示例#1
0
        public void saveall()
        {
            Sweet.lollipop = new Lollipop();
            ExperimentalProteoform e = ConstructorsForTesting.ExperimentalProteoform("asdf");

            Sweet.lollipop.qVals.Add(e.quant);
            GoTermNumber g = new GoTermNumber(new GoTerm("id", "desc", Aspect.BiologicalProcess), 0, 0, 0, 0);

            g.by = -1;
            Sweet.lollipop.TusherAnalysis1.GoAnalysis.goTermNumbers.Add(g);
            Sweet.lollipop.topdown_proteoforms = new List <TopDownProteoform>()
            {
                ConstructorsForTesting.TopDownProteoform("td1", 1000, 10)
            };
            ResultsSummaryGenerator.save_all(TestContext.CurrentContext.TestDirectory, Sweet.time_stamp(), Sweet.lollipop.TusherAnalysis1 as IGoAnalysis, Sweet.lollipop.TusherAnalysis1 as TusherAnalysis);
        }
示例#2
0
        public void unlabeled_proteoform_calculate_properties()
        {
            Sweet.lollipop.neucode_labeled = false;
            List <IAggregatable>   components = generate_unlabeled_components(starter_mass);
            ExperimentalProteoform e          = ConstructorsForTesting.ExperimentalProteoform("E1", components[0], components, empty_quant_components_list, true);

            Assert.AreEqual(2, e.aggregated.Count);
            double expected_agg_intensity = components.Count * starter_intensity;

            Assert.AreEqual(expected_agg_intensity, e.agg_intensity);
            double intensity_normalization_factor = components.Count * starter_intensity / expected_agg_intensity;
            double expected_agg_mass = starter_mass * intensity_normalization_factor;

            Assert.AreEqual(starter_mass * intensity_normalization_factor, e.agg_mass);
            Assert.AreEqual(starter_rt * intensity_normalization_factor, e.agg_rt);
        }
        public void test_aggregate_copy()
        {
            double max_monoisotopic_mass = starter_mass + missed_monoisotopics * Lollipop.MONOISOTOPIC_UNIT_MASS;
            double min_monoisotopic_mass = starter_mass - missed_monoisotopics * Lollipop.MONOISOTOPIC_UNIT_MASS;

            Sweet.lollipop.neucode_labeled = true;
            List <IAggregatable> components = generate_neucode_components(starter_mass);

            // in bounds lowest monoisotopic error
            components[1].charge_states.Clear(); // must clear charge states because you can't set the weighted monoisotopic mass if there are charge states.
            components[1].weighted_monoisotopic_mass = min_monoisotopic_mass - min_monoisotopic_mass / 1000000 * Convert.ToDouble(Sweet.lollipop.mass_tolerance);
            ExperimentalProteoform e = ConstructorsForTesting.ExperimentalProteoform("E1", components[0], components, empty_quant_components_list, true);

            Assert.AreEqual(2, e.aggregated.Count);
            // in bounds highest monoisotopic error
            components[1].weighted_monoisotopic_mass = max_monoisotopic_mass + max_monoisotopic_mass / 1000000 * Convert.ToDouble(Sweet.lollipop.mass_tolerance);
            e = ConstructorsForTesting.ExperimentalProteoform("E1", components[0], components, empty_quant_components_list, true);
            e.manual_validation_id           = "something";
            e.manual_validation_quant        = "something";
            e.manual_validation_verification = "something";
            ExperimentalProteoform f = new ExperimentalProteoform(e);

            Assert.AreEqual(e.root, f.root);
            Assert.AreEqual(e.agg_intensity, f.agg_intensity);
            Assert.AreEqual(e.agg_mass, f.agg_mass);
            Assert.AreEqual(e.modified_mass, f.modified_mass);
            Assert.AreEqual(e.agg_rt, f.agg_rt);
            Assert.AreEqual(e.lysine_count, f.lysine_count);
            Assert.AreEqual("E1", f.quant.accession);
            Assert.AreEqual(e.is_target, f.is_target);
            Assert.AreEqual(e.family, f.family);
            Assert.AreEqual(e.manual_validation_id, f.manual_validation_id);
            Assert.AreEqual(e.manual_validation_quant, f.manual_validation_quant);
            Assert.AreEqual(e.manual_validation_verification, f.manual_validation_verification);
            Assert.AreNotEqual(e.aggregated.GetHashCode(), f.aggregated.GetHashCode());
            Assert.AreEqual(e.aggregated.Count, f.aggregated.Count);
            Assert.AreNotEqual(e.lt_quant_components.GetHashCode(), f.lt_quant_components.GetHashCode());
            Assert.AreEqual(e.lt_quant_components.Count, f.lt_quant_components.Count);
            Assert.AreNotEqual(e.lt_verification_components.GetHashCode(), f.lt_verification_components.GetHashCode());
            Assert.AreEqual(e.lt_verification_components.Count, f.lt_verification_components.Count);
            Assert.AreNotEqual(e.hv_quant_components.GetHashCode(), f.hv_quant_components.GetHashCode());
            Assert.AreEqual(e.hv_quant_components.Count, f.hv_quant_components.Count);
            Assert.AreNotEqual(e.hv_verification_components.GetHashCode(), f.hv_verification_components.GetHashCode());
            Assert.AreEqual(e.hv_verification_components.Count, f.hv_verification_components.Count);
            Assert.AreNotEqual(e.biorepIntensityList.GetHashCode(), f.biorepIntensityList.GetHashCode());
            Assert.AreEqual(e.biorepIntensityList.Count, f.biorepIntensityList.Count);
        }
示例#4
0
        public void results_dataframe_with_something()
        {
            Sweet.lollipop = new Lollipop();
            ExperimentalProteoform e = ConstructorsForTesting.ExperimentalProteoform("E1");

            e.linked_proteoform_references = new List <Proteoform>(new List <Proteoform> {
                ConstructorsForTesting.make_a_theoretical()
            });
            e.ptm_set = e.linked_proteoform_references.Last().ptm_set;
            ProteoformFamily f = new ProteoformFamily(e);

            f.construct_family();
            Sweet.lollipop.target_proteoform_community.families = new List <ProteoformFamily> {
                f
            };
            string[] lines = ResultsSummaryGenerator.datatable_tostring(ResultsSummaryGenerator.experimental_results_dataframe(Sweet.lollipop.TusherAnalysis1)).Split(new string[] { Environment.NewLine }, StringSplitOptions.None);
            Assert.True(lines.Count() == 3);
            Assert.True(lines.Any(a => a.Contains("E1")));
            TopDownProteoform td = ConstructorsForTesting.TopDownProteoform("TD1", 1000, 10);

            td.linked_proteoform_references = new List <Proteoform>(new List <Proteoform> {
                ConstructorsForTesting.make_a_theoretical()
            });
            td.ptm_set = e.linked_proteoform_references.Last().ptm_set;
            ProteoformFamily f2 = new ProteoformFamily(td);

            f2.construct_family();
            Sweet.lollipop.target_proteoform_community.families = new List <ProteoformFamily> {
                f2
            };
            Sweet.lollipop.topdown_proteoforms = new List <TopDownProteoform>()
            {
                td
            };
            lines = ResultsSummaryGenerator.datatable_tostring(ResultsSummaryGenerator.experimental_results_dataframe(Sweet.lollipop.TusherAnalysis1)).Split(new string[] { Environment.NewLine }, StringSplitOptions.None);
            Assert.True(lines.Count() == 3);
            lines = ResultsSummaryGenerator.datatable_tostring(ResultsSummaryGenerator.topdown_results_dataframe()).Split(new string[] { Environment.NewLine }, StringSplitOptions.None);
            Assert.True(lines.Count() == 3);
            Assert.True(lines.Any(a => a.Contains("TD1")));
            Sweet.lollipop.target_proteoform_community.families = new List <ProteoformFamily> {
                f, f2
            };
            lines = ResultsSummaryGenerator.datatable_tostring(ResultsSummaryGenerator.experimental_intensities_dataframe()).Split(new string[] { Environment.NewLine }, StringSplitOptions.None);
            Assert.True(lines.Count() == 4);
            Assert.True(lines.Any(a => a.Contains("TD1")));
            Assert.True(lines.Any(a => a.Contains("E1")));
        }
        public static ExperimentalProteoform ExperimentalProteoform(string accession, IAggregatable root, List <IAggregatable> candidate_observations, List <Component> quantitative_observations, bool is_target)
        {
            ExperimentalProteoform e = new ExperimentalProteoform(accession, root, is_target);

            e.aggregated.AddRange(candidate_observations.Where(p => e.includes(p, e.root)));
            e.calculate_properties();
            if (quantitative_observations.Count > 0)
            {
                e.lt_quant_components.AddRange(quantitative_observations.Where(r => e.includes_neucode_component(r, e, true)));
                if (Sweet.lollipop.neucode_labeled)
                {
                    e.hv_quant_components.AddRange(quantitative_observations.Where(r => e.includes_neucode_component(r, e, false)));
                }
            }
            e.root = e.aggregated.OrderByDescending(a => a.intensity_sum).FirstOrDefault();
            return(e);
        }
        public void results_dataframe_with_something()
        {
            ExperimentalProteoform e = ConstructorsForTesting.ExperimentalProteoform("E1");

            e.linked_proteoform_references = new List <Proteoform>(new List <Proteoform> {
                ConstructorsForTesting.make_a_theoretical()
            });
            e.ptm_set = e.linked_proteoform_references.Last().ptm_set;
            ProteoformFamily f = new ProteoformFamily(e);

            f.construct_family();
            SaveState.lollipop.target_proteoform_community.families = new List <ProteoformFamily> {
                f
            };
            string[] lines = ResultsSummaryGenerator.results_dataframe().Split(new string[] { Environment.NewLine }, StringSplitOptions.None);
            Assert.True(lines.Count() == 3);
            Assert.True(lines.Any(a => a.Contains("E1")));
        }
        public void choose_next_agg_component()
        {
            Component c = new Component();
            Component d = new Component();
            Component e = new Component();
            Component f = new Component();

            c.weighted_monoisotopic_mass = 100;
            d.weighted_monoisotopic_mass = 119;
            e.weighted_monoisotopic_mass = 121;
            f.weighted_monoisotopic_mass = 122;
            c.intensity_sum = 1;
            d.intensity_sum = 2;
            e.intensity_sum = 3;
            f.intensity_sum = 4;
            List <IAggregatable> ordered = new List <IAggregatable> {
                c, d, e, f
            }.OrderByDescending(cc => cc.intensity_sum).ToList();
            Component is_running = new Component();

            is_running.weighted_monoisotopic_mass = 100;
            is_running.intensity_sum = 100;

            //Based on components
            List <IAggregatable> active = new List <IAggregatable> {
                is_running
            };
            IAggregatable next = Sweet.lollipop.find_next_root(ordered, active);

            Assert.True(Math.Abs(next.weighted_monoisotopic_mass - is_running.weighted_monoisotopic_mass) > 2 * (double)Sweet.lollipop.maximum_missed_monos);
            Assert.AreEqual(4, next.intensity_sum);

            //Based on experimental proteoforms
            ExperimentalProteoform exp = ConstructorsForTesting.ExperimentalProteoform("E");

            exp.root = is_running;
            List <ExperimentalProteoform> active2 = new List <ExperimentalProteoform> {
                exp
            };
            IAggregatable next2 = Sweet.lollipop.find_next_root(ordered, active2);

            Assert.True(Math.Abs(next.weighted_monoisotopic_mass - is_running.weighted_monoisotopic_mass) > 2 * (double)Sweet.lollipop.maximum_missed_monos);
            Assert.AreEqual(4, next.intensity_sum);
        }
示例#8
0
        public void TestUnabeledProteoformCommunityRelateLargePeakBase_ET()
        {
            Sweet.lollipop.neucode_labeled    = false;
            Sweet.lollipop.et_use_notch       = false;
            Sweet.lollipop.peak_width_base_et = 1;

            // One experimental one theoretical protoeform; mass difference < 500 -- return 1
            ExperimentalProteoform pf1 = ConstructorsForTesting.ExperimentalProteoform("A1", 1000.0, -1, true);
            TheoreticalProteoform  pf2 = ConstructorsForTesting.make_a_theoretical();

            pf2.modified_mass       = 1010.0;
            pf2.lysine_count        = 1;
            pf2.is_target           = true;
            pf2.ExpandedProteinList = new List <ProteinWithGoTerms> {
                p1
            };
            ExperimentalProteoform[] paE = new ExperimentalProteoform[1];
            TheoreticalProteoform[]  paT = new TheoreticalProteoform[1];
            paE[0] = pf1;
            paT[0] = pf2;
            List <ProteoformRelation> prList = new List <ProteoformRelation>();

            prepare_for_et(new List <double> {
                pf1.modified_mass - pf2.modified_mass - .9
            });
            prList = community.relate(paE, paT, ProteoformComparison.ExperimentalTheoretical, true,
                                      TestContext.CurrentContext.TestDirectory, true);
            Assert.AreEqual(1, prList.Count);

            prepare_for_et(new List <double> {
                pf1.modified_mass - pf2.modified_mass + .9
            });
            prList = community.relate(paE, paT, ProteoformComparison.ExperimentalTheoretical, true,
                                      TestContext.CurrentContext.TestDirectory, true);
            Assert.AreEqual(1, prList.Count);

            prepare_for_et(new List <double> {
                pf1.modified_mass - pf2.modified_mass + 1
            });
            prList = community.relate(paE, paT, ProteoformComparison.ExperimentalTheoretical, true,
                                      TestContext.CurrentContext.TestDirectory, true);
            Assert.AreEqual(0, prList.Count);
        }
        public void aggregate_out_of_monoisotpic_tolerance()
        {
            double max_monoisotopic_mass = starter_mass + missed_monoisotopics * Lollipop.MONOISOTOPIC_UNIT_MASS;
            double min_monoisotopic_mass = starter_mass - missed_monoisotopics * Lollipop.MONOISOTOPIC_UNIT_MASS;

            SaveState.lollipop.neucode_labeled = true;
            List <Component> components = generate_neucode_components(starter_mass);

            // below lowest monoisotopic tolerance
            components[1].charge_states.Clear(); // must clear charge states because you can't set the weighted monoisotopic mass if there are charge states.
            components[1].weighted_monoisotopic_mass = min_monoisotopic_mass - 100;
            ExperimentalProteoform e = ConstructorsForTesting.ExperimentalProteoform("E1", components[0], components, empty_quant_components_list, true);

            Assert.AreEqual(1, e.aggregated_components.Count);
            // above highest monoisotopic tolerance
            components[1].weighted_monoisotopic_mass = (max_monoisotopic_mass + 100);
            e = ConstructorsForTesting.ExperimentalProteoform("E1", components[0], components, empty_quant_components_list, true);
            Assert.AreEqual(1, e.aggregated_components.Count);
        }
        public void aggregate_in_bounds_monoisotopic_tolerance()
        {
            Sweet.lollipop.set_missed_monoisotopic_range();
            double max_monoisotopic_mass = starter_mass + missed_monoisotopics * Lollipop.MONOISOTOPIC_UNIT_MASS;
            double min_monoisotopic_mass = starter_mass - missed_monoisotopics * Lollipop.MONOISOTOPIC_UNIT_MASS;

            Sweet.lollipop.neucode_labeled = true;
            List <IAggregatable> components = generate_neucode_components(starter_mass);

            // in bounds lowest monoisotopic error
            components[1].charge_states.Clear(); // must clear charge states because you can't set the weighted monoisotopic mass if there are charge states.
            components[1].weighted_monoisotopic_mass = min_monoisotopic_mass - min_monoisotopic_mass / 1000000 * Convert.ToDouble(Sweet.lollipop.mass_tolerance);
            ExperimentalProteoform e = ConstructorsForTesting.ExperimentalProteoform("E1", components[0], components, empty_quant_components_list, true);

            Assert.AreEqual(2, e.aggregated.Count);
            // in bounds highest monoisotopic error
            components[1].weighted_monoisotopic_mass = max_monoisotopic_mass + max_monoisotopic_mass / 1000000 * Convert.ToDouble(Sweet.lollipop.mass_tolerance);
            e = ConstructorsForTesting.ExperimentalProteoform("E1", components[0], components, empty_quant_components_list, true);
            Assert.AreEqual(2, e.aggregated.Count);
        }
示例#11
0
        public void nodes_table_gives_meaningful_experimentals()
        {
            ExperimentalProteoform e = ConstructorsForTesting.ExperimentalProteoform("E1");

            e.agg_intensity = 999.99;
            e.agg_mass      = 888.88;
            e.agg_rt        = 777.77;
            ProteoformFamily f = new ProteoformFamily(e);

            f.construct_family();
            string node_table = CytoscapeScript.get_cytoscape_nodes_tsv(new List <ProteoformFamily> {
                f
            },
                                                                        null,
                                                                        CytoscapeScript.color_scheme_names[0], Lollipop.edge_labels[0], Lollipop.node_labels[0], Lollipop.node_positioning[0], 2,
                                                                        f.theoretical_proteoforms, false, Lollipop.gene_name_labels[1]);

            Assert.True(node_table.Contains("E1"));
            Assert.True(node_table.Contains("999.99"));
        }
        public void wrong_relation_shifting()
        {
            ProteoformCommunity test_community = new ProteoformCommunity();

            SaveState.lollipop.target_proteoform_community = test_community;
            ExperimentalProteoform    pf3 = ConstructorsForTesting.ExperimentalProteoform("E1");
            ExperimentalProteoform    pf4 = ConstructorsForTesting.ExperimentalProteoform("E2");
            ProteoformComparison      wrong_comparison = ProteoformComparison.ExperimentalExperimental;
            ProteoformRelation        pr2 = new ProteoformRelation(pf3, pf4, wrong_comparison, 0, TestContext.CurrentContext.TestDirectory);
            ProteoformRelation        pr3 = new ProteoformRelation(pf3, pf4, wrong_comparison, 0, TestContext.CurrentContext.TestDirectory);
            List <ProteoformRelation> prs = new List <ProteoformRelation> {
                pr2, pr3
            };

            foreach (ProteoformRelation pr in prs)
            {
                pr.set_nearby_group(prs, prs.Select(r => r.InstanceId).ToList());
            }
            test_community.accept_deltaMass_peaks(prs, new List <ProteoformRelation>());
            Assert.False(SaveState.lollipop.et_peaks[0].shift_experimental_masses(1, true));
        }
示例#13
0
        public void cytoscape_improper_build_folder()
        {
            TheoreticalProteoform  t  = ConstructorsForTesting.make_a_theoretical();
            ExperimentalProteoform e  = ConstructorsForTesting.ExperimentalProteoform("E1");
            ProteoformRelation     et = new ProteoformRelation(e, t, ProteoformComparison.ExperimentalTheoretical, 0, TestContext.CurrentContext.TestDirectory);

            e.agg_intensity = 999.99;
            e.quant.TusherValues1.numeratorIntensitySum   = 444.44m;
            e.quant.TusherValues1.denominatorIntensitySum = 333.33m;
            e.quant.intensitySum = 777.77m;
            List <ProteoformFamily> f = new List <ProteoformFamily> {
                new ProteoformFamily(e)
            };

            f.First().construct_family();
            string message = CytoscapeScript.write_cytoscape_script(f, f,
                                                                    "", "", "test",
                                                                    null, false, false,
                                                                    CytoscapeScript.color_scheme_names[0], Lollipop.edge_labels[0], Lollipop.node_labels[0], CytoscapeScript.node_label_positions[0], Lollipop.node_positioning[0], 2,
                                                                    false, Lollipop.gene_name_labels[1]);

            Assert.False(message.StartsWith("Finished"));
        }
        public void unlabeled_agg()
        {
            double max_monoisotopic_mass = TestExperimentalProteoform.starter_mass + TestExperimentalProteoform.missed_monoisotopics * Lollipop.MONOISOTOPIC_UNIT_MASS;
            double min_monoisotopic_mass = TestExperimentalProteoform.starter_mass - TestExperimentalProteoform.missed_monoisotopics * Lollipop.MONOISOTOPIC_UNIT_MASS;

            List <IAggregatable> components = TestExperimentalProteoform.generate_unlabeled_components(TestExperimentalProteoform.starter_mass);

            Sweet.lollipop.neucode_labeled                   = false;
            Sweet.lollipop.remaining_to_aggregate            = new List <IAggregatable>(components);
            Sweet.lollipop.remaining_verification_components = new HashSet <Component>(components.OfType <Component>());
            Sweet.lollipop.missed_monoisotopics_range        = Enumerable.Range(-3, 3 * 2 + 1).ToList();
            ExperimentalProteoform e = ConstructorsForTesting.ExperimentalProteoform("E");

            e.root = components[0];
            e.aggregate();
            e.verify();

            Assert.AreEqual(2, e.aggregated.Count);
            Assert.AreEqual(2, e.lt_verification_components.Count);
            Assert.AreEqual(0, e.hv_verification_components.Count); // everything goes into light with unlabeled
            Assert.AreEqual(0, e.lt_quant_components.Count);        // no quantitation for unlabeled, yet
            Assert.AreEqual(0, e.hv_quant_components.Count);
        }
        public void unlabeled_agg()
        {
            SaveState.lollipop.min_num_bioreps = 0;
            double max_monoisotopic_mass = TestExperimentalProteoform.starter_mass + TestExperimentalProteoform.missed_monoisotopics * Lollipop.MONOISOTOPIC_UNIT_MASS;
            double min_monoisotopic_mass = TestExperimentalProteoform.starter_mass - TestExperimentalProteoform.missed_monoisotopics * Lollipop.MONOISOTOPIC_UNIT_MASS;

            List <Component> components = TestExperimentalProteoform.generate_unlabeled_components(TestExperimentalProteoform.starter_mass);

            SaveState.lollipop.neucode_labeled      = false;
            SaveState.lollipop.remaining_components = new List <Component>(components);
            SaveState.lollipop.remaining_verification_components = new List <Component>(components);
            ExperimentalProteoform e = ConstructorsForTesting.ExperimentalProteoform("E");

            e.root = components[0];
            e.aggregate();
            e.verify();

            Assert.AreEqual(2, e.aggregated_components.Count);
            Assert.AreEqual(2, e.lt_verification_components.Count);
            Assert.AreEqual(0, e.hv_verification_components.Count); // everything goes into light with unlabeled
            Assert.AreEqual(0, e.lt_quant_components.Count);        // no quantitation for unlabeled, yet
            Assert.AreEqual(0, e.hv_quant_components.Count);
        }
        public void assign_quant_components_large_tolerance_split_range()
        {
            Sweet.lollipop = new Lollipop();
            Sweet.lollipop.neucode_labeled            = true;
            Sweet.lollipop.mass_tolerance             = 10;                                               //ppm
            Sweet.lollipop.missed_monoisotopics_range = Enumerable.Range(-3, 3 * 2 + 1).ToList();
            ExperimentalProteoform e = ConstructorsForTesting.ExperimentalProteoform("", 20000, 2, true); // tolerance is 0.2 Da
            double hv_mass           = e.agg_mass + e.lysine_count * Lollipop.NEUCODE_LYSINE_MASS_SHIFT;  // 20000.0703

            Component bb = new Component();
            Component cc = new Component();
            Component dd = new Component();
            Component ee = new Component();
            Component ff = new Component();
            Component gg = new Component();
            Component hh = new Component();
            Component ii = new Component();

            bb.weighted_monoisotopic_mass = 19999.79;
            cc.weighted_monoisotopic_mass = 19999.99;
            dd.weighted_monoisotopic_mass = 20000;
            ee.weighted_monoisotopic_mass = 20000.03;
            //boundary is 20000.036
            ff.weighted_monoisotopic_mass = 20000.04;
            gg.weighted_monoisotopic_mass = 20000.07;
            hh.weighted_monoisotopic_mass = 20000.08;
            ii.weighted_monoisotopic_mass = 20000.28;

            Sweet.lollipop.remaining_quantification_components = new HashSet <Component> {
                bb, cc, dd, ee, ff, gg, hh, ii
            };
            e.assign_quantitative_components();
            Assert.AreEqual(3, e.lt_quant_components.Count);
            Assert.AreEqual(3, e.hv_quant_components.Count);
            Assert.False(e.lt_quant_components.Any(c => e.hv_quant_components.Contains(c)));
        }
示例#17
0
        public void TestUnabeledProteoformCommunityRelateWithNotches_ET()
        {
            Sweet.lollipop.neucode_labeled = false;
            Sweet.lollipop.et_use_notch    = true;

            // One experimental one theoretical protoeform; mass difference < 500 -- return 1
            ExperimentalProteoform pf1 = ConstructorsForTesting.ExperimentalProteoform("A1", 1000.0, -1, true);
            TheoreticalProteoform  pf2 = ConstructorsForTesting.make_a_theoretical();

            pf2.modified_mass       = 1010.0;
            pf2.lysine_count        = 1;
            pf2.is_target           = true;
            pf2.ExpandedProteinList = new List <ProteinWithGoTerms> {
                p1
            };
            ExperimentalProteoform[] paE = new ExperimentalProteoform[1];
            TheoreticalProteoform[]  paT = new TheoreticalProteoform[1];
            paE[0] = pf1;
            paT[0] = pf2;
            List <ProteoformRelation> prList = new List <ProteoformRelation>();

            prepare_for_et(new List <double> {
                pf1.modified_mass - pf2.modified_mass
            });
            prList = community.relate(paE, paT, ProteoformComparison.ExperimentalTheoretical, true, TestContext.CurrentContext.TestDirectory, true);
            Assert.AreEqual(1, prList.Count);

            // One experimental one theoretical protoeform; mass difference > 500 -- return 0
            pf1.modified_mass = 1000;
            pf2.modified_mass = 2000;
            paE[0]            = pf1;
            paT[0]            = pf2;
            prepare_for_et(new List <double> {
                pf1.modified_mass - pf2.modified_mass
            });
            prList = community.relate(paE, paT, ProteoformComparison.ExperimentalTheoretical, true, TestContext.CurrentContext.TestDirectory, true);
            Assert.AreEqual(0, prList.Count);

            //Two experimental one theoretical proteoforms; mass difference < 500 Da -- return 2
            ExperimentalProteoform pf3 = ConstructorsForTesting.ExperimentalProteoform("A1", 1000.0, -1, true);
            ExperimentalProteoform pf4 = ConstructorsForTesting.ExperimentalProteoform("A2", 1010.0, -1, true);
            TheoreticalProteoform  pf5 = ConstructorsForTesting.make_a_theoretical();

            pf5.modified_mass       = 1020.0;
            pf5.lysine_count        = 1;
            pf5.is_target           = true;
            pf5.ExpandedProteinList = new List <ProteinWithGoTerms> {
                p1
            };
            ExperimentalProteoform[] paE2 = new ExperimentalProteoform[2];
            paE2[0] = pf3;
            paE2[1] = pf4;
            paT[0]  = pf5;
            prepare_for_et(new List <double> {
                pf3.modified_mass - pf5.modified_mass,
                pf4.modified_mass - pf5.modified_mass,
            });
            prList = community.relate(paE2, paT, ProteoformComparison.ExperimentalTheoretical, true, TestContext.CurrentContext.TestDirectory, true);
            Assert.AreEqual(2, prList.Count);

            //Two experimental one theoretical proteoforms; one mass difference >500 Da -- return 0
            pf3.modified_mass = 1000;
            pf4.modified_mass = 1010;
            pf5.modified_mass = 2000;
            paE2[0]           = pf3;
            paE2[1]           = pf4;
            paT[0]            = pf5;
            prepare_for_et(new List <double> {
                pf3.modified_mass - pf5.modified_mass,
                pf4.modified_mass - pf5.modified_mass,
            });
            prList = community.relate(paE2, paT, ProteoformComparison.ExperimentalTheoretical, true, TestContext.CurrentContext.TestDirectory, true);
            Assert.AreEqual(0, prList.Count);

            //Two experimental one theoretical proteoforms; mass difference > 500 Da -- return 0
            pf3.modified_mass = 1000;
            pf4.modified_mass = 2000;
            pf5.modified_mass = 3000;
            paE2[0]           = pf3;
            paE2[1]           = pf4;
            paT[0]            = pf5;
            prepare_for_et(new List <double> {
                pf3.modified_mass - pf5.modified_mass,
                pf4.modified_mass - pf5.modified_mass,
            });
            prList = community.relate(paE2, paT, ProteoformComparison.ExperimentalTheoretical, true, TestContext.CurrentContext.TestDirectory, true);
            Assert.AreEqual(0, prList.Count);

            //test methionine retention
            pf1.modified_mass = 2131.04;
            pf1.lysine_count  = 1;
            pf2.modified_mass = 2000;
            pf2.lysine_count  = 1;
            pf2.begin         = 2;

            ModificationMotif motif;

            ModificationMotif.TryGetMotif("M", out motif);
            Modification m = new Modification("Met retention", _modificationType: "AminoAcid", _target: motif, _locationRestriction: "Anywhere.", _monoisotopicMass: 131.04);

            Sweet.lollipop.theoretical_database.all_mods_with_mass.Add(m);
            Sweet.lollipop.theoretical_database.all_possible_ptmsets.Add(new PtmSet(new List <Ptm> {
                new Ptm(-1, m)
            }));
            Sweet.lollipop.modification_ranks.Add(131.04, 2);
            Sweet.lollipop.theoretical_database.possible_ptmset_dictionary = Sweet.lollipop.theoretical_database.make_ptmset_dictionary();

            paE[0] = pf1;
            paT[0] = pf2;
            prList = community.relate(paE, paT, ProteoformComparison.ExperimentalTheoretical, true, TestContext.CurrentContext.TestDirectory, true);
            Assert.AreEqual(1, prList.Count);
        }
示例#18
0
        public void get_interesting_goterm_families()
        {
            Sweet.lollipop = new Lollipop();
            Sweet.lollipop.theoretical_database.aaIsotopeMassList = new AminoAcidMasses(Sweet.lollipop.carbamidomethylation, Sweet.lollipop.neucode_labeled).AA_Masses;
            Sweet.lollipop.significance_by_permutation            = true;
            Sweet.lollipop.significance_by_log2FC = false;
            DatabaseReference d1 = new DatabaseReference("GO", "GO:1", new List <Tuple <string, string> > {
                new Tuple <string, string>("term", "P:1")
            });
            DatabaseReference d2 = new DatabaseReference("GO", "GO:2", new List <Tuple <string, string> > {
                new Tuple <string, string>("term", "P:2")
            });
            DatabaseReference d3 = new DatabaseReference("GO", "GO:1", new List <Tuple <string, string> > {
                new Tuple <string, string>("term", "P:1")
            });
            GoTerm             g1 = new GoTerm(d1);
            GoTerm             g2 = new GoTerm(d2);
            GoTerm             g3 = new GoTerm(d3);
            ProteinWithGoTerms p1 = new ProteinWithGoTerms("ASDF", "T1", new List <Tuple <string, string> > {
                new Tuple <string, string>("", "")
            }, new Dictionary <int, List <Modification> >(), new List <ProteolysisProduct> {
                new ProteolysisProduct(0, 0, "")
            }, "T2", "T3", true, false, new List <DatabaseReference> {
                d1
            }, new List <GoTerm> {
                g1
            });
            ProteinWithGoTerms p2 = new ProteinWithGoTerms("ASDF", "T2", new List <Tuple <string, string> > {
                new Tuple <string, string>("", "")
            }, new Dictionary <int, List <Modification> >(), new List <ProteolysisProduct> {
                new ProteolysisProduct(0, 0, "")
            }, "T2", "T3", true, false, new List <DatabaseReference> {
                d2
            }, new List <GoTerm> {
                g2
            });
            ProteinWithGoTerms p3 = new ProteinWithGoTerms("ASDF", "T3", new List <Tuple <string, string> > {
                new Tuple <string, string>("", "")
            }, new Dictionary <int, List <Modification> >(), new List <ProteolysisProduct> {
                new ProteolysisProduct(0, 0, "")
            }, "T2", "T3", true, false, new List <DatabaseReference> {
                d3
            }, new List <GoTerm> {
                g3
            });
            Dictionary <InputFile, Protein[]> dict = new Dictionary <InputFile, Protein[]>
            {
                { new InputFile("fake.txt", Purpose.ProteinDatabase), new Protein[] { p1 } },
                { new InputFile("fake.txt", Purpose.ProteinDatabase), new Protein[] { p2 } },
                { new InputFile("fake.txt", Purpose.ProteinDatabase), new Protein[] { p3 } },
            };
            ExperimentalProteoform e1 = ConstructorsForTesting.ExperimentalProteoform("E");
            ExperimentalProteoform e2 = ConstructorsForTesting.ExperimentalProteoform("E");

            e1.quant.intensitySum = 1;
            e1.quant.TusherValues1.significant = true;
            e1.quant.tusherlogFoldChange       = 1;
            e2.quant.intensitySum = 1;
            e2.quant.TusherValues1.significant = true;
            e2.quant.tusherlogFoldChange       = 1;
            TheoreticalProteoform t = ConstructorsForTesting.make_a_theoretical("T1_T1_asdf", p1, dict);
            TheoreticalProteoform u = ConstructorsForTesting.make_a_theoretical("T2_T1_asdf_asdf", p2, dict);
            TheoreticalProteoform v = ConstructorsForTesting.make_a_theoretical("T3_T1_asdf_Asdf_Asdf", p3, dict);

            t.ExpandedProteinList = new List <ProteinWithGoTerms> {
                p1
            };
            u.ExpandedProteinList = new List <ProteinWithGoTerms> {
                p2
            };
            v.ExpandedProteinList = new List <ProteinWithGoTerms> {
                p3
            };
            t.begin = 1;
            t.end   = 1;
            u.begin = 1;
            u.end   = 1;
            v.begin = 1;
            v.end   = 1;
            make_relation(e1, t);
            //make_relation(e1, v); // we don't allow this to happen anymore... we only allow one ET conntection per E
            make_relation(e2, u);
            ProteoformFamily f = new ProteoformFamily(e1); // two theoreticals with the same GoTerms... expecting one GoTerm number but two theoretical proteins (now only one)
            ProteoformFamily h = new ProteoformFamily(e2);

            f.construct_family();
            f.identify_experimentals();
            h.construct_family();
            h.identify_experimentals();
            List <ProteoformFamily> families = new List <ProteoformFamily> {
                f, h
            };

            t.family  = f;
            v.family  = f;
            e1.family = f;
            u.family  = h;
            e2.family = h;
            List <ExperimentalProteoform> fake_significant = new List <ExperimentalProteoform> {
                e1
            };
            List <ProteinWithGoTerms> significant_proteins = Sweet.lollipop.getInducedOrRepressedProteins(fake_significant, Sweet.lollipop.TusherAnalysis1.GoAnalysis);
            List <GoTermNumber>       gtn = Sweet.lollipop.TusherAnalysis1.GoAnalysis.getGoTermNumbers(significant_proteins, new List <ProteinWithGoTerms> {
                p1, p2, p3
            });

            Assert.AreEqual(1, significant_proteins.Count);
            Assert.AreEqual(1, gtn.Count);
            Assert.AreEqual("1", gtn.First().Id);
            Assert.AreEqual(0 - (decimal)Math.Log(2d / 3d, 2), gtn.First().log_odds_ratio);

            List <ProteoformFamily> fams = Sweet.lollipop.getInterestingFamilies(gtn, families);

            Assert.AreEqual(1, fams.Count);
            Assert.AreEqual(1, fams[0].theoretical_proteoforms.Count);
        }
示例#19
0
        public void test_accept_from_presets()
        {
            Sweet.lollipop = new Lollipop();
            ProteoformCommunity test_community = new ProteoformCommunity();

            Sweet.lollipop.target_proteoform_community = test_community;

            Sweet.lollipop.theoretical_database.uniprotModifications = new Dictionary <string, List <Modification> >
            {
                { "unmodified", new List <Modification>()
                  {
                      ConstructorsForTesting.get_modWithMass("unmodified", 0)
                  } }
            };

            //Testing the acceptance of peaks. The FDR is tested above, so I'm not going to work with that here.
            //Four proteoforms, three relations (linear), middle one isn't accepted; should give 2 families
            Sweet.lollipop.min_peak_count_ee = 2;
            ExperimentalProteoform pf3 = ConstructorsForTesting.ExperimentalProteoform("E1");
            ExperimentalProteoform pf4 = ConstructorsForTesting.ExperimentalProteoform("E2");
            ExperimentalProteoform pf5 = ConstructorsForTesting.ExperimentalProteoform("E3");
            ExperimentalProteoform pf6 = ConstructorsForTesting.ExperimentalProteoform("E4");

            ProteoformComparison comparison34 = ProteoformComparison.ExperimentalExperimental;
            ProteoformComparison comparison45 = ProteoformComparison.ExperimentalExperimental;
            ProteoformComparison comparison56 = ProteoformComparison.ExperimentalExperimental;
            ProteoformRelation   pr2          = new ProteoformRelation(pf3, pf4, comparison34, 0, TestContext.CurrentContext.TestDirectory);
            ProteoformRelation   pr3          = new ProteoformRelation(pf4, pf5, comparison45, 0, TestContext.CurrentContext.TestDirectory);
            ProteoformRelation   pr4          = new ProteoformRelation(pf5, pf6, comparison56, 0, TestContext.CurrentContext.TestDirectory);

            //Test display strings
            Assert.AreEqual("E1", pr2.connected_proteoforms[0].accession);
            Assert.AreEqual("E2", pr2.connected_proteoforms[1].accession);

            List <ProteoformRelation> prs2 = new List <ProteoformRelation> {
                pr2, pr3, pr4
            };

            foreach (ProteoformRelation pr in prs2)
            {
                pr.set_nearby_group(prs2, prs2.Select(r => r.InstanceId).ToList());
            }
            Assert.AreEqual(3, pr2.nearby_relations_count);
            Assert.AreEqual(3, pr3.nearby_relations_count);
            Assert.AreEqual(3, pr4.nearby_relations_count);

            Sweet.lollipop.theoretical_database.all_possible_ptmsets = new List <PtmSet> {
                new PtmSet(new List <Ptm> {
                    new Ptm(-1, ConstructorsForTesting.get_modWithMass("unmodified", 0))
                })
            };
            Sweet.lollipop.theoretical_database.possible_ptmset_dictionary = Sweet.lollipop.theoretical_database.make_ptmset_dictionary();
            Sweet.unaccept_peak_action(pr2);
            using (StreamWriter file = new StreamWriter(Path.Combine(TestContext.CurrentContext.TestDirectory, "method.xml")))
                file.WriteLine(Sweet.save_method());
            Sweet.open_method(Path.Combine(TestContext.CurrentContext.TestDirectory, "method.xml"), string.Join(Environment.NewLine, File.ReadAllLines(Path.Combine(TestContext.CurrentContext.TestDirectory, "method.xml"))), true, out string warning);
            Sweet.lollipop.ee_peaks = test_community.accept_deltaMass_peaks(prs2, new List <ProteoformRelation>());
            Assert.AreEqual(1, Sweet.lollipop.ee_peaks.Count);
            DeltaMassPeak peak = Sweet.lollipop.ee_peaks[0];

            Assert.IsFalse(peak.Accepted); // <-- even though it's above the threshold
            Assert.AreEqual(3, peak.grouped_relations.Count);
            Assert.AreEqual(3, pr2.peak.peak_relation_group_count);
            Assert.AreEqual(0, pr2.peak.DeltaMass);
            Assert.AreEqual("[unmodified]", peak.possiblePeakAssignments_string);

            //Test that the relations in the peak are added to each of the proteoforms referenced in the peak
            Assert.True(pf3.relationships.Contains(pr2));
            Assert.True(pf4.relationships.Contains(pr2) && pf4.relationships.Contains(pr3));
            Assert.True(pf5.relationships.Contains(pr3) && pf5.relationships.Contains(pr4));
        }
示例#20
0
        public void test_goterm_analysis_with_custom_list()
        {
            Sweet.lollipop = new Lollipop();
            Sweet.lollipop.theoretical_database.aaIsotopeMassList = new AminoAcidMasses(Sweet.lollipop.carbamidomethylation, Sweet.lollipop.neucode_labeled).AA_Masses;
            Sweet.lollipop.significance_by_permutation            = true;
            Sweet.lollipop.significance_by_log2FC = false;
            DatabaseReference d1 = new DatabaseReference("GO", "GO:1", new List <Tuple <string, string> > {
                new Tuple <string, string>("term", "P:1")
            });
            DatabaseReference d2 = new DatabaseReference("GO", "GO:2", new List <Tuple <string, string> > {
                new Tuple <string, string>("term", "P:2")
            });
            DatabaseReference d3 = new DatabaseReference("GO", "GO:1", new List <Tuple <string, string> > {
                new Tuple <string, string>("term", "P:1")
            });
            GoTerm             g1 = new GoTerm(d1);
            GoTerm             g2 = new GoTerm(d2);
            GoTerm             g3 = new GoTerm(d3);
            ProteinWithGoTerms p1 = new ProteinWithGoTerms("ASDF", "T1", new List <Tuple <string, string> > {
                new Tuple <string, string>("", "")
            }, new Dictionary <int, List <Modification> >(), new List <ProteolysisProduct> {
                new ProteolysisProduct(0, 0, "")
            }, "T2", "T3", true, false, new List <DatabaseReference> {
                d1
            }, new List <GoTerm> {
                g1
            });
            ProteinWithGoTerms p2 = new ProteinWithGoTerms("ASDF", "T2", new List <Tuple <string, string> > {
                new Tuple <string, string>("", "")
            }, new Dictionary <int, List <Modification> >(), new List <ProteolysisProduct> {
                new ProteolysisProduct(0, 0, "")
            }, "T2", "T3", true, false, new List <DatabaseReference> {
                d2
            }, new List <GoTerm> {
                g2
            });
            ProteinWithGoTerms p3 = new ProteinWithGoTerms("ASDF", "T3", new List <Tuple <string, string> > {
                new Tuple <string, string>("", "")
            }, new Dictionary <int, List <Modification> >(), new List <ProteolysisProduct> {
                new ProteolysisProduct(0, 0, "")
            }, "T2", "T3", true, false, new List <DatabaseReference> {
                d3
            }, new List <GoTerm> {
                g3
            });
            Dictionary <InputFile, Protein[]> dict = new Dictionary <InputFile, Protein[]> {
                { new InputFile("fake.txt", Purpose.ProteinDatabase), new Protein[] { p1 } },
                { new InputFile("fake.txt", Purpose.ProteinDatabase), new Protein[] { p2 } },
                { new InputFile("fake.txt", Purpose.ProteinDatabase), new Protein[] { p3 } },
            };
            ExperimentalProteoform e1 = ConstructorsForTesting.ExperimentalProteoform("E");
            ExperimentalProteoform e2 = ConstructorsForTesting.ExperimentalProteoform("E");

            e1.quant.intensitySum = 1;
            e1.quant.TusherValues1.significant = true;
            e1.quant.tusherlogFoldChange       = 1;
            e2.quant.intensitySum = 1;
            e2.quant.TusherValues1.significant = true;
            e2.quant.tusherlogFoldChange       = 1;
            TheoreticalProteoform t = ConstructorsForTesting.make_a_theoretical("T1_T1_asdf", p1, dict);
            TheoreticalProteoform u = ConstructorsForTesting.make_a_theoretical("T2_T1_asdf_asdf", p2, dict);
            TheoreticalProteoform v = ConstructorsForTesting.make_a_theoretical("T3_T1_asdf_Asdf_Asdf", p3, dict);

            t.ExpandedProteinList = new List <ProteinWithGoTerms> {
                p1
            };
            u.ExpandedProteinList = new List <ProteinWithGoTerms> {
                p2
            };
            v.ExpandedProteinList = new List <ProteinWithGoTerms> {
                p3
            };
            make_relation(e1, t);
            make_relation(e1, v);
            make_relation(e2, u);
            ProteoformFamily f = new ProteoformFamily(e1); // two theoreticals with the same GoTerms... expecting one GoTerm number but two theoretical proteins
            ProteoformFamily h = new ProteoformFamily(e2);

            f.construct_family();
            f.identify_experimentals();
            h.construct_family();
            h.identify_experimentals();
            List <ProteoformFamily> families = new List <ProteoformFamily> {
                f, h
            };

            t.family  = f;
            v.family  = f;
            e1.family = f;
            u.family  = h;
            e2.family = h;
            Sweet.lollipop.TusherAnalysis1.inducedOrRepressedProteins = Sweet.lollipop.getInducedOrRepressedProteins(new List <ExperimentalProteoform> {
                e1
            }, Sweet.lollipop.TusherAnalysis1.GoAnalysis);
            Sweet.lollipop.TusherAnalysis1.GoAnalysis.allTheoreticalProteins = true;
            Sweet.lollipop.theoretical_database.expanded_proteins            = new ProteinWithGoTerms[] { p1, p2, p3 };
            Sweet.lollipop.TusherAnalysis1.GoAnalysis.backgroundProteinsList = Path.Combine(TestContext.CurrentContext.TestDirectory, "test_protein_list.txt");
            Sweet.lollipop.TusherAnalysis1.GoAnalysis.GO_analysis(Sweet.lollipop.TusherAnalysis1.inducedOrRepressedProteins);
            Assert.AreEqual(1, Sweet.lollipop.TusherAnalysis1.inducedOrRepressedProteins.Count);  // only taking one ET connection by definition in forming ET relations; only one is used in identify theoreticals
            Assert.AreEqual(1, Sweet.lollipop.TusherAnalysis1.GoAnalysis.goTermNumbers.Count);
            Assert.AreEqual("1", Sweet.lollipop.TusherAnalysis1.GoAnalysis.goTermNumbers.First().Id);
            Assert.AreEqual(0 - (decimal)Math.Log(2d / 3d, 2), Sweet.lollipop.TusherAnalysis1.GoAnalysis.goTermNumbers.First().log_odds_ratio);

            List <ProteoformFamily> fams = Sweet.lollipop.getInterestingFamilies(Sweet.lollipop.TusherAnalysis1.GoAnalysis.goTermNumbers, families);

            Assert.AreEqual(1, fams.Count);
            Assert.AreEqual(2, fams[0].theoretical_proteoforms.Count);
        }
 public DisplayExperimentalProteoform(ExperimentalProteoform e)
     : base(e)
 {
     this.e = e;
 }
示例#22
0
 private void btn_compare_with_td_Click(object sender, RoutedEventArgs e)
 {
     MessageBox.Show("Please select a top-down results file.");
     System.Windows.Forms.OpenFileDialog openFileDialog = new System.Windows.Forms.OpenFileDialog();
     openFileDialog.Title       = "Top-Down Results";
     openFileDialog.Filter      = "Excel Files (*.xlsx) | *.xlsx";
     openFileDialog.Multiselect = false;
     System.Windows.Forms.DialogResult dr = openFileDialog.ShowDialog();
     if (dr == System.Windows.Forms.DialogResult.OK)
     {
         MessageBox.Show("Save comparison results file.");
         System.Windows.Forms.SaveFileDialog saveFileDialog = new System.Windows.Forms.SaveFileDialog();
         saveFileDialog.Title  = "Top-Down Comparison Results";
         saveFileDialog.Filter = "Text Files (*.tsv) | *.tsv";
         System.Windows.Forms.DialogResult sdr = saveFileDialog.ShowDialog();
         if (sdr == System.Windows.Forms.DialogResult.OK)
         {
             InputFile                     file           = new InputFile(openFileDialog.FileName, Purpose.TopDown);
             TopDownReader                 reader         = new TopDownReader();
             List <TopDownHit>             hits           = reader.ReadTDFile(file);
             List <TopDownProteoform>      td_proteoforms = Sweet.lollipop.aggregate_td_hits(hits, 0, true, true);
             List <ExperimentalProteoform> experimentals  = Sweet.lollipop.target_proteoform_community.experimental_proteoforms.Where(p => p.linked_proteoform_references != null && (Sweet.lollipop.count_adducts_as_identifications || !p.adduct) && !p.topdown_id).ToList();
             experimentals = Sweet.lollipop.add_topdown_proteoforms(experimentals, td_proteoforms);
             using (var writer = new System.IO.StreamWriter(saveFileDialog.FileName))
             {
                 writer.WriteLine("Experimental Accession\tExperimental Mass\tExperimental Retention Time\tTheoretical Accession\tTheoretical Description\tTheoretical Begin\tTheoretical End\tTheoretical PTM Description\tTop-Down Accession\tTop-Down Begin\tTop-Down End\tTop-Down PTM Description\tTop-Down Observed Mass\tTop-Down Retention Time\tTop Top-Down C-Score");
                 foreach (ExperimentalProteoform ep in experimentals)
                 {
                     if (ep.topdown_id)
                     {
                         TopDownProteoform tdp = ep as TopDownProteoform;
                         if (tdp.matching_experimental != null)
                         {
                             ExperimentalProteoform exp = tdp.matching_experimental;
                             string exp_ptm             = exp.ptm_set.ptm_combination.Count == 0 ? "Unmodified" : String.Join(", ", exp.ptm_set.ptm_combination.Select(ptm => Sweet.lollipop.theoretical_database.unlocalized_lookup.TryGetValue(ptm.modification, out UnlocalizedModification x) ? x.id : ptm.modification.OriginalId).OrderBy(p => p));
                             string td_ptm = tdp.topdown_ptm_set.ptm_combination.Count == 0 ? "Unmodified" : String.Join(", ", tdp.topdown_ptm_set.ptm_combination.Select(ptm => Sweet.lollipop.theoretical_database.unlocalized_lookup.TryGetValue(ptm.modification, out UnlocalizedModification x) ? x.id : ptm.modification.OriginalId).OrderBy(p => p));
                             writer.WriteLine(exp.accession + "\t" + exp.agg_mass + "\t" + exp.agg_rt + "\t" + exp.linked_proteoform_references.First().accession.Split('_')[0] + "\t" + (exp.linked_proteoform_references.First() as TheoreticalProteoform).description + "\t" + exp.begin + "\t" + exp.end + "\t" + exp_ptm
                                              + "\t" + tdp.accession.Split('_')[0] + "\t" + tdp.topdown_begin + "\t" + tdp.topdown_end + "\t" + td_ptm + "\t" + tdp.modified_mass + "\t" + tdp.agg_rt + "\t" + tdp.topdown_hits.Max(h => h.score));
                         }
                     }
                     else
                     {
                         string exp_ptm          = ep.ptm_set.ptm_combination.Count == 0 ? "Unmodified" : String.Join(", ", ep.ptm_set.ptm_combination.Select(ptm => Sweet.lollipop.theoretical_database.unlocalized_lookup.TryGetValue(ptm.modification, out UnlocalizedModification x) ? x.id : ptm.modification.OriginalId).OrderBy(p => p));
                         TheoreticalProteoform t = ep.linked_proteoform_references.First() as TheoreticalProteoform;
                         writer.WriteLine(ep.accession + "\t" + ep.agg_mass + "\t" + ep.agg_rt + "\t" + t.accession.Split('_')[0] + "\t" + t.description + "\t" + t.begin + "\t" + t.end + "\t" + exp_ptm
                                          + "\t" + "N\\A" + "\t" + "N\\A" + "\t" + "N\\A" + "\t" + "N\\A" + "\t" + "N\\A" + "\t" + "N\\A" + "\t" + "N\\A");
                     }
                 }
             }
             MessageBox.Show("Successfully saved top-down comparison results.");
         }
         else
         {
             return;
         }
     }
     else
     {
         return;
     }
 }
示例#23
0
        public void TestDeltaMassPeakConstructor()
        {
            Sweet.lollipop = new Lollipop();
            ConstructorsForTesting.read_mods();
            Sweet.lollipop.et_high_mass_difference = 250;
            Sweet.lollipop.et_low_mass_difference  = -250;
            Sweet.lollipop.peak_width_base_ee      = 0.015;
            Sweet.lollipop.peak_width_base_et      = 0.015;

            ExperimentalProteoform pf1           = ConstructorsForTesting.ExperimentalProteoform("acession1");
            TheoreticalProteoform  pf2           = ConstructorsForTesting.make_a_theoretical();
            ProteoformComparison   relation_type = ProteoformComparison.ExperimentalTheoretical;
            double delta_mass = 1 - 1e-7;

            ExperimentalProteoform pf3            = ConstructorsForTesting.ExperimentalProteoform("acession3");
            TheoreticalProteoform  pf4            = ConstructorsForTesting.make_a_theoretical();
            ProteoformComparison   relation_type2 = ProteoformComparison.ExperimentalTheoretical;
            double delta_mass2 = 1;

            ExperimentalProteoform pf5            = ConstructorsForTesting.ExperimentalProteoform("acession5");
            TheoreticalProteoform  pf6            = ConstructorsForTesting.make_a_theoretical();
            ProteoformComparison   relation_type3 = ProteoformComparison.ExperimentalTheoretical;
            double delta_mass3 = 1 + 1e-7;

            ExperimentalProteoform pf55            = ConstructorsForTesting.ExperimentalProteoform("acession5");
            TheoreticalProteoform  pf65            = ConstructorsForTesting.make_a_theoretical();
            ProteoformComparison   relation_type35 = ProteoformComparison.ExperimentalTheoretical;
            double delta_mass35 = 1 + 2e-7;

            List <ProteoformRelation> theList = new List <ProteoformRelation>();

            theList.Add(new ProteoformRelation(pf1, pf2, relation_type, delta_mass, TestContext.CurrentContext.TestDirectory));
            theList.Add(new ProteoformRelation(pf3, pf4, relation_type2, delta_mass2, TestContext.CurrentContext.TestDirectory));
            theList.Add(new ProteoformRelation(pf5, pf6, relation_type3, delta_mass3, TestContext.CurrentContext.TestDirectory));
            theList.Add(new ProteoformRelation(pf55, pf65, relation_type35, delta_mass35, TestContext.CurrentContext.TestDirectory));

            ProteoformRelation base_relation = new ProteoformRelation(pf3, pf4, relation_type2, delta_mass2, TestContext.CurrentContext.TestDirectory);

            //base_relation.nearby_relations = base_relation.set_nearby_group(theList, theList.Select(r => r.InstanceId).ToList());
            Console.WriteLine("Creating deltaMassPeak");
            DeltaMassPeak deltaMassPeak = new DeltaMassPeak(base_relation, new HashSet <ProteoformRelation>(theList));

            Console.WriteLine("Created deltaMassPeak");

            Assert.AreEqual(0, deltaMassPeak.peak_group_fdr);
            Dictionary <string, List <ProteoformRelation> > decoy_relations = new Dictionary <string, List <ProteoformRelation> >();

            decoy_relations["decoyDatabase1"] = new List <ProteoformRelation>();

            ExperimentalProteoform pf7            = ConstructorsForTesting.ExperimentalProteoform("experimental1");
            TheoreticalProteoform  pf8            = ConstructorsForTesting.make_a_theoretical();
            ProteoformComparison   relation_type4 = ProteoformComparison.ExperimentalDecoy;
            double             delta_mass4        = 1;
            ProteoformRelation decoy_relation     = new ProteoformRelation(pf7, pf8, relation_type4, delta_mass4, TestContext.CurrentContext.TestDirectory);

            decoy_relations["decoyDatabase1"].Add(decoy_relation);

            deltaMassPeak.calculate_fdr(decoy_relations);
            Assert.AreEqual(0.25, deltaMassPeak.peak_group_fdr); // 1 decoy database, (1 decoy relation, median=1), 4 target relations

            decoy_relations["decoyDatabase2"] = new List <ProteoformRelation>();
            decoy_relations["decoyDatabase2"].Add(decoy_relation);
            decoy_relations["decoyDatabase2"].Add(decoy_relation);

            deltaMassPeak.calculate_fdr(decoy_relations);
            Assert.AreEqual(0.375, deltaMassPeak.peak_group_fdr); // 2 decoy databases (1 & 2 decoy relations, median=1.5), 4 target relations
        }
示例#24
0
        public void shift_et_peak_unlabeled()
        {
            Sweet.lollipop = new Lollipop();
            ProteoformCommunity test_community = new ProteoformCommunity();

            Sweet.lollipop.target_proteoform_community = test_community;
            Sweet.lollipop.neucode_labeled             = false;

            //Make a few experimental proteoforms
            List <IAggregatable>   n1  = TestExperimentalProteoform.generate_neucode_components(100);
            List <IAggregatable>   n2  = TestExperimentalProteoform.generate_neucode_components(200);
            List <IAggregatable>   n3  = TestExperimentalProteoform.generate_neucode_components(200);
            List <IAggregatable>   n4  = TestExperimentalProteoform.generate_neucode_components(200);
            ExperimentalProteoform pf1 = ConstructorsForTesting.ExperimentalProteoform("E1");

            pf1.aggregated = n1.Select(n => (n as NeuCodePair).neuCodeLight).ToList <IAggregatable>();
            ExperimentalProteoform pf2 = ConstructorsForTesting.ExperimentalProteoform("E2");

            pf2.aggregated = n2.Select(n => (n as NeuCodePair).neuCodeLight).ToList <IAggregatable>();
            ExperimentalProteoform pf3 = ConstructorsForTesting.ExperimentalProteoform("E3");

            pf3.aggregated = n3.Select(n => (n as NeuCodePair).neuCodeLight).ToList <IAggregatable>();
            ExperimentalProteoform pf4 = ConstructorsForTesting.ExperimentalProteoform("E4");

            pf4.aggregated = n4.Select(n => (n as NeuCodePair).neuCodeLight).ToList <IAggregatable>();

            Sweet.lollipop.target_proteoform_community.experimental_proteoforms = new List <ExperimentalProteoform> {
                pf1, pf2, pf3, pf4
            }.ToArray();

            //Connect them to theoreticals to form two peaks
            ProteoformComparison      comparison14 = ProteoformComparison.ExperimentalTheoretical;
            ProteoformComparison      comparison25 = ProteoformComparison.ExperimentalTheoretical;
            ProteoformComparison      comparison36 = ProteoformComparison.ExperimentalTheoretical;
            ProteoformComparison      comparison47 = ProteoformComparison.ExperimentalTheoretical;
            TheoreticalProteoform     pf5          = ConstructorsForTesting.make_a_theoretical();
            TheoreticalProteoform     pf6          = ConstructorsForTesting.make_a_theoretical();
            TheoreticalProteoform     pf7          = ConstructorsForTesting.make_a_theoretical();
            TheoreticalProteoform     pf8          = ConstructorsForTesting.make_a_theoretical();
            ProteoformRelation        pr1          = new ProteoformRelation(pf1, pf5, comparison14, 0, TestContext.CurrentContext.TestDirectory);
            ProteoformRelation        pr2          = new ProteoformRelation(pf2, pf6, comparison25, 0, TestContext.CurrentContext.TestDirectory);
            ProteoformRelation        pr3          = new ProteoformRelation(pf3, pf7, comparison36, 1, TestContext.CurrentContext.TestDirectory);
            ProteoformRelation        pr4          = new ProteoformRelation(pf4, pf8, comparison47, 1, TestContext.CurrentContext.TestDirectory);
            List <ProteoformRelation> prs          = new List <ProteoformRelation> {
                pr1, pr2, pr3, pr4
            };

            foreach (ProteoformRelation pr in prs)
            {
                pr.set_nearby_group(prs, prs.Select(r => r.InstanceId).ToList());
            }
            test_community.accept_deltaMass_peaks(prs, new List <ProteoformRelation>());
            Assert.AreEqual(2, Sweet.lollipop.et_peaks.Count);

            //Shift the peaks, which shifts all of the proteoforms
            DeltaMassPeak d2 = Sweet.lollipop.et_peaks[1];

            d2.shift_experimental_masses(-1, false);

            foreach (Component c in pf3.aggregated.Concat(pf4.aggregated).OfType <Component>())
            {
                Assert.AreEqual(-1.0 * Lollipop.MONOISOTOPIC_UNIT_MASS, c.manual_mass_shift);
                Assert.AreEqual(200 - 1.0 * Lollipop.MONOISOTOPIC_UNIT_MASS, c.weighted_monoisotopic_mass);
            }

            Sweet.lollipop.clear_et();
            Assert.AreEqual(0, Sweet.lollipop.et_peaks.Count);

            //don't double shift E if it's in two peaks...
            pr1 = new ProteoformRelation(pf1, pf5, comparison14, 1, TestContext.CurrentContext.TestDirectory);
            pr2 = new ProteoformRelation(pf1, pf6, comparison14, 1, TestContext.CurrentContext.TestDirectory);
            prs = new List <ProteoformRelation> {
                pr1, pr2
            };
            foreach (ProteoformRelation pr in prs)
            {
                pr.set_nearby_group(prs, prs.Select(r => r.InstanceId).ToList());
            }
            test_community.accept_deltaMass_peaks(prs, new List <ProteoformRelation>());
            Assert.AreEqual(1, Sweet.lollipop.et_peaks.Count);

            //Shift the peaks, which shifts all of the proteoforms
            d2 = Sweet.lollipop.et_peaks[0];
            d2.shift_experimental_masses(-1, false);

            foreach (Component c in pf3.aggregated.Concat(pf4.aggregated).OfType <Component>())
            {
                Assert.AreEqual(-1.0 * Lollipop.MONOISOTOPIC_UNIT_MASS, c.manual_mass_shift);
                Assert.AreEqual(200 - 1.0 * Lollipop.MONOISOTOPIC_UNIT_MASS, c.weighted_monoisotopic_mass);
            }
        }
示例#25
0
        public void TestAcceptDeltaMassPeaks()
        {
            Sweet.lollipop = new Lollipop();
            ProteoformCommunity test_community = new ProteoformCommunity();

            Sweet.lollipop.target_proteoform_community = test_community;

            Sweet.lollipop.theoretical_database.uniprotModifications = new Dictionary <string, List <Modification> >
            {
                { "unmodified", new List <Modification>()
                  {
                      ConstructorsForTesting.get_modWithMass("unmodified", 0)
                  } }
            };

            //Testing the acceptance of peaks. The FDR is tested above, so I'm not going to work with that here.
            //Four proteoforms, three relations (linear), middle one isn't accepted; should give 2 families
            Sweet.lollipop.min_peak_count_ee = 2;
            ExperimentalProteoform pf3 = ConstructorsForTesting.ExperimentalProteoform("E1");
            ExperimentalProteoform pf4 = ConstructorsForTesting.ExperimentalProteoform("E2");
            ExperimentalProteoform pf5 = ConstructorsForTesting.ExperimentalProteoform("E3");
            ExperimentalProteoform pf6 = ConstructorsForTesting.ExperimentalProteoform("E4");

            ProteoformComparison comparison34 = ProteoformComparison.ExperimentalExperimental;
            ProteoformComparison comparison45 = ProteoformComparison.ExperimentalExperimental;
            ProteoformComparison comparison56 = ProteoformComparison.ExperimentalExperimental;
            ProteoformRelation   pr2          = new ProteoformRelation(pf3, pf4, comparison34, 0, TestContext.CurrentContext.TestDirectory);
            ProteoformRelation   pr3          = new ProteoformRelation(pf4, pf5, comparison45, 0, TestContext.CurrentContext.TestDirectory);
            ProteoformRelation   pr4          = new ProteoformRelation(pf5, pf6, comparison56, 0, TestContext.CurrentContext.TestDirectory);

            //Test display strings
            Assert.AreEqual("E1", pr2.connected_proteoforms[0].accession);
            Assert.AreEqual("E2", pr2.connected_proteoforms[1].accession);
            pr2.RelationType = ProteoformComparison.ExperimentalExperimental;
            pr2.RelationType = ProteoformComparison.ExperimentalTheoretical;
            pr2.RelationType = ProteoformComparison.ExperimentalDecoy;
            pr2.RelationType = ProteoformComparison.ExperimentalFalse;
            pr2.RelationType = comparison34;

            List <ProteoformRelation> prs2 = new List <ProteoformRelation> {
                pr2, pr3, pr4
            };

            foreach (ProteoformRelation pr in prs2)
            {
                pr.set_nearby_group(prs2, prs2.Select(r => r.InstanceId).ToList());
            }
            Assert.AreEqual(3, pr2.nearby_relations_count);
            Assert.AreEqual(3, pr3.nearby_relations_count);
            Assert.AreEqual(3, pr4.nearby_relations_count);

            Sweet.lollipop.theoretical_database.all_possible_ptmsets = new List <PtmSet> {
                new PtmSet(new List <Ptm> {
                    new Ptm(-1, ConstructorsForTesting.get_modWithMass("unmodified", 0))
                })
            };
            Sweet.lollipop.theoretical_database.possible_ptmset_dictionary = Sweet.lollipop.theoretical_database.make_ptmset_dictionary();
            //auto accept set to false
            Sweet.lollipop.ee_accept_peaks_based_on_rank = false;
            Sweet.lollipop.ee_peaks = test_community.accept_deltaMass_peaks(prs2, new List <ProteoformRelation>());
            Assert.AreEqual(1, Sweet.lollipop.ee_peaks.Count);
            DeltaMassPeak peak = Sweet.lollipop.ee_peaks[0];

            Assert.IsTrue(peak.Accepted);
            Assert.AreEqual(3, peak.grouped_relations.Count);
            Assert.AreEqual(3, pr2.peak.peak_relation_group_count);
            Assert.AreEqual(0, pr2.peak.DeltaMass);
            Assert.AreEqual("[unmodified]", peak.possiblePeakAssignments_string);

            //Test that the relations in the peak are added to each of the proteoforms referenced in the peak
            Assert.True(pf3.relationships.Contains(pr2));
            Assert.True(pf4.relationships.Contains(pr2) && pf4.relationships.Contains(pr3));
            Assert.True(pf5.relationships.Contains(pr3) && pf5.relationships.Contains(pr4));

            //autoaccept set to true, must be less than first quartile rank...
            Sweet.lollipop.clear_ee();
            Sweet.lollipop.mod_rank_first_quartile       = 0;
            Sweet.lollipop.ee_accept_peaks_based_on_rank = true;
            Sweet.lollipop.ee_peaks = test_community.accept_deltaMass_peaks(prs2, new List <ProteoformRelation>());
            peak = Sweet.lollipop.ee_peaks[0];
            Assert.IsFalse(peak.Accepted);
            Assert.AreEqual(0, peak.possiblePeakAssignments.Min(p => p.ptm_rank_sum));

            Sweet.lollipop.clear_ee();
            Sweet.lollipop.mod_rank_first_quartile       = 1;
            Sweet.lollipop.ee_accept_peaks_based_on_rank = true;
            Sweet.lollipop.ee_peaks = test_community.accept_deltaMass_peaks(prs2, new List <ProteoformRelation>());
            peak = Sweet.lollipop.ee_peaks[0];
            Assert.IsTrue(peak.Accepted);
            Assert.AreEqual(0, peak.possiblePeakAssignments.Min(p => p.ptm_rank_sum));
        }
示例#26
0
        public void TestProteoformCommunityRelateWithNotches_ED()
        {
            Sweet.lollipop = new Lollipop();
            Sweet.lollipop.neucode_labeled = true;
            Sweet.lollipop.et_use_notch    = true;
            Sweet.lollipop.decoy_databases = 1;
            // In empty comminity, relate ed is empty
            Assert.AreEqual(0, Sweet.lollipop.ed_relations.Count);

            //create a decoy proteoform community
            Sweet.lollipop.decoy_proteoform_communities.Add(Sweet.lollipop.decoy_community_name_prefix + "0", new ProteoformCommunity());
            TheoreticalProteoform pf2 = ConstructorsForTesting.make_a_theoretical("decoyProteoform1", 0, -1);

            Sweet.lollipop.decoy_proteoform_communities[Sweet.lollipop.decoy_community_name_prefix + "0"].theoretical_proteoforms = new TheoreticalProteoform[1] {
                pf2
            };
            Sweet.lollipop.relate_ed();
            // Have a single decoy community --> have single ed_relations
            Assert.AreEqual(1, Sweet.lollipop.ed_relations.Count);
            // But it's empty
            Assert.IsEmpty(Sweet.lollipop.ed_relations[Sweet.lollipop.decoy_community_name_prefix + "0"]);

            // In order to make it not empty, we must have relate_et method output a non-empty List
            // it must take as arguments non-empty pfs1 and pfs2
            // So testProteoformCommunity.experimental_proteoforms must be non-empty
            // And decoy_proteoforms["fake_decoy_proteoform1"] must be non-empty
            ExperimentalProteoform pf1 = ConstructorsForTesting.ExperimentalProteoform("experimentalProteoform1");

            Sweet.lollipop.decoy_proteoform_communities[Sweet.lollipop.decoy_community_name_prefix + "0"].theoretical_proteoforms.First().ExpandedProteinList = new List <ProteinWithGoTerms> {
                p1
            };
            Assert.IsEmpty(Sweet.lollipop.decoy_proteoform_communities[Sweet.lollipop.decoy_community_name_prefix + "0"].experimental_proteoforms);
            Sweet.lollipop.decoy_proteoform_communities[Sweet.lollipop.decoy_community_name_prefix + "0"].experimental_proteoforms = new ExperimentalProteoform[] { pf1 };
            pf1.modified_mass = 1000;
            pf2.modified_mass = 1000;
            Sweet.lollipop.clear_et();
            prepare_for_et(new List <double> {
                pf1.modified_mass - pf2.modified_mass
            });
            Sweet.lollipop.relate_ed();

            // Make sure there is one relation total, because only a single decoy was provided
            Assert.AreEqual(1, Sweet.lollipop.ed_relations.Count);
            Assert.IsNotEmpty(Sweet.lollipop.ed_relations);
            Assert.AreEqual(1, Sweet.lollipop.ed_relations[Sweet.lollipop.decoy_community_name_prefix + "0"].Count); // Make sure there is one relation for the provided fake_decoy_proteoform1

            ProteoformRelation rel = Sweet.lollipop.ed_relations[Sweet.lollipop.decoy_community_name_prefix + "0"][0];

            Assert.IsFalse(rel.Accepted);
            Assert.AreEqual("decoyProteoform1", rel.connected_proteoforms[1].accession);
            Assert.AreEqual(0, rel.DeltaMass);
            Assert.IsEmpty(((TheoreticalProteoform)rel.connected_proteoforms[1]).fragment);
            Assert.AreEqual(1, rel.nearby_relations_count);  //shows that calculate_unadjusted_group_count works
            //Assert.AreEqual(1, rel.mass_difference_group.Count);  //I don't think we need this test anymore w/ way peaks are made -LVS
            Assert.AreEqual(-1, rel.lysine_count);
            Assert.AreEqual("T2", ((TheoreticalProteoform)rel.connected_proteoforms[1]).name);
            Assert.AreEqual(0, ((ExperimentalProteoform)rel.connected_proteoforms[0]).aggregated.Count); //nothing aggregated with the basic constructor
            Assert.IsTrue(rel.outside_no_mans_land);
            Assert.IsNull(rel.peak);
            Assert.True(string.Equals("unmodified", ((TheoreticalProteoform)rel.connected_proteoforms[1]).ptm_set.ptm_description, StringComparison.CurrentCultureIgnoreCase));
            Assert.AreEqual(1, rel.nearby_relations_count);
        }
示例#27
0
        public void shift_et_peak_neucode_from_actions()
        {
            Sweet.lollipop = new Lollipop();
            ProteoformCommunity test_community = new ProteoformCommunity();

            Sweet.lollipop.target_proteoform_community = test_community;

            //Make a few experimental proteoforms
            List <IAggregatable>   n1  = TestExperimentalProteoform.generate_neucode_components(100);
            List <IAggregatable>   n2  = TestExperimentalProteoform.generate_neucode_components(100);
            List <IAggregatable>   n3  = TestExperimentalProteoform.generate_neucode_components(200);
            List <IAggregatable>   n4  = TestExperimentalProteoform.generate_neucode_components(200);
            ExperimentalProteoform pf1 = ConstructorsForTesting.ExperimentalProteoform("E1");

            pf1.aggregated = n1;
            ExperimentalProteoform pf2 = ConstructorsForTesting.ExperimentalProteoform("E2");

            pf2.aggregated = n2;
            ExperimentalProteoform pf3 = ConstructorsForTesting.ExperimentalProteoform("E3");

            pf3.aggregated = n3;
            ExperimentalProteoform pf4 = ConstructorsForTesting.ExperimentalProteoform("E4");

            pf4.aggregated = n4;

            Sweet.lollipop.target_proteoform_community.experimental_proteoforms = new List <ExperimentalProteoform> {
                pf1, pf2, pf3, pf4
            }.ToArray();

            //Connect them to theoreticals to form two peaks
            ProteoformComparison      comparison14 = ProteoformComparison.ExperimentalTheoretical;
            ProteoformComparison      comparison25 = ProteoformComparison.ExperimentalTheoretical;
            ProteoformComparison      comparison36 = ProteoformComparison.ExperimentalTheoretical;
            ProteoformComparison      comparison47 = ProteoformComparison.ExperimentalTheoretical;
            TheoreticalProteoform     pf5          = ConstructorsForTesting.make_a_theoretical();
            TheoreticalProteoform     pf6          = ConstructorsForTesting.make_a_theoretical();
            TheoreticalProteoform     pf7          = ConstructorsForTesting.make_a_theoretical();
            TheoreticalProteoform     pf8          = ConstructorsForTesting.make_a_theoretical();
            ProteoformRelation        pr1          = new ProteoformRelation(pf1, pf5, comparison14, 0, TestContext.CurrentContext.TestDirectory);
            ProteoformRelation        pr2          = new ProteoformRelation(pf2, pf6, comparison25, 0, TestContext.CurrentContext.TestDirectory);
            ProteoformRelation        pr3          = new ProteoformRelation(pf3, pf7, comparison36, 1, TestContext.CurrentContext.TestDirectory);
            ProteoformRelation        pr4          = new ProteoformRelation(pf4, pf8, comparison47, 1, TestContext.CurrentContext.TestDirectory);
            List <ProteoformRelation> prs          = new List <ProteoformRelation> {
                pr1, pr2, pr3, pr4
            };

            foreach (ProteoformRelation pr in prs)
            {
                pr.set_nearby_group(prs, prs.Select(r => r.InstanceId).ToList());
            }
            test_community.accept_deltaMass_peaks(prs, new List <ProteoformRelation>());
            Assert.AreEqual(2, Sweet.lollipop.et_peaks.Count);

            //Shift the peaks, which shifts all of the proteoforms
            DeltaMassPeak d2 = Sweet.lollipop.et_peaks[1];

            d2.mass_shifter = "-1";
            Sweet.shift_peak_action(d2);
            d2.mass_shifter = null;
            using (StreamWriter file = new StreamWriter(Path.Combine(TestContext.CurrentContext.TestDirectory, "method.xml")))
                file.WriteLine(Sweet.save_method());
            Sweet.open_method(Path.Combine(TestContext.CurrentContext.TestDirectory, "method.xml"), string.Join(Environment.NewLine, File.ReadAllLines(Path.Combine(TestContext.CurrentContext.TestDirectory, "method.xml"))), true, out string warning);
            Sweet.mass_shifts_from_presets();
            d2.shift_experimental_masses(Convert.ToInt32(d2.mass_shifter), true);

            foreach (Component c in
                     n3.OfType <NeuCodePair>().Select(n => n.neuCodeLight).
                     Concat(n4.OfType <NeuCodePair>().Select(n => n.neuCodeLight)))
            {
                Assert.AreEqual(-1.0 * Lollipop.MONOISOTOPIC_UNIT_MASS, c.manual_mass_shift);
                Assert.AreEqual(200 - 1.0 * Lollipop.MONOISOTOPIC_UNIT_MASS, c.weighted_monoisotopic_mass);
            }

            foreach (Component c in
                     n3.OfType <NeuCodePair>().Select(n => n.neuCodeHeavy).
                     Concat(n4.OfType <NeuCodePair>().Select(n => n.neuCodeHeavy)))
            {
                Assert.AreEqual(-1.0 * Lollipop.MONOISOTOPIC_UNIT_MASS, c.manual_mass_shift);
                Assert.AreEqual(200 + TestExperimentalProteoform.starter_lysine_count * Lollipop.NEUCODE_LYSINE_MASS_SHIFT - 1.0 * Lollipop.MONOISOTOPIC_UNIT_MASS, c.weighted_monoisotopic_mass);
            }
        }
        public void TestNeuCodeLabeledProteoformCommunityRelate_EE()
        {
            SaveState.lollipop.neucode_labeled = true;

            // Two proteoforms; lysine count equal; mass difference < 250 -- return 1
            ExperimentalProteoform pf1 = ConstructorsForTesting.ExperimentalProteoform("A1", 1000.0, 1, true);
            ExperimentalProteoform pf2 = ConstructorsForTesting.ExperimentalProteoform("A2", 1010.0, 1, true);

            ExperimentalProteoform[] pa1 = new ExperimentalProteoform[2];
            pa1[0] = pf1;
            pa1[1] = pf2;
            List <ProteoformRelation> prList = new List <ProteoformRelation>();

            prList = community.relate(pa1, pa1, ProteoformComparison.ExperimentalExperimental, true, TestContext.CurrentContext.TestDirectory, false);
            Assert.AreEqual(1, prList.Count);

            // Two proteoforms; lysine count equal; mass difference > 250 -- return 0
            pf1.modified_mass = 1000;
            pf1.lysine_count  = 1;
            pf2.modified_mass = 2000;
            pf2.lysine_count  = 1;
            pa1[0]            = pf1;
            pa1[1]            = pf2;
            prList            = community.relate(pa1, pa1, ProteoformComparison.ExperimentalExperimental, true, TestContext.CurrentContext.TestDirectory, false);
            Assert.AreEqual(0, prList.Count);

            // Two proteoforms; lysine count NOT equal; mass difference < 250 -- return 0
            pf1.modified_mass = 1000;
            pf1.lysine_count  = 1;
            pf2.modified_mass = 1100;
            pf2.lysine_count  = 2;
            pa1[0]            = pf1;
            pa1[1]            = pf2;
            prList            = community.relate(pa1, pa1, ProteoformComparison.ExperimentalExperimental, true, TestContext.CurrentContext.TestDirectory, false);
            Assert.AreEqual(0, prList.Count);

            //Three proteoforms; lysine count equal; mass difference < 250 Da -- return 3
            ExperimentalProteoform pf3 = ConstructorsForTesting.ExperimentalProteoform("A1", 1000.0, 1, true);
            ExperimentalProteoform pf4 = ConstructorsForTesting.ExperimentalProteoform("A2", 1010.0, 1, true);
            ExperimentalProteoform pf5 = ConstructorsForTesting.ExperimentalProteoform("A3", 1020.0, 1, true);

            ExperimentalProteoform[] pa2 = new ExperimentalProteoform[3];
            pa2[0] = pf3;
            pa2[1] = pf4;
            pa2[2] = pf5;
            prList = community.relate(pa2, pa2, ProteoformComparison.ExperimentalExperimental, true, TestContext.CurrentContext.TestDirectory, false);
            Assert.AreEqual(3, prList.Count);

            //Three proteoforms; lysine count equal; one mass difference < 250 Da; one mass difference > 500 -- return 1
            pf3.modified_mass = 1000;
            pf3.lysine_count  = 1;
            pf4.modified_mass = 1010;
            pf4.lysine_count  = 1;
            pf5.modified_mass = 2020;
            pf5.lysine_count  = 1;
            pa2[0]            = pf3;
            pa2[1]            = pf4;
            pa2[2]            = pf5;
            prList            = community.relate(pa2, pa2, ProteoformComparison.ExperimentalExperimental, true, TestContext.CurrentContext.TestDirectory, false);
            Assert.AreEqual(1, prList.Count);

            //Three proteoforms; lysine count NOT equal; mass difference < 250 Da -- return 0
            pf3.modified_mass = 1000;
            pf3.lysine_count  = 1;
            pf4.modified_mass = 1010;
            pf4.lysine_count  = 2;
            pf5.modified_mass = 1020;
            pf5.lysine_count  = 3;
            pa2[0]            = pf3;
            pa2[1]            = pf4;
            pa2[2]            = pf5;
            prList            = community.relate(pa2, pa2, ProteoformComparison.ExperimentalExperimental, true, TestContext.CurrentContext.TestDirectory, false);
            Assert.AreEqual(0, prList.Count);

            //Three proteoforms; lysine count equal; mass difference > 250 Da -- return 0
            pf3.lysine_count  = 1;
            pf3.modified_mass = 1000;
            pf4.lysine_count  = 1;
            pf4.modified_mass = 1600;
            pf5.lysine_count  = 1;
            pf5.modified_mass = 2500;
            pa2[0]            = pf3;
            pa2[1]            = pf4;
            pa2[2]            = pf5;
            prList            = community.relate(pa2, pa2, ProteoformComparison.ExperimentalExperimental, true, TestContext.CurrentContext.TestDirectory, false);
            Assert.AreEqual(0, prList.Count);
        }
示例#29
0
        public void TestDeltaMassPeakConstructorWithNotches()
        {
            Sweet.lollipop = new Lollipop();
            Sweet.lollipop.et_use_notch = true;
            Sweet.lollipop.enter_input_files(new string[] { Path.Combine(TestContext.CurrentContext.TestDirectory, "ptmlist.txt") }, Lollipop.acceptable_extensions[2], Lollipop.file_types[2], Sweet.lollipop.input_files, false);
            ConstructorsForTesting.read_mods();
            Sweet.lollipop.et_high_mass_difference = 250;
            Sweet.lollipop.et_low_mass_difference  = -250;


            ExperimentalProteoform pf1 = ConstructorsForTesting.ExperimentalProteoform("acession1");
            TheoreticalProteoform  pf2 = ConstructorsForTesting.make_a_theoretical();

            pf1.modified_mass = 1000;
            ProteoformComparison relation_type = ProteoformComparison.ExperimentalTheoretical;
            double delta_mass = 1 - 1e-7;

            ExperimentalProteoform pf3 = ConstructorsForTesting.ExperimentalProteoform("acession3");
            TheoreticalProteoform  pf4 = ConstructorsForTesting.make_a_theoretical();

            pf3.modified_mass = 1000;
            ProteoformComparison relation_type2 = ProteoformComparison.ExperimentalTheoretical;
            double delta_mass2 = 1;


            ExperimentalProteoform pf5 = ConstructorsForTesting.ExperimentalProteoform("acession5");
            TheoreticalProteoform  pf6 = ConstructorsForTesting.make_a_theoretical();

            pf5.modified_mass = 1000;
            ProteoformComparison relation_type3 = ProteoformComparison.ExperimentalTheoretical;
            double delta_mass3 = 1 + 1e-7;

            ExperimentalProteoform pf55 = ConstructorsForTesting.ExperimentalProteoform("acession5");
            TheoreticalProteoform  pf65 = ConstructorsForTesting.make_a_theoretical();

            pf55.modified_mass = 1000;
            ProteoformComparison relation_type35 = ProteoformComparison.ExperimentalTheoretical;
            double delta_mass35 = 1 + 2e-7;

            TestProteoformCommunityRelate.prepare_for_et(new List <double>()
            {
                1
            });
            List <ProteoformRelation> theList = new List <ProteoformRelation>();

            theList.Add(new ProteoformRelation(pf1, pf2, relation_type, delta_mass, TestContext.CurrentContext.TestDirectory));
            theList.Add(new ProteoformRelation(pf3, pf4, relation_type2, delta_mass2, TestContext.CurrentContext.TestDirectory));
            theList.Add(new ProteoformRelation(pf5, pf6, relation_type3, delta_mass3, TestContext.CurrentContext.TestDirectory));
            theList.Add(new ProteoformRelation(pf55, pf65, relation_type35, delta_mass35, TestContext.CurrentContext.TestDirectory));

            ProteoformRelation base_relation = new ProteoformRelation(pf3, pf4, relation_type2, delta_mass2, TestContext.CurrentContext.TestDirectory);

            //base_relation.nearby_relations = base_relation.set_nearby_group(theList, theList.Select(r => r.InstanceId).ToList());
            Console.WriteLine("Creating deltaMassPeak");
            DeltaMassPeak deltaMassPeak = new DeltaMassPeak(base_relation, new HashSet <ProteoformRelation>(theList));

            Console.WriteLine("Created deltaMassPeak");

            Assert.AreEqual(0, deltaMassPeak.peak_group_fdr);
            Assert.AreEqual(4, deltaMassPeak.grouped_relations.Count);
            Assert.AreEqual("[fake1]", deltaMassPeak.possiblePeakAssignments_string);
            Assert.AreEqual(1.0, deltaMassPeak.DeltaMass);
            Dictionary <string, List <ProteoformRelation> > decoy_relations = new Dictionary <string, List <ProteoformRelation> >();

            decoy_relations["decoyDatabase1"] = new List <ProteoformRelation>();

            ExperimentalProteoform pf7 = ConstructorsForTesting.ExperimentalProteoform("experimental1");
            TheoreticalProteoform  pf8 = ConstructorsForTesting.make_a_theoretical();

            pf7.modified_mass = 1000;
            ProteoformComparison relation_type4 = ProteoformComparison.ExperimentalDecoy;
            double             delta_mass4      = 1;
            ProteoformRelation decoy_relation   = new ProteoformRelation(pf7, pf8, relation_type4, delta_mass4, TestContext.CurrentContext.TestDirectory);

            decoy_relations["decoyDatabase1"].Add(decoy_relation);

            deltaMassPeak.calculate_fdr(decoy_relations);
            Assert.AreEqual(0.25, deltaMassPeak.peak_group_fdr); // 1 decoy database, (1 decoy relation, median=1), 4 target relations

            decoy_relations["decoyDatabase2"] = new List <ProteoformRelation>();
            decoy_relations["decoyDatabase2"].Add(decoy_relation);
            decoy_relations["decoyDatabase2"].Add(decoy_relation);

            deltaMassPeak.calculate_fdr(decoy_relations);
            Assert.AreEqual(0.375, deltaMassPeak.peak_group_fdr); // 2 decoy databases (1 & 2 decoy relations, median=1.5), 4 target relations
        }
        public void TestUnabeledProteoformCommunityRelate_ET()
        {
            SaveState.lollipop.neucode_labeled = false;

            // One experimental one theoretical protoeform; mass difference < 500 -- return 1
            ExperimentalProteoform pf1 = ConstructorsForTesting.ExperimentalProteoform("A1", 1000.0, -1, true);
            TheoreticalProteoform  pf2 = ConstructorsForTesting.make_a_theoretical();

            pf2.modified_mass       = 1010.0;
            pf2.lysine_count        = 1;
            pf2.is_target           = true;
            pf2.ExpandedProteinList = new List <ProteinWithGoTerms> {
                p1
            };
            ExperimentalProteoform[] paE = new ExperimentalProteoform[1];
            TheoreticalProteoform[]  paT = new TheoreticalProteoform[1];
            paE[0] = pf1;
            paT[0] = pf2;
            List <ProteoformRelation> prList = new List <ProteoformRelation>();

            prepare_for_et(new List <double> {
                pf1.modified_mass - pf2.modified_mass
            });
            prList = community.relate(paE, paT, ProteoformComparison.ExperimentalTheoretical, true, TestContext.CurrentContext.TestDirectory, true);
            Assert.AreEqual(1, prList.Count);

            // One experimental one theoretical protoeform; mass difference > 500 -- return 0
            pf1.modified_mass = 1000;
            pf2.modified_mass = 2000;
            paE[0]            = pf1;
            paT[0]            = pf2;
            prepare_for_et(new List <double> {
                pf1.modified_mass - pf2.modified_mass
            });
            prList = community.relate(paE, paT, ProteoformComparison.ExperimentalTheoretical, true, TestContext.CurrentContext.TestDirectory, true);
            Assert.AreEqual(0, prList.Count);

            //Two experimental one theoretical proteoforms; mass difference < 500 Da -- return 2
            ExperimentalProteoform pf3 = ConstructorsForTesting.ExperimentalProteoform("A1", 1000.0, -1, true);
            ExperimentalProteoform pf4 = ConstructorsForTesting.ExperimentalProteoform("A2", 1010.0, -1, true);
            TheoreticalProteoform  pf5 = ConstructorsForTesting.make_a_theoretical();

            pf5.modified_mass       = 1020.0;
            pf5.lysine_count        = 1;
            pf5.is_target           = true;
            pf5.ExpandedProteinList = new List <ProteinWithGoTerms> {
                p1
            };
            ExperimentalProteoform[] paE2 = new ExperimentalProteoform[2];
            paE2[0] = pf3;
            paE2[1] = pf4;
            paT[0]  = pf5;
            prepare_for_et(new List <double> {
                pf3.modified_mass - pf5.modified_mass,
                pf4.modified_mass - pf5.modified_mass,
            });
            prList = community.relate(paE2, paT, ProteoformComparison.ExperimentalTheoretical, true, TestContext.CurrentContext.TestDirectory, true);
            Assert.AreEqual(2, prList.Count);

            //Two experimental one theoretical proteoforms; one mass difference >500 Da -- return 0
            pf3.modified_mass = 1000;
            pf4.modified_mass = 1010;
            pf5.modified_mass = 2000;
            paE2[0]           = pf3;
            paE2[1]           = pf4;
            paT[0]            = pf5;
            prepare_for_et(new List <double> {
                pf3.modified_mass - pf5.modified_mass,
                pf4.modified_mass - pf5.modified_mass,
            });
            prList = community.relate(paE2, paT, ProteoformComparison.ExperimentalTheoretical, true, TestContext.CurrentContext.TestDirectory, true);
            Assert.AreEqual(0, prList.Count);

            //Two experimental one theoretical proteoforms; mass difference > 500 Da -- return 0
            pf3.modified_mass = 1000;
            pf4.modified_mass = 2000;
            pf5.modified_mass = 3000;
            paE2[0]           = pf3;
            paE2[1]           = pf4;
            paT[0]            = pf5;
            prepare_for_et(new List <double> {
                pf3.modified_mass - pf5.modified_mass,
                pf4.modified_mass - pf5.modified_mass,
            });
            prList = community.relate(paE2, paT, ProteoformComparison.ExperimentalTheoretical, true, TestContext.CurrentContext.TestDirectory, true);
            Assert.AreEqual(0, prList.Count);
        }