private Pixel GetAbsMax(float[,] xImage, float[,] bMap, float lambda, float alpha) { var currentMax = new Pixel(0, -1, -1); for (int y = 0; y < imageSection.YExtent(); y++) { for (int x = 0; x < imageSection.XExtent(); x++) { var currentA = aMap[y, x]; var old = xImage[y, x]; var xTmp = ElasticNet.ProximalOperator(old * currentA + bMap[y, x], currentA, lambda, alpha); var xDiff = xTmp - old; if (currentMax.MaxDiff < Math.Abs(xDiff)) { var yGlobal = y + imageSection.Y; var xGlobal = x + imageSection.X; currentMax = new Pixel(xDiff, yGlobal, xGlobal); } } } var maxPixelGlobal = comm.Allreduce(currentMax, (aC, bC) => aC.MaxDiff > bC.MaxDiff ? aC : bC); return(maxPixelGlobal); }
public static Tuple <int, int, double>[] GetMaxBlocks(float[,] gExplore, float[,] gCorrection, float[,] xExplore, float stepSize, float theta, float lambda, float alpha, int yBlockSize, int xBlockSize, int tau) { var yBlocks = gExplore.GetLength(0) / yBlockSize; var xBlocks = gExplore.GetLength(1) / xBlockSize; var tmp = new List <Tuple <int, int, double> >(yBlocks * xBlocks); for (int i = 0; i < yBlocks; i++) { for (int j = 0; j < xBlocks; j++) { int yIdx = i * yBlockSize; int xIdx = j * xBlockSize; var sum = 0.0; for (int y = yIdx; y < yIdx + yBlockSize; y++) { for (int x = xIdx; x < xIdx + xBlockSize; x++) { var update = theta * gCorrection[y, x] + gExplore[y, x] + xExplore[y, x] * stepSize; var shrink = ElasticNet.ProximalOperator(update, stepSize, lambda, alpha) - xExplore[y, x]; sum += Math.Abs(shrink); } } tmp.Add(new Tuple <int, int, double>(i, j, sum)); } } tmp.Sort((x, y) => x.Item3.CompareTo(y.Item3)); var output = new Tuple <int, int, double> [tau]; for (int i = 0; i < tau; i++) { output[i] = tmp[tmp.Count - i - 1]; } return(output); }
public void Deconvolve() { var update = 0.0f; var blockCount = shared.XExpl.Length; float eta = 1.0f / blockCount; DiffMax = 0.0f; var beta = CalcESO(shared.ProcessorCount, shared.DegreeOfSeperability, blockCount); var continueAsync = Thread.VolatileRead(ref shared.AsyncFinished) == 0; for (int inner = 0; inner < shared.MaxConcurrentIterations & continueAsync; inner++) { continueAsync = Thread.VolatileRead(ref shared.AsyncFinished) == 0; var stepFactor = (float)beta * Theta / shared.Theta0; var theta2 = Theta * Theta; var blockIdx = GetPseudoRandomBlock(stepFactor, theta2); var blockSample = shared.ActiveSet[blockIdx]; var yPixel = blockSample.Item1; var xPixel = blockSample.Item2; var step = shared.AMap[yPixel, xPixel] * stepFactor; var correctionFactor = -(1.0f - Theta / shared.Theta0) / theta2; var xExpl = Thread.VolatileRead(ref shared.XExpl[yPixel, xPixel]); update = theta2 * Thread.VolatileRead(ref shared.GCorr[yPixel, xPixel]) + Thread.VolatileRead(ref shared.GExpl[yPixel, xPixel]) + xExpl * step; update = ElasticNet.ProximalOperator(update, step, shared.Lambda, shared.Alpha) - xExpl; DiffMax = Math.Max(DiffMax, Math.Abs(update)); //update gradients if (0.0f != Math.Abs(update)) { UpdateGradientsApprox(shared.GExpl, shared.GCorr, shared.Psf2, updateCache, yPixel, xPixel, correctionFactor, update); var oldExplore = shared.XExpl[yPixel, xPixel]; //does not need to be volatile, this index is blocked until this process is finished, and we already made sure with a volatile read that the latest value is in the cache var oldXCorr = Thread.VolatileRead(ref shared.XCorr[yPixel, xPixel]); var newXExplore = oldExplore + update; Thread.VolatileWrite(ref shared.XExpl[yPixel, xPixel], shared.XExpl[yPixel, xPixel] + update); Thread.VolatileWrite(ref shared.XCorr[yPixel, xPixel], shared.XCorr[yPixel, xPixel] + update * correctionFactor); //not 100% sure this is the correct generalization from single pixel thread rule to block rule var testRestartUpdate = (update) * (newXExplore - (theta2 * oldXCorr + oldExplore)); ConcurrentUpdateTestRestart(ref shared.TestRestart, eta, testRestartUpdate); } AsyncIterations++; //unlockBlock Thread.VolatileWrite(ref shared.BlockLock[blockIdx], 0); Theta = (float)(Math.Sqrt((theta2 * theta2) + 4 * (theta2)) - theta2) / 2.0f; } Thread.VolatileWrite(ref shared.AsyncFinished, 1); }
private static float GetMaxAbsPixelValue(SharedData shared, Tuple <int, int> block, float stepFactor) { var yPixel = block.Item1; var xPixel = block.Item2; var step = shared.AMap[yPixel, xPixel] * stepFactor; var xExpl = Thread.VolatileRead(ref shared.XExpl[yPixel, xPixel]); var update = Thread.VolatileRead(ref shared.GExpl[yPixel, xPixel]) + xExpl * step; update = ElasticNet.ProximalOperator(update, step, shared.Lambda, shared.Alpha) - xExpl; return(Math.Abs(update)); }
public static List <Tuple <int, int> > GetActiveSet(float[,] xExplore, float[,] gExplore, int yBlockSize, int xBlockSize, float lambda, float alpha, float[,] lipschitzMap) { var debug = new float[xExplore.GetLength(0), xExplore.GetLength(1)]; var output = new List <Tuple <int, int> >(); for (int i = 0; i < xExplore.GetLength(0) / yBlockSize; i++) { for (int j = 0; j < xExplore.GetLength(1) / xBlockSize; j++) { var yPixel = i * yBlockSize; var xPixel = j * xBlockSize; var nonZero = false; for (int y = yPixel; y < yPixel + yBlockSize; y++) { for (int x = xPixel; x < xPixel + xBlockSize; x++) { var lipschitz = lipschitzMap[y, x]; var tmp = gExplore[y, x] + xExplore[y, x] * lipschitz; tmp = ElasticNet.ProximalOperator(tmp, lipschitz, lambda, alpha); if (0.0f < Math.Abs(tmp - xExplore[y, x])) { nonZero = true; } } } if (nonZero) { output.Add(new Tuple <int, int>(i, j)); for (int y = yPixel; y < yPixel + yBlockSize; y++) { for (int x = xPixel; x < xPixel + xBlockSize; x++) { debug[y, x] = 1.0f; } } } } } FitsIO.Write(debug, "activeSet.fits"); return(output); }
private static List <Tuple <int, int> > GetActiveSet(float[,] xExplore, float[,] gExplore, float lambda, float alpha, float[,] lipschitzMap) { var output = new List <Tuple <int, int> >(); for (int y = 0; y < xExplore.GetLength(0); y++) { for (int x = 0; x < xExplore.GetLength(1); x++) { var lipschitz = lipschitzMap[y, x]; var tmp = gExplore[y, x] + xExplore[y, x] * lipschitz; tmp = ElasticNet.ProximalOperator(tmp, lipschitz, lambda, alpha); if (0.0f < Math.Abs(tmp - xExplore[y, x])) { output.Add(new Tuple <int, int>(y, x)); } } } return(output); }
private List <Tuple <int, int> > GetActiveSet(float[,] xExplore, float[,] gExplore, float lambda, float alpha, float lipschitz) { var debug = new float[xExplore.GetLength(0), xExplore.GetLength(1)]; var output = new List <Tuple <int, int> >(); for (int i = 0; i < xExplore.GetLength(0) / yBlockSize; i++) { for (int j = 0; j < xExplore.GetLength(1) / xBlockSize; j++) { var yPixel = i * yBlockSize; var xPixel = j * xBlockSize; var nonZero = false; for (int y = yPixel; y < yPixel + yBlockSize; y++) { for (int x = xPixel; x < xPixel + xBlockSize; x++) { var tmp = gExplore[y, x] + xExplore[y, x] * lipschitz; tmp = ElasticNet.ProximalOperator(tmp, lipschitz, lambda, alpha); if (ACTIVE_SET_CUTOFF < Math.Abs(tmp - xExplore[y, x])) { nonZero = true; } } } if (nonZero) { output.Add(new Tuple <int, int>(i, j)); for (int y = yPixel; y < yPixel + yBlockSize; y++) { for (int x = xPixel; x < xPixel + xBlockSize; x++) { debug[y, x] = 1.0f; } } } } } //FitsIO.Write(debug, "activeSet.fits"); //can write max change for convergence purposes return(output); }
private Pixel GetAbsMaxSingle(Rectangle subpatch, float[,] xImage, float[,] gradients, float lambda, float alpha) { var maxPixels = new Pixel[subpatch.YExtent()]; for (int y = subpatch.Y; y < subpatch.YEnd; y++) { var yLocal = y; var currentMax = new Pixel(-1, -1, 0, 0); for (int x = subpatch.X; x < subpatch.XEnd; x++) { var xLocal = x; var currentA = aMap[yLocal, xLocal]; var old = xImage[yLocal, xLocal]; //var xTmp = old + bMap[y, x] / currentA; //xTmp = ShrinkElasticNet(xTmp, lambda, alpha); var xTmp = ElasticNet.ProximalOperator(old * currentA + gradients[y, x], currentA, lambda, alpha); var xDiff = old - xTmp; if (currentMax.PixelMaxDiff < Math.Abs(xDiff)) { currentMax.Y = y; currentMax.X = x; currentMax.PixelMaxDiff = Math.Abs(xDiff); currentMax.PixelNew = xTmp; } } maxPixels[yLocal] = currentMax; } var maxPixel = new Pixel(-1, -1, 0, 0); for (int i = 0; i < maxPixels.Length; i++) { if (maxPixel.PixelMaxDiff < maxPixels[i].PixelMaxDiff) { maxPixel = maxPixels[i]; } } return(maxPixel); }
private static float GetMaxAbsBlockValue(SharedData shared, Tuple <int, int> block, float stepFactor, float theta2) { var yOffset = block.Item1 * shared.YBlockSize; var xOffset = block.Item2 * shared.XBlockSize; var blockLipschitz = GetBlockLipschitz(shared.AMap, yOffset, xOffset, shared.YBlockSize, shared.XBlockSize); var step = blockLipschitz * stepFactor; var updateAbsSum = 0.0f; for (int y = yOffset; y < (yOffset + shared.YBlockSize); y++) { for (int x = xOffset; x < (xOffset + shared.XBlockSize); x++) { var xExpl = Thread.VolatileRead(ref shared.XExpl[y, x]); var update = theta2 * Thread.VolatileRead(ref shared.GCorr[y, x]) + Thread.VolatileRead(ref shared.GExpl[y, x]) + xExpl * step; update = ElasticNet.ProximalOperator(update, step, shared.Lambda, shared.Alpha) - xExpl; updateAbsSum += Math.Abs(update); } } return(updateAbsSum); }
public static float GetAbsMax(float[,] xImage, float[,] bMap, float[,] aMap, float lambda, float alpha) { var maxPixels = new float[xImage.GetLength(0)]; Parallel.For(0, xImage.GetLength(0), (y) => { var yLocal = y; var currentMax = 0.0f; for (int x = 0; x < xImage.GetLength(1); x++) { var xLocal = x; var currentA = aMap[yLocal, xLocal]; var old = xImage[yLocal, xLocal]; //var xTmp = old + bMap[y, x] / currentA; //xTmp = ShrinkElasticNet(xTmp, lambda, alpha); var xTmp = ElasticNet.ProximalOperator(old * currentA + bMap[y, x], currentA, lambda, alpha); var xDiff = old - xTmp; if (currentMax < Math.Abs(xDiff)) { currentMax = Math.Abs(xDiff); } } maxPixels[yLocal] = currentMax; }); var maxPixel = 0.0f; for (int i = 0; i < maxPixels.Length; i++) { if (maxPixel < maxPixels[i]) { maxPixel = maxPixels[i]; } } return(maxPixel); }
public void ISTAStep(float[,] xImage, float[,] residuals, float[,] psf, float lambda, float alpha) { var xOld = Copy(xImage); var corrKernel = PSF.CalcPaddedFourierCorrelation(psf, new Rectangle(0, 0, residuals.GetLength(0), residuals.GetLength(1))); var gradients = Residuals.CalcGradientMap(residuals, corrKernel, new Rectangle(0, 0, psf.GetLength(0), psf.GetLength(1))); var lipschitz = (float)PSF.CalcMaxLipschitz(psf) * xImage.Length; for (int i = 0; i < xImage.GetLength(0); i++) { for (int j = 0; j < xImage.GetLength(1); j++) { var tmp = gradients[i, j] + xImage[i, j] * lipschitz; tmp = ElasticNet.ProximalOperator(tmp, lipschitz, lambda, alpha); xImage[i, j] = tmp; } } //update residuals for (int i = 0; i < xImage.GetLength(0); i++) { for (int j = 0; j < xImage.GetLength(1); j++) { xOld[i, j] = xImage[i, j] - xOld[i, j]; } } var convKernel = PSF.CalcPaddedFourierConvolution(psf, new Rectangle(0, 0, residuals.GetLength(0), residuals.GetLength(1))); var residualsCalculator = new PaddedConvolver(convKernel, new Rectangle(0, 0, psf.GetLength(0), psf.GetLength(1))); residualsCalculator.ConvolveInPlace(xOld); for (int i = 0; i < xImage.GetLength(0); i++) { for (int j = 0; j < xImage.GetLength(1); j++) { residuals[i, j] -= xOld[i, j]; } } }
public void Deconvolve() { var update = 0.0f; var blockCount = shared.XExpl.Length; DiffMax = 0.0f; var beta = CalcESO(shared.ProcessorCount, shared.DegreeOfSeperability, blockCount); var continueAsync = Thread.VolatileRead(ref shared.AsyncFinished) == 0; for (int inner = 0; inner < shared.MaxConcurrentIterations & continueAsync; inner++) { continueAsync = Thread.VolatileRead(ref shared.AsyncFinished) == 0; var blockIdx = GetPseudoRandomBlock((float)beta); var blockSample = shared.ActiveSet[blockIdx]; var yPixel = blockSample.Item1; var xPixel = blockSample.Item2; var step = shared.AMap[yPixel, xPixel] * (float)beta; var xExpl = Thread.VolatileRead(ref shared.XExpl[yPixel, xPixel]); update = Thread.VolatileRead(ref shared.GExpl[yPixel, xPixel]) + xExpl * step; update = ElasticNet.ProximalOperator(update, step, shared.Lambda, shared.Alpha) - xExpl; DiffMax = Math.Max(DiffMax, Math.Abs(update)); //update gradients if (0.0f != Math.Abs(update)) { UpdateGradients(shared.GExpl, shared.Psf2, yPixel, xPixel, update); Thread.VolatileWrite(ref shared.XExpl[yPixel, xPixel], shared.XExpl[yPixel, xPixel] + update); } AsyncIterations++; //unlockBlock Thread.VolatileWrite(ref shared.BlockLock[blockIdx], 0); } Thread.VolatileWrite(ref shared.AsyncFinished, 1); }
public void Deconvolve() { var blockCount = shared.XExpl.Length / (shared.YBlockSize * shared.XBlockSize); //var blockCount = shared.ActiveSet.Count; float eta = 1.0f / blockCount; var beta = CalcESO(shared.ProcessorCount, shared.DegreeOfSeperability, blockCount); xDiffMax = 0.0f; var continueAsync = Thread.VolatileRead(ref shared.asyncFinished) == 0; for (int inner = 0; inner < shared.MaxConcurrentIterations & continueAsync; inner++) { continueAsync = Thread.VolatileRead(ref shared.asyncFinished) == 0; var blockIdx = GetRandomBlockIdx(random, id, shared.BlockLock); var blockSample = shared.ActiveSet[blockIdx]; var yOffset = blockSample.Item1 * shared.YBlockSize; var xOffset = blockSample.Item2 * shared.XBlockSize; var blockLipschitz = GetBlockLipschitz(shared.AMap, yOffset, xOffset, shared.YBlockSize, shared.XBlockSize); var step = blockLipschitz * (float)beta * Theta / shared.theta0; var theta2 = Theta * Theta; var correctionFactor = -(1.0f - Theta / shared.theta0) / theta2; var updateSum = 0.0f; var updateAbsSum = 0.0f; for (int y = yOffset; y < (yOffset + shared.YBlockSize); y++) { for (int x = xOffset; x < (xOffset + shared.XBlockSize); x++) { var xExpl = Thread.VolatileRead(ref shared.XExpl[y, x]); var update = theta2 * Thread.VolatileRead(ref shared.GCorr[y, x]) + Thread.VolatileRead(ref shared.GExpl[y, x]) + xExpl * step; update = ElasticNet.ProximalOperator(update, step, shared.Lambda, shared.Alpha) - xExpl; blockUpdate[y - yOffset, x - xOffset] = update; updateSum = update; updateAbsSum += Math.Abs(update); } } //update gradients if (0.0f != updateAbsSum) { xDiffMax = Math.Max(xDiffMax, updateAbsSum); UpdateBMaps(blockUpdate, blockSample.Item1, blockSample.Item2, shared.Psf2, shared.GExpl, shared.GCorr, correctionFactor); var newXExplore = 0.0f; var oldXExplore = 0.0f; var oldXCorr = 0.0f; for (int y = yOffset; y < (yOffset + shared.YBlockSize); y++) { for (int x = xOffset; x < (xOffset + shared.XBlockSize); x++) { var update = blockUpdate[y - yOffset, x - xOffset]; var oldExplore = shared.XExpl[y, x]; //does not need to be volatile, this index is blocked until this process is finished, and we already made sure with a volatile read that the latest value is in the cache oldXExplore += shared.XExpl[y, x]; oldXCorr += Thread.VolatileRead(ref shared.XCorr[y, x]); newXExplore += oldExplore + update; Thread.VolatileWrite(ref shared.XExpl[y, x], shared.XExpl[y, x] + update); Thread.VolatileWrite(ref shared.XCorr[y, x], shared.XCorr[y, x] + update * correctionFactor); } } //not 100% sure this is the correct generalization from single pixel thread rule to block rule var testRestartUpdate = (updateSum) * (newXExplore - (theta2 * oldXCorr + oldXExplore)); ConcurrentUpdateTestRestart(ref shared.testRestart, eta, testRestartUpdate); } //unlockBlock Thread.VolatileWrite(ref shared.BlockLock[blockIdx], 0); if (useAcceleration) { Theta = (float)(Math.Sqrt((theta2 * theta2) + 4 * (theta2)) - theta2) / 2.0f; } } Thread.VolatileWrite(ref shared.asyncFinished, 1); }
public float DeconvolveAccelerated(float[,] xExplore, float[,] xCorrection, float[,] gExplore, float[,] gCorrection, float[,] psf2, ref List <Tuple <int, int> > activeSet, float maxLipschitz, float lambda, float alpha, Random random, int maxIteration, float epsilon) { var blockCount = activeSet.Count; var beta = CalcESO(tau, degreeOfSeperability, blockCount); var lipschitz = maxLipschitz * yBlockSize * xBlockSize; lipschitz *= (float)beta; var theta = tau / (float)blockCount; var theta0 = theta; float eta = 1.0f / blockCount; var testRestart = 0.0f; var iter = 0; var converged = false; Console.WriteLine("Starting Active Set iterations with " + activeSet.Count + " blocks"); while (iter < maxIteration & !converged) { var xDiffMax = new float[tau]; var innerIterCount = Math.Min(activeSet.Count / tau, MAX_ACTIVESET_ITER / tau); for (int inner = 0; inner < innerIterCount; inner++) { var stepSize = lipschitz * theta / theta0; var theta2 = theta * theta; var correctionFactor = -(1.0f - theta / theta0) / theta2; var samples = activeSet.Shuffle(random).Take(tau).ToList(); Parallel.For(0, tau, (i) => { var blockSample = samples[i]; var yOffset = blockSample.Item1 * yBlockSize; var xOffset = blockSample.Item2 * xBlockSize; var blockUpdate = new float[yBlockSize, xBlockSize]; var updateSum = 0.0f; var updateAbsSum = 0.0f; for (int y = yOffset; y < (yOffset + yBlockSize); y++) { for (int x = xOffset; x < (xOffset + xBlockSize); x++) { var update = theta2 * gCorrection[y, x] + gExplore[y, x] + xExplore[y, x] * stepSize; update = ElasticNet.ProximalOperator(update, stepSize, lambda, alpha) - xExplore[y, x]; blockUpdate[y - yOffset, x - xOffset] = update; updateSum = update; updateAbsSum += Math.Abs(update); } } //update gradients if (0.0f != updateAbsSum) { xDiffMax[i] = Math.Max(xDiffMax[i], updateAbsSum); UpdateBMaps(blockUpdate, blockSample.Item1, blockSample.Item2, psf2, gExplore, gCorrection, correctionFactor); var newXExplore = 0.0f; var oldXExplore = 0.0f; var oldXCorr = 0.0f; for (int y = yOffset; y < (yOffset + yBlockSize); y++) { for (int x = xOffset; x < (xOffset + xBlockSize); x++) { var update = blockUpdate[y - yOffset, x - xOffset]; var oldExplore = xExplore[y, x]; var oldCorrection = xCorrection[y, x]; oldXExplore += xExplore[y, x]; oldXCorr += xCorrection[y, x]; newXExplore += oldExplore + update; xExplore[y, x] += update; xCorrection[y, x] += update * correctionFactor; } } //not 100% sure this is the correct generalization from single pixel/single thread rule to block/parallel rule var testRestartUpdate = (updateSum) * (newXExplore - (theta2 * oldXCorr + oldXExplore)); ConcurrentUpdateTestRestart(ref testRestart, eta, testRestartUpdate); } }); theta = (float)(Math.Sqrt((theta2 * theta2) + 4 * (theta2)) - theta2) / 2.0f; } if (testRestart > 0) { //restart acceleration var tmpTheta = theta < 1.0f ? ((theta * theta) / (1.0f - theta)) : theta0; for (int y = 0; y < xExplore.GetLength(0); y++) { for (int x = 0; x < xExplore.GetLength(1); x++) { xExplore[y, x] += tmpTheta * xCorrection[y, x]; xCorrection[y, x] = 0; gExplore[y, x] += tmpTheta * gCorrection[y, x]; gCorrection[y, x] = 0; } } Console.WriteLine("restarting"); //new active set activeSet = GetActiveSet(xExplore, gExplore, lambda, alpha, maxLipschitz); blockCount = activeSet.Count; theta = tau / (float)blockCount; theta0 = theta; beta = CalcESO(tau, degreeOfSeperability, blockCount); lipschitz = maxLipschitz * yBlockSize * xBlockSize; lipschitz *= (float)beta; } if (xDiffMax.Sum() < epsilon) { converged = true; } Console.WriteLine("Done Active Set iteration " + iter); iter++; } return(theta); }
public float DeconvolveRandomActiveSet(float[,] xExplore, float[,] xCorrection, float[,] gExplore, float[,] gCorrection, float[,] psf2, ref List <Tuple <int, int> > activeSet, float maxLipschitz, float lambda, float alpha, Random random, int maxIteration, float epsilon) { var blockCount = activeSet.Count; var beta = CalcESO(tau, degreeOfSeperability, blockCount); var lipschitz = maxLipschitz * yBlockSize * xBlockSize; lipschitz *= (float)beta; var theta = tau / (float)blockCount; var theta0 = theta; float eta = 1.0f / blockCount; var testRestart = 0.0; var iter = 0; var blocks = new float[tau, yBlockSize, xBlockSize]; var containsNonZero = new bool[tau]; var converged = false; Console.WriteLine("Starting Active Set iterations with " + activeSet.Count + " blocks"); while (iter < maxIteration & !converged) { var xDiffMax = 0.0f; for (int inner = 0; inner < Math.Min(activeSet.Count / tau, 10000 / tau); inner++) { var stepSize = lipschitz * theta / theta0; var theta2 = theta * theta; var samples = CreateSamples(blockCount, tau, random); //minimize blocks for (int i = 0; i < samples.Length; i++) { var blockSample = activeSet[samples[i]]; var yOffset = blockSample.Item1 * yBlockSize; var xOffset = blockSample.Item2 * xBlockSize; containsNonZero[i] = false; for (int y = yOffset; y < (yOffset + yBlockSize); y++) { for (int x = xOffset; x < (xOffset + xBlockSize); x++) { var update = theta2 * gCorrection[y, x] + gExplore[y, x] + xExplore[y, x] * stepSize; update = ElasticNet.ProximalOperator(update, stepSize, lambda, alpha) - xExplore[y, x]; blocks[i, y - yOffset, x - xOffset] = update; if (update != 0.0) { containsNonZero[i] = true; } } } } //update bMaps var correctionFactor = -(1.0f - theta / theta0) / (theta * theta); for (int i = 0; i < samples.Length; i++) { if (containsNonZero[i]) { var blockSample = activeSet[samples[i]]; var yBlock = blockSample.Item1; var xBlock = blockSample.Item2; UpdateBMaps(i, blocks, yBlock, xBlock, psf2, gExplore, gCorrection, correctionFactor); //FitsIO.Write(gExplore, "gExplore2.fits"); //FitsIO.Write(gCorrection, "gCorr2.fits"); var currentDiff = 0.0f; //update reconstructed image var yOffset = yBlock * yBlockSize; var xOffset = xBlock * xBlockSize; for (int y = 0; y < blocks.GetLength(1); y++) { for (int x = 0; x < blocks.GetLength(2); x++) { var update = blocks[i, y, x]; var oldExplore = xExplore[yOffset + y, xOffset + x]; var oldCorrection = xCorrection[yOffset + y, xOffset + x]; var newValue = oldExplore + update; testRestart = (1.0 - eta) * testRestart - eta * (update) * (newValue - (theta * theta * oldCorrection + oldExplore)); currentDiff += Math.Abs(update); xExplore[yOffset + y, xOffset + x] += update; xCorrection[yOffset + y, xOffset + x] += update * correctionFactor; } } xDiffMax = Math.Max(xDiffMax, currentDiff); } } theta = (float)(Math.Sqrt((theta * theta * theta * theta) + 4 * (theta * theta)) - theta * theta) / 2.0f; } if (testRestart > 0) { //restart acceleration var tmpTheta = theta < 1.0f ? ((theta * theta) / (1.0f - theta)) : theta0; for (int y = 0; y < xExplore.GetLength(0); y++) { for (int x = 0; x < xExplore.GetLength(1); x++) { xExplore[y, x] += tmpTheta * xCorrection[y, x]; xCorrection[y, x] = 0; gExplore[y, x] += tmpTheta * gCorrection[y, x]; gCorrection[y, x] = 0; } } Console.WriteLine("restarting"); //new active set activeSet = GetActiveSet(xExplore, gExplore, lambda, alpha, maxLipschitz); blockCount = activeSet.Count; theta = tau / (float)blockCount; theta0 = theta; beta = CalcESO(tau, degreeOfSeperability, blockCount); lipschitz = maxLipschitz * yBlockSize * xBlockSize; lipschitz *= (float)beta; } if (xDiffMax < epsilon) { //converged = true; } Console.WriteLine("Done Active Set iteration " + iter); iter++; } return(theta); }