apb-1", "airgap-apb-2", "airgap-apb-3" };
            int[]    Group_Lines   = { Group_Lines_Airgap + 1,
                                       Group_Lines_Airgap + 2,
                                       Group_Lines_Airgap + 3 };

            // re-add boundary (airgap)
            double rotateAngleRad = rotateAngleDeg * Math.PI / 180;
            double x1             = Rotor.RGap * Math.Cos(Rotor.alpha + rotateAngleRad);
            double y1             = Rotor.RGap * Math.Sin(Rotor.alpha + rotateAngleRad);
            double x2             = (Rotor.RGap + delta / 2) * Math.Cos(Rotor.alpha + rotateAngleRad);
            double y2             = (Rotor.RGap + delta / 2) * Math.Sin(Rotor.alpha + rotateAngleRad);
            double x3             = (Rotor.RGap + delta / 2) * Math.Cos(Rotor.alpha);
            double y3             = (Rotor.RGap + delta / 2) * Math.Sin(Rotor.alpha);
            double x4             = Stator.RGap * Math.Cos(Rotor.alpha);
            double y4             = Stator.RGap * Math.Sin(Rotor.alpha);

            // add segment
            femm.mi_addSegmentEx(x1, y1, x2, y2, Group_Lines[0]);
            femm.mi_addSegmentEx(x3, y3, x4, y4, Group_Lines[2]);
            femm.mi_addArcEx(x3, y3, x2, y2, rotateAngleDeg, 1, Group_Lines[1]);

            // add boundary
            foreach (String bn in boundaryNames)
            {
                femm.mi_addboundprop_AntiPeriodic(bn);
            }

            // set boundary
            for (int i = 0; i < Group_Lines.Count(); i++)
            {
                femm.mi_clearselected();
                femm.mi_selectgroup(Group_Lines[i]);
                femm.mi_setsegmentprop(boundaryNames[i], 0, true, false, Group_Lines[i]);
                femm.mi_setarcsegmentprop(1, boundaryNames[i], false, Group_Lines[i]);
            }

            // copy boundary
            femm.mi_clearselected();
            femm.mi_selectgroup(Group_Lines[0]);
            femm.mi_selectgroup(Group_Lines[1]);
            femm.mi_selectgroup(Group_Lines[2]);
            femm.mi_copyrotate(0, 0, -2 * Rotor.alphaDegree, 1, FEMM.EditMode.group);

            // special case: airgap becomes 2 sections
            if (Math.Abs(Math.Abs(rotateAngleDeg) - 2 * Rotor.alphaDegree) < 1e-8)
            {
                double x = (Rotor.RGap + delta * 0.2) * Math.Cos(rotateAngleRad);
                double y = (Rotor.RGap + delta * 0.2) * Math.Sin(rotateAngleRad);
                femm.mi_addBlockLabelEx(x, y, AirMaterialName, Group_Fixed_BlockLabel_Airgap);
            }

            base.AddBoundaryAtAngle(rotateAngleDeg, femm);
        }