示例#1
0
        private static String OcrImage(Tesseract ocr, Mat image, OCRMode mode, Mat imageColor)
        {
            Bgr drawCharColor = new Bgr(Color.Red);

            if (image.NumberOfChannels == 1)
            {
                CvInvoke.CvtColor(image, imageColor, ColorConversion.Gray2Bgr);
            }
            else
            {
                image.CopyTo(imageColor);
            }

            if (mode == OCRMode.FullPage)
            {
                ocr.SetImage(imageColor);

                if (ocr.Recognize() != 0)
                {
                    throw new Exception("Failed to recognizer image");
                }

                Tesseract.Character[] characters = ocr.GetCharacters();
                if (characters.Length == 0)
                {
                    Mat imgGrey = new Mat();
                    CvInvoke.CvtColor(image, imgGrey, ColorConversion.Bgr2Gray);
                    Mat imgThresholded = new Mat();
                    CvInvoke.Threshold(imgGrey, imgThresholded, 65, 255, ThresholdType.Binary);
                    ocr.SetImage(imgThresholded);
                    characters = ocr.GetCharacters();
                    imageColor = imgThresholded;
                    if (characters.Length == 0)
                    {
                        CvInvoke.Threshold(image, imgThresholded, 190, 255, ThresholdType.Binary);
                        ocr.SetImage(imgThresholded);
                        characters = ocr.GetCharacters();
                        imageColor = imgThresholded;
                    }
                }
                foreach (Tesseract.Character c in characters)
                {
                    CvInvoke.Rectangle(imageColor, c.Region, drawCharColor.MCvScalar);
                }

                return(ocr.GetUTF8Text());
            }
            else
            {
                bool checkInvert = true;

                Rectangle[] regions;

                using (
                    ERFilterNM1 er1 = new ERFilterNM1("trained_classifierNM1.xml", 8, 0.00025f, 0.13f, 0.4f, true, 0.1f))
                    using (ERFilterNM2 er2 = new ERFilterNM2("trained_classifierNM2.xml", 0.3f))
                    {
                        int    channelCount = image.NumberOfChannels;
                        UMat[] channels     = new UMat[checkInvert ? channelCount * 2 : channelCount];

                        for (int i = 0; i < channelCount; i++)
                        {
                            UMat c = new UMat();
                            CvInvoke.ExtractChannel(image, c, i);
                            channels[i] = c;
                        }

                        if (checkInvert)
                        {
                            for (int i = 0; i < channelCount; i++)
                            {
                                UMat c = new UMat();
                                CvInvoke.BitwiseNot(channels[i], c);
                                channels[i + channelCount] = c;
                            }
                        }

                        VectorOfERStat[] regionVecs = new VectorOfERStat[channels.Length];
                        for (int i = 0; i < regionVecs.Length; i++)
                        {
                            regionVecs[i] = new VectorOfERStat();
                        }

                        try
                        {
                            for (int i = 0; i < channels.Length; i++)
                            {
                                er1.Run(channels[i], regionVecs[i]);
                                er2.Run(channels[i], regionVecs[i]);
                            }
                            using (VectorOfUMat vm = new VectorOfUMat(channels))
                            {
                                regions = ERFilter.ERGrouping(image, vm, regionVecs, ERFilter.GroupingMethod.OrientationHoriz,
                                                              "trained_classifier_erGrouping.xml", 0.5f);
                            }
                        }
                        finally
                        {
                            foreach (UMat tmp in channels)
                            {
                                if (tmp != null)
                                {
                                    tmp.Dispose();
                                }
                            }
                            foreach (VectorOfERStat tmp in regionVecs)
                            {
                                if (tmp != null)
                                {
                                    tmp.Dispose();
                                }
                            }
                        }

                        Rectangle imageRegion = new Rectangle(Point.Empty, imageColor.Size);
                        for (int i = 0; i < regions.Length; i++)
                        {
                            Rectangle r = ScaleRectangle(regions[i], 1.1);

                            r.Intersect(imageRegion);
                            regions[i] = r;
                        }
                    }


                List <Tesseract.Character> allChars = new List <Tesseract.Character>();
                String allText = String.Empty;
                foreach (Rectangle rect in regions)
                {
                    using (Mat region = new Mat(image, rect))
                    {
                        ocr.SetImage(region);
                        if (ocr.Recognize() != 0)
                        {
                            throw new Exception("Failed to recognize image");
                        }
                        Tesseract.Character[] characters = ocr.GetCharacters();

                        //convert the coordinates from the local region to global
                        for (int i = 0; i < characters.Length; i++)
                        {
                            Rectangle charRegion = characters[i].Region;
                            charRegion.Offset(rect.Location);
                            characters[i].Region = charRegion;
                        }
                        allChars.AddRange(characters);

                        allText += ocr.GetUTF8Text() + Environment.NewLine;
                    }
                }

                Bgr drawRegionColor = new Bgr(Color.Red);
                foreach (Rectangle rect in regions)
                {
                    CvInvoke.Rectangle(imageColor, rect, drawRegionColor.MCvScalar);
                }
                foreach (Tesseract.Character c in allChars)
                {
                    CvInvoke.Rectangle(imageColor, c.Region, drawCharColor.MCvScalar);
                }

                return(allText);
            }
        }
示例#2
0
      public void TestERFilter()
      {
         CvInvoke.SanityCheck();
         bool checkInvert = true;
         using (Image<Bgr, Byte> image = EmguAssert.LoadImage<Bgr, Byte>("scenetext01.jpg"))
         using (ERFilterNM1 er1 = new ERFilterNM1(EmguAssert.GetFile("trained_classifierNM1.xml"), 8, 0.00025f, 0.13f, 0.4f, true, 0.1f))
         using (ERFilterNM2 er2 = new ERFilterNM2(EmguAssert.GetFile("trained_classifierNM2.xml"), 0.3f))
         {
            //using (Image<Gray, Byte> mask = new Image<Gray,byte>(image.Size.Width + 2, image.Size.Height + 2))
            int channelCount = image.NumberOfChannels;
            UMat[] channels = new UMat[checkInvert ? channelCount * 2 : channelCount];
            
            for (int i = 0; i < channelCount; i++)
            {
               UMat c = new UMat();
               CvInvoke.ExtractChannel(image.Mat, c, i);
               channels[i] = c;
            }

            if (checkInvert)
            {
               for (int i = 0; i < channelCount; i++)
               {
                  UMat c = new UMat();
                  CvInvoke.BitwiseNot(channels[i], c);
                  channels[i + channelCount] = c;
               }
            }

            VectorOfERStat[] regionVecs = new VectorOfERStat[channels.Length];
            for (int i = 0; i < regionVecs.Length; i++)
               regionVecs[i] = new VectorOfERStat();

            /*
            for (int i = 0; i < channels.Length; i++)
            {
               Emgu.CV.UI.ImageViewer.Show(channels[i]);
            }*/
            
            try
            {
               for (int i = 0; i < channels.Length; i++)
               {
                  er1.Run(channels[i], regionVecs[i]);
                  er2.Run(channels[i], regionVecs[i]);
               }
               using (VectorOfUMat vm = new VectorOfUMat(channels))
               {
                  Rectangle[] regions = ERFilter.ERGrouping(image, vm, regionVecs, ERFilter.GroupingMethod.OrientationHoriz, EmguAssert.GetFile("trained_classifier_erGrouping.xml"), 0.5f);

                  foreach (Rectangle rect in regions)
                     image.Draw(rect, new Bgr(0, 0, 255), 2);
                  
               }
            }
            finally
            {
               foreach (UMat tmp in channels)
                  if (tmp != null)
                     tmp.Dispose();
               foreach (VectorOfERStat tmp in regionVecs)
                  if (tmp != null)
                     tmp.Dispose();
            }
            //Emgu.CV.UI.ImageViewer.Show(image);
            
         }

      }
示例#3
0
      private void loadImageButton_Click(object sender, EventArgs e)
      {
         if (openImageFileDialog.ShowDialog() == System.Windows.Forms.DialogResult.OK)
         {
            fileNameTextBox.Text = openImageFileDialog.FileName;
            imageBox1.Image = null;
            ocrTextBox.Text = String.Empty;
            hocrTextBox.Text = String.Empty;

            Bgr drawCharColor = new Bgr(Color.Blue);
            try
            {
               Mat image = new Mat(openImageFileDialog.FileName, ImreadModes.AnyColor);

               Mat imageColor = new Mat();
               if (image.NumberOfChannels == 1)
                  CvInvoke.CvtColor(image, imageColor, ColorConversion.Gray2Bgr);
               else
                  image.CopyTo(imageColor);

               if (Mode == OCRMode.FullPage)
               {
                  _ocr.Recognize(image);
                  Tesseract.Character[] characters = _ocr.GetCharacters();
                  if (characters.Length == 0)
                  {
                     Mat imgGrey = new Mat();
                     CvInvoke.CvtColor(image, imgGrey, ColorConversion.Bgr2Gray);
                     Mat imgThresholded = new Mat();
                     CvInvoke.Threshold(imgGrey, imgThresholded,65, 255, ThresholdType.Binary);
                     _ocr.Recognize(imgThresholded);
                     characters = _ocr.GetCharacters();
                     imageColor = imgThresholded;
                     if (characters.Length == 0)
                     {
                        CvInvoke.Threshold(image, imgThresholded, 190, 255, ThresholdType.Binary);
                        _ocr.Recognize(imgThresholded);
                        characters = _ocr.GetCharacters();
                        imageColor = imgThresholded;
                     }
                  }
                  foreach (Tesseract.Character c in characters)
                  {
                     CvInvoke.Rectangle(imageColor, c.Region, drawCharColor.MCvScalar);
                  }

                  imageBox1.Image = imageColor;

                  String text = _ocr.GetText();
                  ocrTextBox.Text = text;
                  String hocrText = _ocr.GetHOCRText();
                  hocrTextBox.Text = hocrText;
               }
               else
               {
                  bool checkInvert = true;

                  Rectangle[] regions;

                  using (ERFilterNM1 er1 = new ERFilterNM1("trained_classifierNM1.xml", 8, 0.00025f, 0.13f, 0.4f, true, 0.1f))
                  using (ERFilterNM2 er2 = new ERFilterNM2("trained_classifierNM2.xml", 0.3f))
                  {
                     int channelCount = image.NumberOfChannels;
                     UMat[] channels = new UMat[checkInvert ? channelCount * 2 : channelCount];

                     for (int i = 0; i < channelCount; i++)
                     {
                        UMat c = new UMat();
                        CvInvoke.ExtractChannel(image, c, i);
                        channels[i] = c;
                     }

                     if (checkInvert)
                     {
                        for (int i = 0; i < channelCount; i++)
                        {
                           UMat c = new UMat();
                           CvInvoke.BitwiseNot(channels[i], c);
                           channels[i + channelCount] = c;
                        }
                     }

                     VectorOfERStat[] regionVecs = new VectorOfERStat[channels.Length];
                     for (int i = 0; i < regionVecs.Length; i++)
                        regionVecs[i] = new VectorOfERStat();

                     try
                     {
                        for (int i = 0; i < channels.Length; i++)
                        {
                           er1.Run(channels[i], regionVecs[i]);
                           er2.Run(channels[i], regionVecs[i]);
                        }
                        using (VectorOfUMat vm = new VectorOfUMat(channels))
                        {
                           regions = ERFilter.ERGrouping(image, vm, regionVecs, ERFilter.GroupingMethod.OrientationHoriz, "trained_classifier_erGrouping.xml", 0.5f);
                        }
                     }
                     finally
                     {
                        foreach (UMat tmp in channels)
                           if (tmp != null)
                              tmp.Dispose();
                        foreach (VectorOfERStat tmp in regionVecs)
                           if (tmp != null)
                              tmp.Dispose();
                     }

                     Rectangle imageRegion = new Rectangle(Point.Empty, imageColor.Size);
                     for (int i = 0; i < regions.Length; i++)
                     {
                        Rectangle r = ScaleRectangle( regions[i], 1.1);
                        
                        r.Intersect(imageRegion);
                        regions[i] = r;
                     }
                     
                  }

                  
                  List<Tesseract.Character> allChars = new List<Tesseract.Character>();
                  String allText = String.Empty;
                  foreach (Rectangle rect in regions)
                  {  
                     using (Mat region = new Mat(image, rect))
                     {
                        _ocr.Recognize(region);
                        Tesseract.Character[] characters = _ocr.GetCharacters();
                        
                        //convert the coordinates from the local region to global
                        for (int i = 0; i < characters.Length; i++)
                        {
                           Rectangle charRegion = characters[i].Region;
                           charRegion.Offset(rect.Location);
                           characters[i].Region = charRegion;
                           
                        }
                        allChars.AddRange(characters);
       
                        allText += _ocr.GetText() + Environment.NewLine;

                     }
                  }

                  Bgr drawRegionColor = new Bgr(Color.Red);
                  foreach (Rectangle rect in regions)
                  {
                     CvInvoke.Rectangle(imageColor, rect, drawRegionColor.MCvScalar);
                  }
                  foreach (Tesseract.Character c in allChars)
                  {
                     CvInvoke.Rectangle(imageColor, c.Region, drawCharColor.MCvScalar);
                  }
                  imageBox1.Image = imageColor;
                  ocrTextBox.Text = allText;

               }
            }
            catch (Exception exception)
            {
               MessageBox.Show(exception.Message);
            }
         }
      }
示例#4
0
        private void loadImageButton_Click(object sender, EventArgs e)
        {
            if (openImageFileDialog.ShowDialog() == System.Windows.Forms.DialogResult.OK)
            {
                fileNameTextBox.Text = openImageFileDialog.FileName;
                imageBox1.Image      = null;
                ocrTextBox.Text      = String.Empty;
                hocrTextBox.Text     = String.Empty;

                Bgr drawCharColor = new Bgr(Color.Blue);
                try
                {
                    Mat image = new Mat(openImageFileDialog.FileName, ImreadModes.AnyColor);

                    Mat imageColor = new Mat();
                    if (image.NumberOfChannels == 1)
                    {
                        CvInvoke.CvtColor(image, imageColor, ColorConversion.Gray2Bgr);
                    }
                    else
                    {
                        image.CopyTo(imageColor);
                    }

                    if (Mode == OCRMode.FullPage)
                    {
                        _ocr.Recognize(image);
                        Tesseract.Character[] characters = _ocr.GetCharacters();
                        if (characters.Length == 0)
                        {
                            Mat imgGrey = new Mat();
                            CvInvoke.CvtColor(image, imgGrey, ColorConversion.Bgr2Gray);
                            Mat imgThresholded = new Mat();
                            CvInvoke.Threshold(imgGrey, imgThresholded, 65, 255, ThresholdType.Binary);
                            _ocr.Recognize(imgThresholded);
                            characters = _ocr.GetCharacters();
                            imageColor = imgThresholded;
                            if (characters.Length == 0)
                            {
                                CvInvoke.Threshold(image, imgThresholded, 190, 255, ThresholdType.Binary);
                                _ocr.Recognize(imgThresholded);
                                characters = _ocr.GetCharacters();
                                imageColor = imgThresholded;
                            }
                        }
                        foreach (Tesseract.Character c in characters)
                        {
                            CvInvoke.Rectangle(imageColor, c.Region, drawCharColor.MCvScalar);
                        }

                        imageBox1.Image = imageColor;

                        String text = _ocr.GetText();
                        ocrTextBox.Text = text;
                        String hocrText = _ocr.GetHOCRText();
                        hocrTextBox.Text = hocrText;
                    }
                    else
                    {
                        bool checkInvert = true;

                        Rectangle[] regions;

                        using (ERFilterNM1 er1 = new ERFilterNM1("trained_classifierNM1.xml", 8, 0.00025f, 0.13f, 0.4f, true, 0.1f))
                            using (ERFilterNM2 er2 = new ERFilterNM2("trained_classifierNM2.xml", 0.3f))
                            {
                                int    channelCount = image.NumberOfChannels;
                                UMat[] channels     = new UMat[checkInvert ? channelCount * 2 : channelCount];

                                for (int i = 0; i < channelCount; i++)
                                {
                                    UMat c = new UMat();
                                    CvInvoke.ExtractChannel(image, c, i);
                                    channels[i] = c;
                                }

                                if (checkInvert)
                                {
                                    for (int i = 0; i < channelCount; i++)
                                    {
                                        UMat c = new UMat();
                                        CvInvoke.BitwiseNot(channels[i], c);
                                        channels[i + channelCount] = c;
                                    }
                                }

                                VectorOfERStat[] regionVecs = new VectorOfERStat[channels.Length];
                                for (int i = 0; i < regionVecs.Length; i++)
                                {
                                    regionVecs[i] = new VectorOfERStat();
                                }

                                try
                                {
                                    for (int i = 0; i < channels.Length; i++)
                                    {
                                        er1.Run(channels[i], regionVecs[i]);
                                        er2.Run(channels[i], regionVecs[i]);
                                    }
                                    using (VectorOfUMat vm = new VectorOfUMat(channels))
                                    {
                                        regions = ERFilter.ERGrouping(image, vm, regionVecs, ERFilter.GroupingMethod.OrientationHoriz, "trained_classifier_erGrouping.xml", 0.5f);
                                    }
                                }
                                finally
                                {
                                    foreach (UMat tmp in channels)
                                    {
                                        if (tmp != null)
                                        {
                                            tmp.Dispose();
                                        }
                                    }
                                    foreach (VectorOfERStat tmp in regionVecs)
                                    {
                                        if (tmp != null)
                                        {
                                            tmp.Dispose();
                                        }
                                    }
                                }

                                Rectangle imageRegion = new Rectangle(Point.Empty, imageColor.Size);
                                for (int i = 0; i < regions.Length; i++)
                                {
                                    Rectangle r = ScaleRectangle(regions[i], 1.1);

                                    r.Intersect(imageRegion);
                                    regions[i] = r;
                                }
                            }


                        List <Tesseract.Character> allChars = new List <Tesseract.Character>();
                        String allText = String.Empty;
                        foreach (Rectangle rect in regions)
                        {
                            using (Mat region = new Mat(image, rect))
                            {
                                _ocr.Recognize(region);
                                Tesseract.Character[] characters = _ocr.GetCharacters();

                                //convert the coordinates from the local region to global
                                for (int i = 0; i < characters.Length; i++)
                                {
                                    Rectangle charRegion = characters[i].Region;
                                    charRegion.Offset(rect.Location);
                                    characters[i].Region = charRegion;
                                }
                                allChars.AddRange(characters);

                                allText += _ocr.GetText() + Environment.NewLine;
                            }
                        }

                        Bgr drawRegionColor = new Bgr(Color.Red);
                        foreach (Rectangle rect in regions)
                        {
                            CvInvoke.Rectangle(imageColor, rect, drawRegionColor.MCvScalar);
                        }
                        foreach (Tesseract.Character c in allChars)
                        {
                            CvInvoke.Rectangle(imageColor, c.Region, drawCharColor.MCvScalar);
                        }
                        imageBox1.Image = imageColor;
                        ocrTextBox.Text = allText;
                    }
                }
                catch (Exception exception)
                {
                    MessageBox.Show(exception.Message);
                }
            }
        }
        public string Recognize(Mat image)
        {
            Rectangle[] regions;
            Bgr         drawCharColor = new Bgr(Color.Red);

            using (var er1 = new ERFilterNM1("Assets\\trained_classifierNM1.xml", 8, 0.00025f, 0.13f, 0.4f, true, 0.1f)) {
                using (var er2 = new ERFilterNM2("Assets\\trained_classifierNM2.xml", 0.3f)) {
                    var channelCount = image.NumberOfChannels;
                    var channels     = new UMat[channelCount * 2];

                    for (int i = 0; i < channelCount; i++)
                    {
                        var c = new UMat();
                        CvInvoke.ExtractChannel(image, c, i);
                        channels[i] = c;
                    }

                    for (int i = 0; i < channelCount; i++)
                    {
                        var c = new UMat();
                        CvInvoke.BitwiseNot(channels[i], c);
                        channels[i + channelCount] = c;
                    }

                    var regionVecs = new VectorOfERStat[channels.Length];
                    for (int i = 0; i < regionVecs.Length; i++)
                    {
                        regionVecs[i] = new VectorOfERStat();
                    }
                    try {
                        for (int i = 0; i < channels.Length; i++)
                        {
                            er1.Run(channels[i], regionVecs[i]);
                            er2.Run(channels[i], regionVecs[i]);
                        }
                        using (var vm = new VectorOfUMat(channels)) {
                            regions = ERFilter.ERGrouping(image, vm, regionVecs, ERFilter.GroupingMethod.OrientationHoriz,
                                                          "Assets\\trained_classifier_erGrouping.xml", 0.5f);
                        }
                    }
                    finally {
                        foreach (UMat tmp in channels)
                        {
                            if (tmp != null)
                            {
                                tmp.Dispose();
                            }
                        }
                        foreach (VectorOfERStat tmp in regionVecs)
                        {
                            if (tmp != null)
                            {
                                tmp.Dispose();
                            }
                        }
                    }
                    Rectangle imageRegion = new Rectangle(Point.Empty, image.Size);
                    for (int i = 0; i < regions.Length; i++)
                    {
                        Rectangle r = ScaleRectangle(regions[i], 1.1);

                        r.Intersect(imageRegion);
                        regions[i] = r;
                    }
                }

                var    allChars = new List <Tesseract.Character>();
                String allText  = String.Empty;
                foreach (Rectangle rect in regions)
                {
                    using (Mat region = new Mat(image, rect)) {
                        _ocr.SetImage(region);
                        if (_ocr.Recognize() != 0)
                        {
                            return(null);
                        }
                        //var characters = _ocr.GetCharacters();

                        ////convert the coordinates from the local region to global
                        //for (int i = 0; i < characters.Length; i++) {
                        //    Rectangle charRegion = characters[i].Region;
                        //    charRegion.Offset(rect.Location);
                        //    characters[i].Region = charRegion;
                        //}
                        //allChars.AddRange(characters);
                        allText += _ocr.GetUTF8Text() + "|";
                    }
                }

                //Bgr drawRegionColor = new Bgr(Color.Red);
                //foreach (Rectangle rect in regions) {
                //    CvInvoke.Rectangle(image, rect, drawRegionColor.MCvScalar);
                //}
                //foreach (Tesseract.Character c in allChars) {
                //    CvInvoke.Rectangle(image, c.Region, drawCharColor.MCvScalar);
                //}

                return(allText);
            }
        }