public static void test() { ProblemSize ps = new() { chain_num = 10, cr_num = 3, gen_num = 10, pair_num = 3, par_num = 10 }; ProblemValue pv = new() { chain_filename = "problem0_chain00.txt", gr_filename = "problem0_gr.txt", gr_threshold = 1.2, jumpstep = 5, printstep = 10, restart_read_filename = "", restart_write_filename = "problem0_restart.txt", limits = new double[ps.par_num * 2] }; for (int j = 0; j < ps.par_num; j++) { pv.limits[0 + j * 2] = -10.0; pv.limits[1 + j * 2] = +10.0; } Dream.dream(ref ps, ref pv, prior_sample, prior_density, sample_likelihood); } private static Dream.DensityResult prior_density(int par_num, double[] zp, int zpIndex = 0)
public static void test() { ProblemSize ps = new() { chain_num = 10, cr_num = 3, gen_num = 10, pair_num = 3, //par_num = 100; par_num = 5 }; covariance_initialize(ps.par_num); ProblemValue pv = new() { chain_filename = "problem1_chain00.txt", gr_filename = "problem1_gr.txt", gr_threshold = 1.2, jumpstep = 5, printstep = 10, restart_read_filename = "", restart_write_filename = "problem1_restart.txt", limits = new double[ps.par_num * 2] }; for (int j = 0; j < ps.par_num; j++) { pv.limits[0 + j * 2] = 9.9; pv.limits[1 + j * 2] = +10.0; } Dream.dream(ref ps, ref pv, prior_sample, prior_density, sample_likelihood); } private static void covariance_initialize(int par_num)