private static void Train(string baseName, string dataset, uint epoch, double learningRate, double minLearningRate, uint miniBatchSize, uint validation, bool useMean) { try { IList <Matrix <RgbPixel> > trainingImages; IList <uint> trainingLabels; IList <Matrix <RgbPixel> > testingImages; IList <uint> testingLabels; var mean = useMean ? Path.Combine(dataset, "train.mean.bmp") : null; Console.WriteLine("Start load train images"); Load("train", dataset, mean, out trainingImages, out trainingLabels); Console.WriteLine($"Load train images: {trainingImages.Count}"); Console.WriteLine("Start load test images"); Load("test", dataset, mean, out testingImages, out testingLabels); Console.WriteLine($"Load test images: {testingImages.Count}"); // So with that out of the way, we can make a network instance. var trainNet = NativeMethods.LossMulticlassLog_age_train_type_create(); var networkId = LossMulticlassLogRegistry.GetId(trainNet); LossMulticlassLogRegistry.Add(trainNet); using (var net = new LossMulticlassLog(networkId)) using (var trainer = new DnnTrainer <LossMulticlassLog>(net)) { trainer.SetLearningRate(learningRate); trainer.SetMinLearningRate(minLearningRate); trainer.SetMiniBatchSize(miniBatchSize); trainer.BeVerbose(); trainer.SetSynchronizationFile(baseName, 180); // create array box var trainingImagesCount = trainingImages.Count; var trainingLabelsCount = trainingLabels.Count; var maxIteration = (int)Math.Ceiling(trainingImagesCount / (float)miniBatchSize); var imageBatches = new Matrix <RgbPixel> [maxIteration][]; var labelBatches = new uint[maxIteration][]; for (var i = 0; i < maxIteration; i++) { if (miniBatchSize <= trainingImagesCount - i * miniBatchSize) { imageBatches[i] = new Matrix <RgbPixel> [miniBatchSize]; labelBatches[i] = new uint[miniBatchSize]; } else { imageBatches[i] = new Matrix <RgbPixel> [trainingImagesCount % miniBatchSize]; labelBatches[i] = new uint[trainingLabelsCount % miniBatchSize]; } } using (var fs = new FileStream($"{baseName}.log", FileMode.Create, FileAccess.Write, FileShare.Write)) using (var sw = new StreamWriter(fs, Encoding.UTF8)) for (var e = 0; e < epoch; e++) { var randomArray = Enumerable.Range(0, trainingImagesCount).OrderBy(i => Guid.NewGuid()).ToArray(); var index = 0; for (var i = 0; i < imageBatches.Length; i++) { var currentImages = imageBatches[i]; var currentLabels = labelBatches[i]; for (var j = 0; j < imageBatches[i].Length; j++) { var rIndex = randomArray[index]; currentImages[j] = trainingImages[rIndex]; currentLabels[j] = trainingLabels[rIndex]; index++; } } for (var i = 0; i < maxIteration; i++) { LossMulticlassLog.TrainOneStep(trainer, imageBatches[i], labelBatches[i]); } var lr = trainer.GetLearningRate(); var loss = trainer.GetAverageLoss(); var trainLog = $"Epoch: {e}, learning Rate: {lr}, average loss: {loss}"; Console.WriteLine(trainLog); sw.WriteLine(trainLog); if (e > 0 && e % validation == 0) { Validation(baseName, net, trainingImages, trainingLabels, testingImages, testingLabels, false, false, out var trainAccuracy, out var testAccuracy); var validationLog = $"Epoch: {e}, train accuracy: {trainAccuracy}, test accuracy: {testAccuracy}"; Console.WriteLine(validationLog); sw.WriteLine(validationLog); } if (lr < minLearningRate) { break; } } // wait for training threads to stop trainer.GetNet(); Console.WriteLine("done training"); net.Clean(); LossMulticlassLog.Serialize(net, $"{baseName}.dat"); // Now let's run the training images through the network. This statement runs all the // images through it and asks the loss layer to convert the network's raw output into // labels. In our case, these labels are the numbers between 0 and 9. Validation(baseName, net, trainingImages, trainingLabels, testingImages, testingLabels, true, true, out _, out _); } } catch (Exception e) { Console.WriteLine(e); } }
private void Train(Parameter parameter) { try { IList <Matrix <C> > trainingImages; IList <T> trainingLabels; IList <Matrix <C> > testingImages; IList <T> testingLabels; Logger.Info("Start load train images"); Load(parameter.Dataset, "train", out trainingImages, out trainingLabels); Logger.Info($"Load train images: {trainingImages.Count}"); Logger.Info("Start load test images"); Load(parameter.Dataset, "test", out testingImages, out testingLabels); Logger.Info($"Load test images: {testingImages.Count}"); Logger.Info(""); // So with that out of the way, we can make a network instance. var networkId = SetupNetwork(); using (var net = new LossMulticlassLog(networkId)) using (var solver = new Adam()) using (var trainer = new DnnTrainer <LossMulticlassLog>(net, solver)) { var learningRate = parameter.LearningRate; var minLearningRate = parameter.MinLearningRate; var miniBatchSize = parameter.MiniBatchSize; var baseName = parameter.BaseName; var epoch = parameter.Epoch; var validation = parameter.Validation; trainer.SetLearningRate(learningRate); trainer.SetMinLearningRate(minLearningRate); trainer.SetMiniBatchSize(miniBatchSize); trainer.BeVerbose(); trainer.SetSynchronizationFile(baseName, 180); // create array box var trainingImagesCount = trainingImages.Count; var trainingLabelsCount = trainingLabels.Count; var maxIteration = (int)Math.Ceiling(trainingImagesCount / (float)miniBatchSize); var imageBatches = new Matrix <C> [maxIteration][]; var labelBatches = new uint[maxIteration][]; for (var i = 0; i < maxIteration; i++) { if (miniBatchSize <= trainingImagesCount - i * miniBatchSize) { imageBatches[i] = new Matrix <C> [miniBatchSize]; labelBatches[i] = new uint[miniBatchSize]; } else { imageBatches[i] = new Matrix <C> [trainingImagesCount % miniBatchSize]; labelBatches[i] = new uint[trainingLabelsCount % miniBatchSize]; } } using (var fs = new FileStream($"{baseName}.log", FileMode.Create, FileAccess.Write, FileShare.Write)) using (var sw = new StreamWriter(fs, Encoding.UTF8)) for (var e = 0; e < epoch; e++) { var randomArray = Enumerable.Range(0, trainingImagesCount).OrderBy(i => Guid.NewGuid()).ToArray(); var index = 0; for (var i = 0; i < imageBatches.Length; i++) { var currentImages = imageBatches[i]; var currentLabels = labelBatches[i]; for (var j = 0; j < imageBatches[i].Length; j++) { var rIndex = randomArray[index]; currentImages[j] = trainingImages[rIndex]; currentLabels[j] = this.Cast(trainingLabels[rIndex]); index++; } } for (var i = 0; i < maxIteration; i++) { LossMulticlassLog.TrainOneStep(trainer, imageBatches[i], labelBatches[i]); } var lr = trainer.GetLearningRate(); var loss = trainer.GetAverageLoss(); var trainLog = $"Epoch: {e}, learning Rate: {lr}, average loss: {loss}"; Logger.Info(trainLog); sw.WriteLine(trainLog); if (e >= 0 && e % validation == 0) { var validationParameter = new ValidationParameter <T, C> { BaseName = parameter.BaseName, Output = parameter.Output, Trainer = net, TrainingImages = trainingImages, TrainingLabels = trainingLabels, TestingImages = testingImages, TestingLabels = testingLabels, UseConsole = true, SaveToXml = true, OutputDiffLog = true }; Validation(validationParameter, out var trainAccuracy, out var testAccuracy); var validationLog = $"Epoch: {e}, train accuracy: {trainAccuracy}, test accuracy: {testAccuracy}"; Logger.Info(validationLog); sw.WriteLine(validationLog); var name = this.GetBaseName(parameter.Epoch, parameter.LearningRate, parameter.MinLearningRate, parameter.MiniBatchSize); UpdateBestModelFile(net, testAccuracy, parameter.Output, name, "test"); UpdateBestModelFile(net, trainAccuracy, parameter.Output, name, "train"); } if (lr < minLearningRate) { Logger.Info($"Stop training: {lr} < {minLearningRate}"); break; } } // wait for training threads to stop trainer.GetNet(); Logger.Info("done training"); net.Clean(); LossMulticlassLog.Serialize(net, $"{baseName}.tmp"); // Now let's run the training images through the network. This statement runs all the // images through it and asks the loss layer to convert the network's raw output into // labels. In our case, these labels are the numbers between 0 and 9. var validationParameter2 = new ValidationParameter <T, C> { BaseName = parameter.BaseName, Output = parameter.Output, Trainer = net, TrainingImages = trainingImages, TrainingLabels = trainingLabels, TestingImages = testingImages, TestingLabels = testingLabels, UseConsole = true, SaveToXml = true, OutputDiffLog = true }; Validation(validationParameter2, out _, out _); // clean up tmp files Clean(parameter.Output); } } catch (Exception e) { Logger.Error(e.Message); } }