示例#1
0
        public void CreateHistogram(Image<Bgr, Byte> img)
        {
            Image<Gray, Byte>[] channels = img.Split();
            Image<Gray, Byte> blueChannel = channels[0];
            Image<Gray, Byte> greenChannel = channels[1];
            Image<Gray, Byte> redChannel = channels[2];

            //Red colour channel
            DenseHistogram dhRed = new DenseHistogram(BIN_SIZE, new RangeF(0.0f, BIN_DEPTH));
            dhRed.Calculate<Byte>(new Image<Gray, Byte>[1] { redChannel }, false, null);
            redChart.ClearHistogram();
            redChart.AddHistogram("Red Channel", System.Drawing.Color.Red, dhRed);
            redChart.Refresh();

            //Green colour Channel
            DenseHistogram dhGreen = new DenseHistogram(BIN_SIZE, new RangeF(0.0f, BIN_DEPTH));
            dhGreen.Calculate<Byte>(new Image<Gray, Byte>[1] { greenChannel }, false, null);
            greenChart.ClearHistogram();
            greenChart.AddHistogram("Green Channel", System.Drawing.Color.Green, dhGreen);

            greenChart.Refresh();

            //Blue colour Channel
            DenseHistogram dhBlue = new DenseHistogram(BIN_SIZE, new RangeF(0.0f, BIN_DEPTH));
            dhBlue.Calculate<Byte>(new Image<Gray, Byte>[1] { blueChannel }, false, null);
            blueChart.ClearHistogram();
            blueChart.Show();
            blueChart.AddHistogram("Blue Channel", System.Drawing.Color.Blue, dhBlue);
            blueChart.Refresh();
        }
示例#2
0
        /// <summary>
        /// Add a plot of the 1D histogram. You should call the Refresh() function to update the control after all modification is complete.
        /// </summary>
        /// <param name="name">The name of the histogram</param>
        /// <param name="color">The drawing color</param>
        /// <param name="histogram">The 1D histogram to be drawn</param>
        public void AddHistogram(String name, Color color, DenseHistogram histogram)
        {
            Debug.Assert(histogram.Dimension == 1, Properties.StringTable.Only1DHistogramSupported);

             GraphPane pane = new GraphPane();
             // Set the Title
             pane.Title.Text = name;
             pane.XAxis.Title.Text = Properties.StringTable.Value;
             pane.YAxis.Title.Text = Properties.StringTable.Count;

             #region draw the histogram
             RangeF range = histogram.Ranges[0];
             int binSize = histogram.BinDimension[0].Size;
             float step = (range.Max - range.Min) / binSize;
             float start = range.Min;
             double[] bin = new double[binSize];
             for (int binIndex = 0; binIndex < binSize; binIndex++)
             {
            bin[binIndex] = start;
            start += step;
             }

             PointPairList pointList = new PointPairList(
            bin,
            Array.ConvertAll<float, double>( (float[]) histogram.MatND.ManagedArray, System.Convert.ToDouble));

             pane.AddCurve(name, pointList, color);
             #endregion

             zedGraphControl1.MasterPane.Add(pane);
        }
示例#3
0
        public void CalculateHistogram(Image<Gray, byte> source)
        {
            histogram = new DenseHistogram(16, new RangeF(0, 180));

            mask = source.InRange(VideoParameters.Default.CamshiftMaskLow, VideoParameters.Default.CamshiftMaskHigh);
            CvInvoke.cvCalcHist(new[] { source.Ptr }, histogram.Ptr, false, mask.Ptr);

            SetTrackWindow(source.ROI);
        }
示例#4
0
文件: Program.cs 项目: zyh329/adas
        public static float[] CalculateHistogram(Image<Gray, byte> image)
        {
            var histogram = new DenseHistogram(256, new RangeF(0.0f, 255.0f));

            histogram.Calculate(new[] {image}, true, null);
            var values = new float[256];
            histogram.MatND.ManagedArray.CopyTo(values, 0);
            return values;
        }
示例#5
0
        /// <summary>
        /// Display the specific histogram
        /// </summary>
        /// <param name="hist">The 1 dimension histogram to be displayed</param>
        /// <param name="title">The name of the histogram</param>
        public static void Show(DenseHistogram hist, string title)
        {
            HistogramViewer viewer = new HistogramViewer();
             if (hist.Dimension == 1)
            viewer.HistogramCtrl.AddHistogram(title, Color.Black, hist);

             viewer.HistogramCtrl.Refresh();
             viewer.Show();
        }
示例#6
0
        // Returns a histogram for each bgr channel
        private DenseHistogram[] CreateHistogram(Image<Bgr, Byte> img, int buckets)
        {
            DenseHistogram BlueHisto = new DenseHistogram(buckets, new RangeF(0, buckets - 1));
            DenseHistogram GreenHisto = new DenseHistogram(buckets, new RangeF(0, buckets - 1));
            DenseHistogram RedHisto = new DenseHistogram(buckets, new RangeF(0, buckets - 1));

            Image<Gray, Byte> img2Blue = img[0];
            Image<Gray, Byte> img2Green = img[1];
            Image<Gray, Byte> img2Red = img[2];

            BlueHisto.Calculate(new Image<Gray, Byte>[] { img2Blue }, true, null);
            GreenHisto.Calculate(new Image<Gray, Byte>[] { img2Green }, true, null);
            RedHisto.Calculate(new Image<Gray, Byte>[] { img2Red }, true, null);
            //Histo.MatND.ManagedArray

            return new DenseHistogram[] { BlueHisto, GreenHisto, RedHisto };
        }
示例#7
0
        private float[][] ArrayHistogram(DenseHistogram[] histo, int buckets)
        {
            float[] BlueHisto;
            float[] GreenHisto;
            float[] RedHisto;

            BlueHisto = new float[buckets];
            histo[0].MatND.ManagedArray.CopyTo(BlueHisto, 0);

            GreenHisto = new float[buckets];
            histo[1].MatND.ManagedArray.CopyTo(GreenHisto, 0);

            RedHisto = new float[buckets];
            histo[2].MatND.ManagedArray.CopyTo(RedHisto, 0);

            return new float[][] { BlueHisto, GreenHisto, RedHisto };
        }
        public ObjectTracking(Image<Bgr, Byte> image, Rectangle ROI)
        {
            // Initialize parameters
            trackbox = new MCvBox2D();
            trackcomp = new MCvConnectedComp();
            hue = new Image<Gray, byte>(image.Width, image.Height);
            hue._EqualizeHist();
            mask = new Image<Gray, byte>(image.Width, image.Height);
            hist = new DenseHistogram(30, new RangeF(0, 180));
            backproject = new Image<Gray, byte>(image.Width, image.Height);

            // Assign Object's ROI from source image.
            trackingWindow = ROI;

            // Producing Object's hist
            CalObjectHist(image);
        }
示例#9
0
        public Picture Histogram()
        {
            var chans = 3;
            var bins = 256;
            var range = new RangeF(0, 255);
            var hist = new DenseHistogram(bins, range);
            var split = this.bgra.Split();
            var colors = new Bgra[]
            {
                new Bgra(255, 0, 0, 255),
                new Bgra(0, 255, 0, 255),
                new Bgra(0, 0, 255, 255),
            };

            var hip = new Picture(bins * chans, bins + 1); // Todo, plus one Jaap, really? Tssssk... wrote Jaap to himself.
            hip.Bgra.SetValue(Color.Black.ToBgra());

            for (int chan = 0; chan < chans; ++chan)
            {
                hist.Calculate<byte>(new Image<Gray, byte>[] { split[chan] }, false, null);

                // Todo, Jaap, December 2010, hist.Normalize(bins - 1);
                float min, max;
                int[] minLoc, maxLoc;
                hist.MinMax(out min, out max, out minLoc, out maxLoc);
                if (max == min)
                    continue;

                var scale = 255.0f / (max - min);

                for (int x = 0; x < bins; ++x)
                {
                    var n = hip.Height - (int)(hist[x] * scale);
                    for (int y = hip.Height - 1; y > n; --y)
                        hip.Bgra[y, x + chan * bins] = colors[chan];
                }
            }

            foreach (var c in split)
                c.Dispose();

            return hip;
        }
        static void Main(string[] args)
        {
            Console.WriteLine("test1");
            imgTemplate = new Image<Gray, byte>("..\\..\\Include\\IMG\\testDetectionBlanc\\1MZoneT2.tif");
            Console.WriteLine("test2");
            img = new Image<Gray, byte>("..\\..\\Include\\IMG\\testDetectionBlanc\\1ZoneT2.tif");
            Console.WriteLine("test3");
            /*HistogramViewer.Show(imgTemplate);
            HistogramViewer.Show(img);*/
            imgTemplate = new ImageModification().convertionBinaire(imgTemplate);
            img = new ImageModification().convertionBinaire(img);
            // Create and initialize histogram
            DenseHistogram hist1 = new DenseHistogram(256, new RangeF(0.0f, 255.0f));
            // Histogram Computing
            hist1.Calculate<Byte>(new Image<Gray, byte>[] { img }, true, null);
            //hist1.
            // Create and initialize histogram
            DenseHistogram hist2 = new DenseHistogram(256, new RangeF(0.0f, 255.0f));
            // Histogram Computing
            hist2.Calculate<Byte>(new Image<Gray, byte>[] { imgTemplate }, true, null);

            Double result = Emgu.CV.CvInvoke.CompareHist(hist1, hist2, HistogramCompMethod.Correl);
            Console.WriteLine("Correlation : "+result);
            result = Emgu.CV.CvInvoke.CompareHist(hist1, hist2, HistogramCompMethod.Chisqr);
            Console.WriteLine("Chi-Square  : " + result);
            result = Emgu.CV.CvInvoke.CompareHist(hist1, hist2, HistogramCompMethod.Intersect);
            Console.WriteLine("Intersection : " + result);
            result = Emgu.CV.CvInvoke.CompareHist(hist1, hist2, HistogramCompMethod.Bhattacharyya);
            Console.WriteLine("Bhattacharyya distance  : " + result);
            result = Emgu.CV.CvInvoke.CompareHist(hist1, hist2, HistogramCompMethod.Hellinger);
            Console.WriteLine("Synonym for Bhattacharyya  : " + result);
            result = Emgu.CV.CvInvoke.CompareHist(hist1, hist2, HistogramCompMethod.ChisqrAlt);
            Console.WriteLine("Alternative Chi-Square  : " + result);

            Console.WriteLine(img.Rows + " " + img.Cols);
            double blackPixelImg = (img.Rows * img.Cols) - img.CountNonzero()[0];
            double blackPixelImgTemplate = (imgTemplate.Rows * imgTemplate.Cols) - imgTemplate.CountNonzero()[0];
            double resultat = blackPixelImgTemplate / blackPixelImg;
            Console.WriteLine(resultat);

            Console.ReadKey();
        }
示例#11
0
      public void TestDenseHistogram()
      {
         Image<Gray, Byte> img = new Image<Gray, byte>(400, 400);
         img.SetRandUniform(new MCvScalar(), new MCvScalar(255));
         DenseHistogram hist = new DenseHistogram(256, new RangeF(0.0f, 255.0f));
         hist.Calculate<Byte>(new Image<Gray, byte>[] { img }, true, null);
         float[] binValues = hist.GetBinValues();
         /*
         using (MemoryStream ms = new MemoryStream())
         {
            System.Runtime.Serialization.Formatters.Binary.BinaryFormatter
            formatter = new System.Runtime.Serialization.Formatters.Binary.BinaryFormatter();
            formatter.Serialize(ms, hist);
            Byte[] bytes = ms.GetBuffer();

            using (MemoryStream ms2 = new MemoryStream(bytes))
            {
               Object o = formatter.Deserialize(ms2);
               DenseHistogram hist2 = (DenseHistogram)o;
               EmguAssert.IsTrue(hist.Equals(hist2));
            }
         }*/
      }
示例#12
0
        // Compares histogram over each possible rectangular patch of the specified size in the input images, and stores the results to the output map dst.
        // Destination back projection image of the same type as the source images
        public static Image <Gray, Single> BackProjectPatch <TDepth>(Image <Gray, TDepth>[] srcs, Size patchSize, DenseHistogram hist, HISTOGRAM_COMP_METHOD method, double factor) where TDepth : new()
        {
            Debug.Assert(srcs.Length == hist.Dimension, "The number of the source image and the dimension of the histogram must be the same.");

            IntPtr[] imgPtrs =
                Array.ConvertAll <Image <Gray, TDepth>, IntPtr>(
                    srcs,
                    delegate(Image <Gray, TDepth> img) { return(img.Ptr); });
            Size size = srcs[0].Size;

            size.Width  = size.Width - patchSize.Width + 1;
            size.Height = size.Height - patchSize.Height + 1;
            Image <Gray, Single> res = new Image <Gray, float>(size);

            CvInvoke.cvCalcBackProjectPatch(imgPtrs, res.Ptr, patchSize, hist.Ptr, method, factor);
            return(res);
        }
示例#13
0
 private void DrawHist2D(Image<Gray, byte> dst, DenseHistogram hist)
 {
     int pw = (int)(dst.Width / hist.BinDimension[0].Size);
     int ph = (int)(dst.Height / hist.BinDimension[1].Size);
     float min, max;
     int[] tmp1, tmp2;
     hist.MinMax(out min, out max, out tmp1, out tmp2); 
     for (int ix = 0; ix < hist.BinDimension[0].Size; ix++ )
     {
         for (int iy = 0; iy < hist.BinDimension[1].Size; iy ++)
         {
             double intensity = hist[ix, iy] * 255 / max;
             dst.Draw(new Rectangle(ix * pw, iy * ph, pw, ph), new Gray(intensity), -1);
         }
     }
 }
示例#14
0
 public Form1()
 {
     InitializeComponent();
     DenseHistogram h = new DenseHistogram(5, new RangeF(0, 255));
     ContourPoints = new Point[SEGMENTS];
 }
示例#15
0
        /// <summary>
        /// works out hsv histogram of image and give us back an arrays for Hue, saturation, and value
        /// </summary>
        /// <param name="src">
        /// source image we want to get the historgram of
        /// </param>
        /// <returns>
        /// returns 2d array for hue sat and val
        /// </returns>
        protected float[][] HsvValueFloatArray(Image<Bgr, Byte> src)
        {
            var HsvList = new List<float[]>();

            float[] HueHist;
            float[] SatHist;
            float[] ValHist;

            HueHist = new float[256];
            SatHist = new float[256];
            ValHist = new float[256];

            DenseHistogram HistoHue = new DenseHistogram(256, new RangeF(0, 256));
            DenseHistogram HistoSat = new DenseHistogram(256, new RangeF(0, 256));
            DenseHistogram HistoVal = new DenseHistogram(256, new RangeF(0, 256));

            Image<Hsv, Byte> hsvColor = src.Convert<Hsv, Byte>();
            Image<Gray, Byte> Comparedimg2Hsv = hsvColor[0];
            Image<Gray, Byte> Comparedimg2Sat = hsvColor[1];
            Image<Gray, Byte> Comparedimg2Val = hsvColor[2];

            HistoHue.Calculate(new Image<Gray, Byte>[] { Comparedimg2Hsv }, true, null);
            HistoSat.Calculate(new Image<Gray, Byte>[] { Comparedimg2Sat }, true, null);
            HistoVal.Calculate(new Image<Gray, Byte>[] { Comparedimg2Val }, true, null);

            //HistoVal.Calculate(

            HistoHue.MatND.ManagedArray.CopyTo(HueHist, 0);
            HistoSat.MatND.ManagedArray.CopyTo(SatHist, 0);
            HistoVal.MatND.ManagedArray.CopyTo(ValHist, 0);

            HsvList.Add(HueHist);
            HsvList.Add(SatHist);
            HsvList.Add(ValHist);

            return HsvList.ToArray();
        }
示例#16
0
        //histogram match
        static bool HistogramMatch(Mat frame1, Mat frame2)
        {
            //convert frames to HSV color space
            Mat frame1_hist = new Mat();
            Mat frame2_hist = new Mat();


            CvInvoke.CvtColor(frame1, frame1_hist, ColorConversion.Bgr2Gray);
            CvInvoke.CvtColor(frame2, frame2_hist, ColorConversion.Bgr2Gray);

            //set histogram parameters
            int h_bins = 50; int s_bins = 60;

            int[] histSize = { h_bins, s_bins };       //int histSize[] = { h_bins, s_bins };

            float[] h_ranges = { 0, 180 };
            float[] s_ranges = { 0, 256 };


            //const float[] ranges = { h_ranges, s_ranges };
            float[][] ranges = { h_ranges };



            //GrayHist = new float[256];
            //       Image<Gray, Byte> img_gray = new Image<Gray, byte>(frame1_hist.Rows, frame1_hist.Cols);
            //       frame1_hist.CopyTo(img_gray, null);
            //       DenseHistogram hist = new DenseHistogram(256, new RangeF(0, 256));
            //       hist.Calculate(new Image<Gray, Byte>[] { img_gray }, true, null);
            //hist.Calculate(new Image<Gray, Byte>[] { frame1_hist.ToImage<Gray, Byte>() }, true, null);



            //try each...
            //frame1_hist.ToImage<Gray, Byte>().MIplImage()
            //frame1_hist.ToImage<Gray, Byte>
            //frame1_hist.ToImage<Gray, Byte>().To
            //imencode: ``imdecode`` and ``imencode`` to read and write image from/to memory rather than a file.


            Image <Gray, float> img_temp = frame1_hist.ToImage <Gray, float>();
            Matrix <float>      img      = new Matrix <float>(img_temp.Width, img_temp.Height);

            //img_temp.CopyTo(img);
            CvInvoke.cvCopy(img_temp, img, new IntPtr());

            DenseHistogram hist = new DenseHistogram(256, new RangeF(0, 256));

            hist.Calculate(new Matrix <float>[] { img }, true, null);


            // Create a grayscale image
            //Image<Gray, Byte> img = new Image<Gray, byte>(400, 400);

            // Fill image with random values
            //img.SetRandUniform(new MCvScalar(), new MCvScalar(255));

            // Create and initialize histogram
            //DenseHistogram hist = new DenseHistogram(256, new RangeF(0.0f, 255.0f));

            // Histogram Computing
            //hist.Calculate<Byte>(new Image<Gray, byte>[] { img }, true, null);



            //CvArray<byte> aaa = null;
            //frame1_hist.CopyTo(aaa, null);


            //Image<Gray, Byte> temp_img = new Image<Gray, byte>(frame1_hist.Rows, frame1_hist.Cols, 1, frame1_hist);
            //frame1_hist.CopyTo(temp_img, null);

            //hist.Calculate<Byte>(new Image<Gray, byte>[] { temp_img }, true, null);



            //int[] channels = { 0, 1 };								//Use the o-th and 1-st channels

            ////calculate and normalize histograms
            ////MatND frame1_norm;
            ////MatND frame2_norm;

            //MatND<double> frame1_norm;
            //MatND<double> frame2_norm;


            //CvInvoke.CalcHist(frame1_hist, channels, null, frame1_norm, histSize, ranges, false);
            //CvInvoke.Normalize(frame1_norm, frame1_norm, 0, 1, NormType.MinMax, DepthType.Default, null);

            //CvInvoke.CalcHist(frame2_hist, channels, null, frame2_norm, histSize, ranges, false);
            //CvInvoke.Normalize(frame2_norm, frame2_norm, 0, 1, NormType.MinMax, DepthType.Default, null);

            //double result = CvInvoke.CompareHist(frame1_norm, frame2_norm, 0);		//Correlation comparion

            //float thresh_min = 0.2f;		//get unique keyframes
            //float thresh_max = 0.997f;	    //good for fast moving objects in video
            //if (result < thresh_min)
            //    return false;			    //not a match: likely different scenes

            return(true);
        }
 public static bool SaveHistogram(string name, string folderExt, string fileNameExt, DenseHistogram hist, ILogger logger)
 {
     try
     {
         float[] Hist = hist.GetBinValues();
         Save1DArrayToCsv <float>(name, folderExt, fileNameExt, ".csv", Hist, logger);
         return(true);
     }
     catch (Exception ex)
     {
         logger?.ErrorLog($"Exception occured: {ex}", ClassName);
         return(false);
     }
 }
示例#18
0
        public List<Bitmap> histogramSearch(List<Bitmap> images, Bitmap ori_image)
        {
            float[] BlueHist;
            float[] GreenHist;
            float[] RedHist;

            float[] base_BlueHist;
            float[] base_GreenHist;
            float[] base_RedHist;

            histoImageList.Clear();

            Image<Bgr, byte> base_img = new Image<Bgr, byte>(ori_image);
            DenseHistogram blue_Histo = new DenseHistogram(255, new RangeF(0, 255));
            DenseHistogram green_Histo = new DenseHistogram(255, new RangeF(0, 255));
            DenseHistogram red_Histo = new DenseHistogram(255, new RangeF(0, 255));

            Image<Gray, Byte> base_img2Blue = base_img[0];
            Image<Gray, Byte> base_img2Green = base_img[1];
            Image<Gray, Byte> base_img2Red = base_img[2];

            blue_Histo.Calculate(new Image<Gray, Byte>[] { base_img2Blue }, true, null);

            green_Histo.Calculate(new Image<Gray, Byte>[] { base_img2Green }, true, null);

            red_Histo.Calculate(new Image<Gray, Byte>[] { base_img2Red }, true, null);

            for (int i = 0; i < images.Count; i++)
            {
                Image<Bgr, byte> img = new Image<Bgr, byte>(images[i]);

                DenseHistogram blue_CompareHisto = new DenseHistogram(255, new RangeF(0, 255));
                DenseHistogram green_CompareHisto = new DenseHistogram(255, new RangeF(0, 255));
                DenseHistogram red_CompareHisto = new DenseHistogram(255, new RangeF(0, 255));

                Image<Gray, Byte> img2Blue = img[0];
                Image<Gray, Byte> img2Green = img[1];
                Image<Gray, Byte> img2Red = img[2];

                blue_CompareHisto.Calculate(new Image<Gray, Byte>[] { img2Blue }, true, null);

                BlueHist = new float[256];
                blue_CompareHisto.MatND.ManagedArray.CopyTo(BlueHist, 0);

                green_CompareHisto.Calculate(new Image<Gray, Byte>[] { img2Green }, true, null);

                GreenHist = new float[256];
                green_CompareHisto.MatND.ManagedArray.CopyTo(GreenHist, 0);

                red_CompareHisto.Calculate(new Image<Gray, Byte>[] { img2Red }, true, null);

                RedHist = new float[256];
                red_CompareHisto.MatND.ManagedArray.CopyTo(RedHist, 0);

                double cBlue = CvInvoke.cvCompareHist(blue_Histo, blue_CompareHisto, Emgu.CV.CvEnum.HISTOGRAM_COMP_METHOD.CV_COMP_CORREL);
                double cGreen = CvInvoke.cvCompareHist(green_Histo, green_CompareHisto, Emgu.CV.CvEnum.HISTOGRAM_COMP_METHOD.CV_COMP_CORREL);
                double cRed = CvInvoke.cvCompareHist(red_Histo, red_CompareHisto, Emgu.CV.CvEnum.HISTOGRAM_COMP_METHOD.CV_COMP_CORREL);

                double cBlue_ratio = (cBlue / 1.00) * 100;
                double cRed_ratio = (cRed / 1.00) * 100;
                double cGreen_ratio = (cGreen / 1.00) * 100;

                if (cBlue_ratio > 55 || cRed_ratio > 55 || cGreen_ratio > 55)
                {
                    Image<Bgr, byte> resizedImage = img.Resize(300, 300, Emgu.CV.CvEnum.INTER.CV_INTER_LINEAR);
                    histoImageList.Add(resizedImage.ToBitmap());
                }

            }

            Image<Bgr, byte> base_resizedImage = base_img.Resize(300, 300, Emgu.CV.CvEnum.INTER.CV_INTER_LINEAR);
            histoImageList.Add(base_resizedImage.ToBitmap());
            return histoImageList;
        }
示例#19
0
        public override bool Execute(DenseHistogram inputHistogram, out float minPos)
        {
            minPos = 0;

            if (!IsInitialized)
            {
                Logger?.InfoLog("It is not initialized yet.", ClassName);
                return(false);
            }

            if (inputHistogram == null)
            {
                Logger.TraceLog("InputHistogramm is null!", ClassName);
                return(false);
            }

            Hist = inputHistogram.GetBinValues();

            try
            {
                float[,] mean      = new float[4096, 2];
                float[,] deviation = new float[4096, 2];
                float[,] num       = new float[256, 2];
                float min = 100000;
                for (int nt = 5; nt < 256 - 5; nt++)
                {
                    for (int n = 0; n < 256; n++)
                    {
                        if (n < nt)
                        {
                            num[nt, 0]       += Hist[n];
                            mean[nt, 0]      += n * Hist[n];
                            deviation[nt, 0] += n * n * Hist[n];
                        }
                        else
                        {
                            num[nt, 1]       += Hist[n];
                            mean[nt, 1]      += n * Hist[n];
                            deviation[nt, 1] += n * n * Hist[n];
                        }
                    }
                    mean[nt, 0]      = mean[nt, 0] / num[nt, 0];
                    deviation[nt, 0] = (float)Math.Sqrt(deviation[nt, 0] / num[nt, 0] - mean[nt, 0] * mean[nt, 0]);
                    mean[nt, 1]      = mean[nt, 1] / num[nt, 1];
                    deviation[nt, 1] = (float)Math.Sqrt(deviation[nt, 1] / num[nt, 1] - mean[nt, 1] * mean[nt, 1]);

                    if (min > deviation[nt, 0] + deviation[nt, 1])
                    {
                        min    = deviation[nt, 0] + deviation[nt, 1];
                        minPos = nt;
                    }
                }

                return(true);
            }
            catch (Exception ex)
            {
                Logger?.ErrorLog($"Exception occured: {ex}", ClassName);
                return(false);
            }
        }
示例#20
0
        //Method to recalculate and redisplay the histogram
        private void showHistogram()
        {
            //create the histogram
            histogram = new DenseHistogram(16, new RangeF(0, 255));
            //Clear out an old histogram, if one exists
            //If this is not done, histogram calculated on ROI
            histogramBox1.ClearHistogram();
            histogramBox1.Refresh();

            //Clear the ROI, if one exists
            (imageBox1.Image as Image<Bgr, byte> ).ROI = Rectangle.Empty;
            histogramBox1.GenerateHistograms( imageBox1.Image, 256);
            histogramBox1.Refresh();
        }
示例#21
0
        public BasicInfo(ref Image <Rgba, byte> input)
        {
            table = new ImgDB.BasicInfoDataTable();

            int    nBins  = 256;
            RangeF range1 = new RangeF(0, 255);

            DenseHistogram hist = new DenseHistogram(nBins, range1);

            Image <Gray, byte>[] isg = input.Split();

            histogramsRgba = new List <float[]>();
            averagesRgba   = new List <Gray>();
            sdsRgba        = new List <MCvScalar>();


            for (short i = 0; i < isg.Count(); i++)
            {
                hist.Calculate(new Image <Gray, byte>[] { isg[i] }, false, null);
                float[] values = hist.GetBinValues();
                histogramsRgba.Add(values);

                Gray      gr = new Gray();
                MCvScalar sd = new MCvScalar();
                isg[i].AvgSdv(out gr, out sd);

                averagesRgba.Add(gr);
                sdsRgba.Add(sd);


                ImgDB.BasicInfoRow row = table.NewBasicInfoRow();
                row.Avg       = gr.Intensity;
                row.Histogram = values;
                row.SD        = sd.V0;
                row.Channel   = i;
                if (i == 0)
                {
                    row.ChannelName = "Red";
                }
                else if (i == 1)
                {
                    row.ChannelName = "Green";
                }
                else if (i == 2)
                {
                    row.ChannelName = "Blue";
                }
                else if (i == 3)
                {
                    row.ChannelName = "Alpha";
                }

                table.AddBasicInfoRow(row);
            }


            //factores
            float rF = 1;
            float gF = 1;
            float bF = 1;
            float AF = 1;

            ImgDB.BasicInfoRow red   = table.FirstOrDefault(o => o.Channel == 0);
            ImgDB.BasicInfoRow green = table.FirstOrDefault(o => o.Channel == 1);
            ImgDB.BasicInfoRow blue  = table.FirstOrDefault(o => o.Channel == 2);
            ImgDB.BasicInfoRow alpha = table.FirstOrDefault(o => o.Channel == 3);
            float sum = (float)(red.Avg + green.Avg + blue.Avg + alpha.Avg);

            sum /= 4;

            rF           = (float)(sum / red.Avg);
            gF           = (float)(sum / green.Avg);
            bF           = (float)(sum / blue.Avg);
            AF           = (float)(sum / alpha.Avg);
            red.Factor   = rF;
            green.Factor = gF;
            blue.Factor  = bF;
            alpha.Factor = AF;
        }
        void histoG(Image <Gray, byte> img, Image <Bgr, byte> img2, ref float meangray, ref float meanR, ref float meanG, ref float meanB)
        {
            DenseHistogram Histo      = new DenseHistogram(256, new RangeF(0, 255));
            DenseHistogram Histo_temp = new DenseHistogram(256, new RangeF(0, 255));

            float[,] colorHist = new float[3, 256];
            float[] tempHist = new float[256];
            float[] grayHist = new float[256];
            Histo.Calculate(new Image <Gray, byte>[] { img },
                            true,
                            null);
            Image <Gray, Byte>[] images = img2.Split();
            Histo_temp.Calculate(new Image <Gray, byte>[] { images[0] },
                                 true,
                                 null);
            Histo_temp.MatND.ManagedArray.CopyTo(tempHist, 0);
            for (int m = 0; m < 256; m++)
            {
                colorHist[0, m] = tempHist[m];
            }

            Histo_temp.Calculate(new Image <Gray, byte>[] { images[1] },
                                 true,
                                 null);
            Histo_temp.MatND.ManagedArray.CopyTo(tempHist, 0);
            for (int m = 0; m < 256; m++)
            {
                colorHist[1, m] = tempHist[m];
            }

            Histo_temp.Calculate(new Image <Gray, byte>[] { images[2] },
                                 true,
                                 null);
            Histo_temp.MatND.ManagedArray.CopyTo(tempHist, 0);
            for (int m = 0; m < 256; m++)
            {
                colorHist[2, m] = tempHist[m];
            }

            Histo.MatND.ManagedArray.CopyTo(grayHist, 0);

//            HistogramViewer.Show(Histo, "histo");
//            HistogramViewer.Show(img2, 256);
            meangray = 0;
            meanR    = 0;
            meanG    = 0;
            meanB    = 0;
            int totalgray = 0, totalR = 0, totalG = 0, totalB = 0;

            for (int m = 0; m < 255; m++)
            {
                meangray  = meangray + grayHist[m] * m;
                totalgray = totalgray + (int)grayHist[m];
                meanB     = meanB + colorHist[0, m] * m;
                totalB    = totalB + (int)colorHist[0, m];
                meanG     = meanG + colorHist[1, m] * m;
                totalG    = totalG + (int)colorHist[1, m];
                meanR     = meanR + colorHist[2, m] * m;
                totalR    = totalR + (int)colorHist[2, m];
            }
            meangray          = meangray / totalgray;
            meanB             = meanB / totalB;
            meanG             = meanG / totalG;
            meanR             = meanR / totalR;
            richTextBox3.Text = "MGray:" + meangray + "\nMG:" + meanG + "\nMB:" + meanB + "\nMR:" + meanR;
        }
示例#23
0
文件: Form1.cs 项目: tuxoko/camfight
        public Form1()
        {
            InitializeComponent();
            SetAnimation();
            //ConnectToServer();
            //gamestate = GameState.GAME;
            myTimer.Tick += new EventHandler(GameDraw);
            myTimer.Interval = 25;
            myTimer.Start();
            controlTimer.Tick += new EventHandler(GameControlReset);
            controlTimer.Interval = 500;
            myplayerTimer.Tick += new EventHandler(PlayerStateReset);
            myplayerTimer.Interval = 5000;
            FPU = new FrameProcessor();
            FPU.Reset();

            IFormatter formatter = new BinaryFormatter();
            FileStream fs = new FileStream("../../hist.dat", FileMode.Open);
            HistSerial hs = (HistSerial)formatter.Deserialize(fs);
            hist = hs.hist;
            FPU.SetHist(hist);
        }
示例#24
0
    public void ProcessFrame(Image<Bgr, Byte> frame)
    {
        sw.Reset();
        sw.Start();
        MCvAvgComp[] faces = FaceDetect(frame);
        sw.Stop();
        t_facedetect = sw.ElapsedMilliseconds;

        sw.Reset();
        sw.Start();
        Image<Hsv, Byte> hsv = frame.Convert<Hsv, Byte>();
        Image<Gray, Byte> hue = new Image<Gray, byte>(frame.Width, frame.Height);
        Image<Gray, Byte> mask = new Image<Gray, byte>(frame.Width, frame.Height);
        Emgu.CV.CvInvoke.cvInRangeS(hsv, new MCvScalar(0, 30, 30, 0), new MCvScalar(180, 256, 256, 0), mask);
        Emgu.CV.CvInvoke.cvSplit(hsv, hue, IntPtr.Zero, IntPtr.Zero, IntPtr.Zero);

        if (isTracked == false)
        {
            if (faces.Length != 0)
            {
                var ff = faces[0];
                Rectangle smallFaceROI = new Rectangle(ff.rect.X + ff.rect.Width / 8, ff.rect.Y + ff.rect.Height / 8, ff.rect.Width / 4, ff.rect.Height / 4);
                _hist = GetHist(hue, smallFaceROI, mask);
                isTracked=true;
                th_check = true;
                center = new Point[] { new Point(0, 0), new Point(0, 0) };
            }
            else
            {
                have_face=false;
                have_left=false;
                have_right=false;
                return;
            }
        }
        sw.Stop();
        t_hue = sw.ElapsedMilliseconds;

        if (faces.Length != 0)
        {
            face_rect = faces[0].rect;
            face = face_rect;
            have_face = true;
        }
        else
        {
            face = face_rect;
            have_face = false;
        }

        sw.Reset();
        sw.Start();
        backproject = GetBackproject(hue, _hist, mask, face_rect).ThresholdToZero(new Gray(backproj_threshold));
        sw.Stop();
        t_backproject = sw.ElapsedMilliseconds;

        sw.Reset();
        sw.Start();

        if (isTracked)
        {
            center = kmeans(center, backproject, face_rect, kmeans_scale);
            center = refine_center(center, backproject);
        }
        sw.Stop();
        t_kmeans = sw.ElapsedMilliseconds;

        sw.Reset();
        sw.Start();
        right = new Rectangle(center[0].X - hand_size / 2, center[0].Y - hand_size / 2, hand_size, hand_size);
        left = new Rectangle(center[1].X - hand_size / 2, center[1].Y - hand_size / 2, hand_size, hand_size);
        backproject.ROI = left;
        left_mom=backproject.GetMoments(false);
        backproject.ROI = right;
        right_mom = backproject.GetMoments(false);
        Emgu.CV.CvInvoke.cvResetImageROI(backproject);

        sw.Stop();
        t_hand = sw.ElapsedMilliseconds;

        ProcessInput();
    }
示例#25
0
    private DenseHistogram GetHist(Image<Gray, Byte> hue, Rectangle ROI, Image<Gray, Byte> mask)
    {
        DenseHistogram hist=new DenseHistogram(16,new RangeF(0,180));

        Emgu.CV.CvInvoke.cvSetImageROI(hue, ROI);
        Emgu.CV.CvInvoke.cvSetImageROI(mask, ROI);

        IntPtr[] imgs = new IntPtr[1] { hue };

        Emgu.CV.CvInvoke.cvCalcHist(imgs, hist, false, mask);

        Emgu.CV.CvInvoke.cvResetImageROI(hue);
        Emgu.CV.CvInvoke.cvResetImageROI(mask);

        return hist;
    }
示例#26
0
        public List <Bitmap> histogramSearch(List <Bitmap> images, Bitmap ori_image)
        {
            float[] BlueHist;
            float[] GreenHist;
            float[] RedHist;

            float[] base_BlueHist;
            float[] base_GreenHist;
            float[] base_RedHist;

            histoImageList.Clear();

            Image <Bgr, byte> base_img    = new Image <Bgr, byte>(ori_image);
            DenseHistogram    blue_Histo  = new DenseHistogram(255, new RangeF(0, 255));
            DenseHistogram    green_Histo = new DenseHistogram(255, new RangeF(0, 255));
            DenseHistogram    red_Histo   = new DenseHistogram(255, new RangeF(0, 255));

            Image <Gray, Byte> base_img2Blue  = base_img[0];
            Image <Gray, Byte> base_img2Green = base_img[1];
            Image <Gray, Byte> base_img2Red   = base_img[2];



            blue_Histo.Calculate(new Image <Gray, Byte>[] { base_img2Blue }, true, null);


            green_Histo.Calculate(new Image <Gray, Byte>[] { base_img2Green }, true, null);


            red_Histo.Calculate(new Image <Gray, Byte>[] { base_img2Red }, true, null);



            for (int i = 0; i < images.Count; i++)
            {
                Image <Bgr, byte> img = new Image <Bgr, byte>(images[i]);

                DenseHistogram blue_CompareHisto  = new DenseHistogram(255, new RangeF(0, 255));
                DenseHistogram green_CompareHisto = new DenseHistogram(255, new RangeF(0, 255));
                DenseHistogram red_CompareHisto   = new DenseHistogram(255, new RangeF(0, 255));

                Image <Gray, Byte> img2Blue  = img[0];
                Image <Gray, Byte> img2Green = img[1];
                Image <Gray, Byte> img2Red   = img[2];

                blue_CompareHisto.Calculate(new Image <Gray, Byte>[] { img2Blue }, true, null);



                BlueHist = new float[256];
                blue_CompareHisto.MatND.ManagedArray.CopyTo(BlueHist, 0);

                green_CompareHisto.Calculate(new Image <Gray, Byte>[] { img2Green }, true, null);


                GreenHist = new float[256];
                green_CompareHisto.MatND.ManagedArray.CopyTo(GreenHist, 0);

                red_CompareHisto.Calculate(new Image <Gray, Byte>[] { img2Red }, true, null);

                RedHist = new float[256];
                red_CompareHisto.MatND.ManagedArray.CopyTo(RedHist, 0);

                double cBlue  = CvInvoke.cvCompareHist(blue_Histo, blue_CompareHisto, Emgu.CV.CvEnum.HISTOGRAM_COMP_METHOD.CV_COMP_CORREL);
                double cGreen = CvInvoke.cvCompareHist(green_Histo, green_CompareHisto, Emgu.CV.CvEnum.HISTOGRAM_COMP_METHOD.CV_COMP_CORREL);
                double cRed   = CvInvoke.cvCompareHist(red_Histo, red_CompareHisto, Emgu.CV.CvEnum.HISTOGRAM_COMP_METHOD.CV_COMP_CORREL);

                double cBlue_ratio  = (cBlue / 1.00) * 100;
                double cRed_ratio   = (cRed / 1.00) * 100;
                double cGreen_ratio = (cGreen / 1.00) * 100;

                if (cBlue_ratio > 55 || cRed_ratio > 55 || cGreen_ratio > 55)
                {
                    Image <Bgr, byte> resizedImage = img.Resize(300, 300, Emgu.CV.CvEnum.INTER.CV_INTER_LINEAR);
                    histoImageList.Add(resizedImage.ToBitmap());
                }
            }

            Image <Bgr, byte> base_resizedImage = base_img.Resize(300, 300, Emgu.CV.CvEnum.INTER.CV_INTER_LINEAR);

            histoImageList.Add(base_resizedImage.ToBitmap());
            return(histoImageList);
        }
        private void Model_Click(object sender, EventArgs e)
        {
            //### set currImage which has been used for taking model as modelImage
            modelImg = currImage[0];

            //### Background Subtraction ~ currImage is subtracted with the bgImage and the result is stored in finalBlobImg.
            bgSubtraction(currImage[0], bgImage[0], ref finalBlobImg1, ref blobRect1);

            /* Allocate buffers */
            hsv         = new Image <Hsv, Byte>(w, h);
            hue         = new Image <Bgr, Byte>(w, h);
            mask        = new Image <Gray, Byte>(w, h);
            backproject = new Image <Bgr, Byte>(w, h);
            hist        = new DenseHistogram(hdims, hranges);//cvCreateHist(1, &hdims, CV_HIST_ARRAY, &hranges, 1);
            hsv         = modelImg.Convert <Hsv, Byte>();

            //extract the hue and value channels
            Image <Gray, Byte>[] channels = hsv.Split();                                         //split into components
            Image <Gray, Byte>[] imghue   = new Image <Gray, byte> [1]; imghue[0] = channels[0]; //hsv, so channels[0] is hue.
            Image <Gray, Byte>   imgval   = channels[2];                                         //hsv, so channels[2] is value.
            Image <Gray, Byte>   imgsat   = channels[1];                                         //hsv, so channels[1] is saturation.

            /**
             * Check if the pixels in hsv fall within a particular range.
             * H: 0 to 180
             * S: smin to 256
             * V: vmin to vmax
             * Store the result in variable: mask
             */
            Hsv hsv_lower = new Hsv(0, smin, Math.Min(vmin, vmax));
            Hsv hsv_upper = new Hsv(180, 256, Math.Max(vmin, vmax));

            mask = hsv.InRange(hsv_lower, hsv_upper);

            //setting ROI to images
            mask.ROI      = selection;
            imghue[0]     = imghue[0].And(finalBlobImg1.Erode(3));
            imghue[0].ROI = selection;

            /**
             * Calculate the histogram of selected region
             * Store the result in variable: hist
             */
            hist.Calculate(imghue, false, mask);

            /* Scale the histogram */
            float hMin, hMax;

            int[] minLoc;
            int[] maxLoc;
            hist.MinMax(out hMin, out hMax, out minLoc, out maxLoc);

            /* Reset ROI for hue and mask */
            CvInvoke.cvResetImageROI(imghue[0]);
            CvInvoke.cvResetImageROI(mask);

            /* Set tracking windows */
            track_window_mean1 = selection;
            //track_window_mean2 = selection;

            //### Update the pictureBoxes with mask and hsv images

            //pictureBox2.Image = mask.Bitmap;
            //pictureBox2.Image = finalBlobImg1.Bitmap;
            //pictureBox4.Image = finalBlobImg1.Bitmap;
            //pictureBox3.Image = imghue[0].Or(finalBlobImg1).Bitmap;

            Console.WriteLine("###Model Captured....");
            modelFlag = true;
        }
示例#28
0
        private void pictureList_SelectedIndexChanged(object sender, EventArgs e)
        {
            string zdjecie        = pictureList.SelectedItem.ToString();
            string pelnaSciezka   = SciezkaFolderZeZdjeciami + zdjecie;
            Image  image          = Image.FromFile(pelnaSciezka);
            var    histogramImage = new Image <Bgr, Byte>(pelnaSciezka);

            //var hsvImage = histogramImage.Convert<Hsv, Byte>();

            pictureBox.Image = image;
            //pictureBoxHSV.Image = hsvImage.Bitmap;

            //histogramBox.ClearHistogram();
            //histogramBox.GenerateHistograms(histogramImage, 256);
            //histogramBox.Refresh();

            //histogramBoxHSV.ClearHistogram();
            //histogramBoxHSV.GenerateHistograms(hsvImage, 256);
            //histogramBoxHSV.Refresh();

            #region oblicz wartosci histogramu

            float[] BlueHist;
            float[] GreenHist;
            float[] RedHist;

            var img = new Image <Bgr, byte>(pelnaSciezka);

            var Histo = new DenseHistogram(255, new RangeF(0, 255));

            Image <Gray, Byte> img2Blue  = img[0];
            Image <Gray, Byte> img2Green = img[1];
            Image <Gray, Byte> img2Red   = img[2];

            Histo.Calculate(new[] { img2Blue }, true, null);
            BlueHist = new float[256];
            Histo.MatND.ManagedArray.CopyTo(BlueHist, 0);

            Histo.Clear();

            Histo.Calculate(new[] { img2Green }, true, null);
            GreenHist = new float[256];
            Histo.MatND.ManagedArray.CopyTo(GreenHist, 0);

            Histo.Clear();

            Histo.Calculate(new[] { img2Red }, true, null);
            RedHist = new float[256];
            Histo.MatND.ManagedArray.CopyTo(RedHist, 0);

            #endregion

            #region narusyj histogram

            GraphPane mPane = zedGraph.GraphPane;

            mPane.Title.Text = "RGB";
            var czerwony  = new PointPairList();
            var zielony   = new PointPairList();
            var niebieski = new PointPairList();

            for (int i = 0; i < 255; i++)
            {
                czerwony.Add(i, RedHist[i]);
                zielony.Add(i, GreenHist[i]);
                niebieski.Add(i, BlueHist[i]);
            }

            mPane.CurveList.Clear();
            LineItem wykresR = mPane.AddCurve("R", czerwony, Color.Red, SymbolType.Default);
            LineItem wykresG = mPane.AddCurve("R", zielony, Color.Green, SymbolType.Default);
            LineItem wykresB = mPane.AddCurve("R", niebieski, Color.Blue, SymbolType.Default);

            zedGraph.AxisChange();
            zedGraph.Refresh();

            #endregion

            #region (uboga) kwantyzacja

            int   wielkoscPrzedialu = 4;
            int   aktualnaPozycjaR  = 0;
            int   aktualnaPozycjaG  = 0;
            int   aktualnaPozycjaB  = 0;
            float wartoscR          = 0;
            float wartoscG          = 0;
            float wartoscB          = 0;
            var   RedHistQ          = new float[RedHist.Length / wielkoscPrzedialu];
            var   GreenHistQ        = new float[GreenHist.Length / wielkoscPrzedialu];
            var   BlueHistQ         = new float[BlueHist.Length / wielkoscPrzedialu];


            for (int i = 0; i < RedHist.Length / wielkoscPrzedialu; i++)
            {
                for (int j = 0; j < wielkoscPrzedialu; j++)
                {
                    wartoscR += RedHist[aktualnaPozycjaR + j];
                }
                RedHistQ[i] = wartoscR;
                wartoscR    = 0;
                aktualnaPozycjaR++;
            }
            for (int i = 0; i < GreenHist.Length / wielkoscPrzedialu; i++)
            {
                for (int j = 0; j < wielkoscPrzedialu; j++)
                {
                    wartoscG += GreenHist[aktualnaPozycjaG + j];
                }
                GreenHistQ[i] = wartoscG;
                wartoscG      = 0;
                aktualnaPozycjaG++;
            }
            for (int i = 0; i < BlueHist.Length / wielkoscPrzedialu; i++)
            {
                for (int j = 0; j < wielkoscPrzedialu; j++)
                {
                    wartoscB += BlueHist[aktualnaPozycjaB + j];
                }
                BlueHistQ[i] = wartoscB;
                wartoscB     = 0;
                aktualnaPozycjaB++;
            }

            GraphPane mPane2 = zedGraphQ.GraphPane;

            mPane2.Title.Text = "RGB kwant.";
            var czerwonyQ  = new PointPairList();
            var zielonyQ   = new PointPairList();
            var niebieskiQ = new PointPairList();

            for (int i = 0; i < RedHistQ.Length; i++)
            {
                czerwonyQ.Add(i, RedHistQ[i]);
                zielonyQ.Add(i, GreenHistQ[i]);
                niebieskiQ.Add(i, BlueHistQ[i]);
            }

            mPane2.CurveList.Clear();
            LineItem wykresRQ = mPane2.AddCurve("R", czerwonyQ, Color.Red, SymbolType.Default);
            LineItem wykresGQ = mPane2.AddCurve("G", zielonyQ, Color.Green, SymbolType.Default);
            LineItem wykresBQ = mPane2.AddCurve("B", niebieskiQ, Color.Blue, SymbolType.Default);

            zedGraphQ.AxisChange();
            zedGraphQ.Refresh();

            #endregion
        }
示例#29
0
        /// <summary>
        /// 2D計算值方圖(色調與飽和度) ,使用emgucv提供的cvInvoke去調用opencv的函式
        /// </summary>
        private static DenseHistogram Cal2DHsvHist(IntPtr srcImage, int h_bins, int s_bins)
        {
            try
            {
                DenseHistogram histDense;
                int[]          hist_size = new int[2] {
                    h_bins, s_bins
                };
                IntPtr   hsv     = CvInvoke.cvCreateImage(CvInvoke.cvGetSize(srcImage), Emgu.CV.CvEnum.IPL_DEPTH.IPL_DEPTH_8U, 3);
                IntPtr   h_plane = CvInvoke.cvCreateImage(CvInvoke.cvGetSize(srcImage), Emgu.CV.CvEnum.IPL_DEPTH.IPL_DEPTH_8U, 1);
                IntPtr   s_plane = CvInvoke.cvCreateImage(CvInvoke.cvGetSize(srcImage), Emgu.CV.CvEnum.IPL_DEPTH.IPL_DEPTH_8U, 1);
                IntPtr   v_plane = CvInvoke.cvCreateImage(CvInvoke.cvGetSize(srcImage), Emgu.CV.CvEnum.IPL_DEPTH.IPL_DEPTH_8U, 1);
                IntPtr[] planes  = new IntPtr[2] {
                    h_plane, s_plane
                };

                /* H 分量的变化范围 */
                float[] h_ranges = new float[2] {
                    0, h_max_range
                };

                /* S 分量的变化范围*/
                float[] s_ranges = new float[2] {
                    0, s_max_range
                };
                IntPtr inPtr1 = new IntPtr(0);
                IntPtr inPtr2 = new IntPtr(0);

                //GCHandle:提供從Unmanaged 記憶體存取Managed 物件的方法。
                //配置指定型別的數值記憶體
                GCHandle gch1 = GCHandle.Alloc(h_ranges, GCHandleType.Pinned);
                GCHandle gch2 = GCHandle.Alloc(s_ranges, GCHandleType.Pinned);
                try
                {
                    inPtr1 = gch1.AddrOfPinnedObject();
                    inPtr2 = gch2.AddrOfPinnedObject();
                }
                finally
                {
                    gch1.Free();
                    gch2.Free();
                }
                //有上述的GCHandle,此行才有作用
                IntPtr[] ranges = new IntPtr[2] {
                    inPtr1, inPtr2
                };

                /* 输入图像转换到HSV颜色空间 */
                CvInvoke.cvCvtColor(srcImage, hsv, Emgu.CV.CvEnum.COLOR_CONVERSION.CV_BGR2HSV);
                CvInvoke.cvSplit(hsv, h_plane, s_plane, v_plane, System.IntPtr.Zero); // 分离的单通道数组d

                /* 创建直方图,二维, 每个维度上均分 */
                //emgucv的DenseHistogram資料格式也可使用cvInvoke的openCV函式
                RangeF hRange = new RangeF(0f, h_max_range);       //H色調分量的變化範圍
                RangeF sRange = new RangeF(0f, s_max_range);       //S飽和度分量的變化範圍
                histDense = new DenseHistogram(hist_size, new RangeF[] { hRange, sRange });
                CvInvoke.cvCalcHist(planes, histDense, false, System.IntPtr.Zero);
                return(histDense);
            }
            catch (Exception ex)
            {
                throw new InvalidOperationException(ex.Message);
            }
        }
示例#30
0
        /// <summary>
        /// Generate histograms for the image. One histogram is generated for each color channel.
        /// You will need to call the Refresh function to do the painting afterward.
        /// </summary>
        /// <param name="image">The image to generate histogram from</param>
        /// <param name="numberOfBins">The number of bins for each histogram</param>
        public void GenerateHistograms(IImage image, int numberOfBins)
        {
            IImage[] channels = image.Split();
             Type imageType = Toolbox.GetBaseType(image.GetType(), "Image`2");
             IColor typeOfColor = Activator.CreateInstance(imageType.GetGenericArguments()[0]) as IColor;
             String[] channelNames = Reflection.ReflectColorType.GetNamesOfChannels(typeOfColor);
             Color[] colors = Reflection.ReflectColorType.GetDisplayColorOfChannels(typeOfColor);

             float minVal, maxVal;
             #region Get the maximum and minimum color intensity values
             Type typeOfDepth = imageType.GetGenericArguments()[1];
             if (typeOfDepth == typeof(Byte))
             {
            minVal = 0.0f;
            maxVal = 256.0f;
             }
             else
             {
            #region obtain the maximum and minimum color value
            double[] minValues, maxValues;
            Point[] minLocations, maxLocations;
            image.MinMax(out minValues, out maxValues, out minLocations, out maxLocations);

            double min = minValues[0], max = maxValues[0];
            for (int i = 1; i < minValues.Length; i++)
            {
               if (minValues[i] < min) min = minValues[i];
               if (maxValues[i] > max) max = maxValues[i];
            }
            #endregion

            minVal = (float)min;
            maxVal = (float)max;
             }
             #endregion

             for (int i = 0; i < channels.Length; i++)
            using (DenseHistogram hist = new DenseHistogram(numberOfBins, new RangeF(minVal, maxVal)))
            {
               hist.Calculate(new IImage[1] { channels[i] }, true, null);
               AddHistogram(channelNames[i], colors[i], hist);
            }
        }
示例#31
0
        //////////////////////////////////////////////////////////////////////////////////////////////
        /// <summary>
        /// drawing hue color still have problem
        /// 1D值方圖(色調) 的繪製,使用emgucv提供的cvInvoke去調用opencv的函式
        /// 繪製與範例的值方圖一致目前先採用
        /// </summary>
        /// <param name="histDense"></param>
        /// <returns>回傳繪製值方圖的影像,直接顯示即可</returns>
        public static Image <Bgr, Byte> Generate1DHistogramImgForDraw(DenseHistogram histDense)
        {
            try
            {
                float max_value = 0.0f;
                int[] a1        = new int[100];
                int[] b1        = new int[100];
                float ax        = 0;
                int   h_bins    = histDense.BinDimension[0].Size;

                //1.使用Intptr
                // CvInvoke.cvGetMinMaxHistValue(histPtr, ref ax, ref max_value, a1, b1);

                //2.emgucv的DenseHistogram資料格式也可使用cvInvoke的openCV函式
                CvInvoke.cvGetMinMaxHistValue(histDense, ref ax, ref max_value, a1, b1);

                /* 取最大的顏色的位置 並換成RGB
                 * foreach (int index in a1)
                 * {
                 *  Console.WriteLine("location="+index+",H Color = "+ HueToBgr(index * 180.0d / h_bins));
                 * }
                 * */
                /* 设置直方图显示图像 */
                int    height   = 240;
                int    width    = 800;
                IntPtr hist_img = CvInvoke.cvCreateImage(new System.Drawing.Size(width, height), Emgu.CV.CvEnum.IPL_DEPTH.IPL_DEPTH_8U, 3);
                CvInvoke.cvZero(hist_img);

                /* 用来进行HSV到RGB颜色转换的临时单位图像 */
                IntPtr hsv_color = CvInvoke.cvCreateImage(new System.Drawing.Size(1, 1), Emgu.CV.CvEnum.IPL_DEPTH.IPL_DEPTH_8U, 3);
                IntPtr rgb_color = CvInvoke.cvCreateImage(new System.Drawing.Size(1, 1), Emgu.CV.CvEnum.IPL_DEPTH.IPL_DEPTH_8U, 3);
                int    bin_w     = width / (h_bins);

                for (int h = 0; h < h_bins; h++)
                {
                    /* 获得直方图中的统计次数,计算显示在图像中的高度 */
                    //
                    //取得值方圖的數值位置,以便之後存成檔案
                    //2.DenseHistogram
                    double bin_val   = CvInvoke.cvQueryHistValue_1D(histDense, h);
                    int    intensity = (int)System.Math.Round(bin_val * height / max_value);

                    /* 获得当前直方图代表的hue颜色,转换成RGB用于绘制 */
                    CvInvoke.cvRectangle(hist_img, new System.Drawing.Point(h * bin_w, height),
                                         new System.Drawing.Point((h + 1) * bin_w, height - intensity),
                                         HueToBgr(h * 180.0d / h_bins), -1, Emgu.CV.CvEnum.LINE_TYPE.EIGHT_CONNECTED, 0);
                }

                /*
                 *使用openCV函式繪製
                 * CvInvoke.cvNamedWindow("Source");
                 * CvInvoke.cvShowImage("Source", this.srcImage);
                 * CvInvoke.cvNamedWindow("H-S Histogram");
                 * CvInvoke.cvShowImage("H-S Histogram", hist_img);
                 * CvInvoke.cvWaitKey(0);
                 * */
                return(EmguFormatConvetor.IplImagePointerToEmgucvImage <Bgr, Byte>(hist_img));
            }
            catch (Exception ex)
            {
                throw new InvalidOperationException(ex.Message);
            }
        }
示例#32
0
        private void MainLoop()
        {
            CurrentFrame = Cam.QueryFrame().Convert <Hsv, byte>();
            Image <Gray, byte>[] channels;
            Image <Gray, byte>   HistImg1 = new Image <Gray, byte>(500, 500);
            Image <Gray, byte>   HistImg2 = new Image <Gray, byte>(500, 500);
            Image <Gray, byte>   ProbImage;
            DenseHistogram       hist1 = new DenseHistogram(new int[] { 10, 10 }, new RangeF[] { new RangeF(0, 255), new RangeF(0, 255) });
            DenseHistogram       hist2 = new DenseHistogram(new int[] { 10, 10 }, new RangeF[] { new RangeF(0, 255), new RangeF(0, 255) });


            MCvConnectedComp comp;
            MCvTermCriteria  criteria = new MCvTermCriteria(10, 1);
            MCvBox2D         box;

            while (true)
            {
                CurrentFrame = Cam.QueryFrame().Convert <Hsv, byte>();
                if (OnSettingArea && TrackArea != Rectangle.Empty)
                {
                    CurrentFrame.ROI = TrackArea;
                    channels         = CurrentFrame.Split();
                    hist1.Calculate(new Image <Gray, byte>[] { channels[0], channels[1] }, false, null);
                    CurrentFrame.Not().CopyTo(CurrentFrame);

                    CurrentFrame.ROI = Rectangle.Empty;
                    CurrentFrame.Draw(TrackArea, new Hsv(100, 100, 100), 2);
                    imageBox1.Image = CurrentFrame;
                }
                else
                {
                    if (TrackArea != Rectangle.Empty)
                    {
                        channels             = CurrentFrame.Split();
                        ProbImage            = hist1.BackProject <byte>(new Image <Gray, byte>[] { channels[0], channels[1] });
                        imageBox_Hist2.Image = ProbImage.Convert <Gray, byte>();

                        lock (LockObject)
                        {
                            if (TrackArea.Height * TrackArea.Width > 0)
                            {
                                CvInvoke.cvCamShift(ProbImage, TrackArea, criteria, out comp, out box);

                                TrackArea = comp.rect;
                                CurrentFrame.Draw(box, new Hsv(100, 100, 100), 2);
                            }

                            /**
                             * ResetContourPoints();
                             * for (int i = 0; i < 60; i++)
                             * {
                             *  ProbImage.Snake(ContourPoints, (float)1.0, (float)0.5, (float)1.5, new Size(17, 17), criteria, true);
                             * }
                             * CurrentFrame.DrawPolyline(ContourPoints, true, new Hsv(100, 100, 100), 2);
                             */
                        }
                    }
                    imageBox1.Image = CurrentFrame;
                    //calculate histogram;
                    //channels = CurrentFrame.Split();
                    //hist2.Calculate(new Image<Gray, byte>[] { channels[0], channels[1] }, false, null);
                    //hist2.Normalize(1);
                    //HistImg1.SetZero();
                    //DrawHist2D(HistImg1, hist1);
                    //imageBox_Hist1.Image = HistImg1;
                }
            }
        }
示例#33
0
        /// <summary>
        /// 2D值方圖(色調與飽和度) 的繪製,使用emgucv提供的cvInvoke去調用opencv的函式
        /// 繪製與範例的值方圖一致目前先採用
        /// </summary>
        /// <param name="histDense"></param>
        /// <returns>回傳繪製值方圖的影像,直接顯示即可</returns>
        public static Image <Bgr, Byte> Generate2DHistogramImgForDraw(DenseHistogram histDense)
        {
            try
            {
                float max_value = 0.0f;
                int[] a1        = new int[100];
                int[] b1        = new int[100];
                float ax        = 0;
                int   h_bins    = histDense.BinDimension[0].Size;
                int   s_bins    = histDense.BinDimension[1].Size;

                //1.使用Intptr
                // CvInvoke.cvGetMinMaxHistValue(histPtr, ref ax, ref max_value, a1, b1);

                //2.emgucv的DenseHistogram資料格式也可使用cvInvoke的openCV函式
                CvInvoke.cvGetMinMaxHistValue(histDense, ref ax, ref max_value, a1, b1);

                /* 设置直方图显示图像 */
                int height = 300;
                int width;
                //如果設定的bins超過視窗設定的顯示範圍,另外給予可以符合用額外的彈出視窗顯示的值
                if (h_bins * s_bins > 800)
                {
                    width = h_bins * s_bins * 2;
                }
                else
                {
                    width = 800;
                }

                IntPtr hist_img = CvInvoke.cvCreateImage(new System.Drawing.Size(width, height), Emgu.CV.CvEnum.IPL_DEPTH.IPL_DEPTH_8U, 3);
                CvInvoke.cvZero(hist_img);

                /* 用来进行HSV到RGB颜色转换的临时单位图像 */
                IntPtr hsv_color = CvInvoke.cvCreateImage(new System.Drawing.Size(1, 1), Emgu.CV.CvEnum.IPL_DEPTH.IPL_DEPTH_8U, 3);
                IntPtr rgb_color = CvInvoke.cvCreateImage(new System.Drawing.Size(1, 1), Emgu.CV.CvEnum.IPL_DEPTH.IPL_DEPTH_8U, 3);
                int    bin_w     = width / (h_bins * s_bins);

                for (int h = 0; h < h_bins; h++)
                {
                    for (int s = 0; s < s_bins; s++)
                    {
                        int i = h * s_bins + s;
                        /* 获得直方图中的统计次数,计算显示在图像中的高度 */
                        //
                        //取得值方圖的數值位置,以便之後存成檔案
                        //1.Intptr
                        //double bin_val = CvInvoke.cvQueryHistValue_2D(histPtr, h, s);

                        //2.DenseHistogram
                        double bin_val   = CvInvoke.cvQueryHistValue_2D(histDense, h, s);
                        int    intensity = (int)System.Math.Round(bin_val * height / max_value);

                        /* 获得当前直方图代表的颜色,转换成RGB用于绘制 */
                        CvInvoke.cvSet2D(hsv_color, 0, 0, new Emgu.CV.Structure.MCvScalar(h * 180.0f / h_bins, s * 255.0f / s_bins, 255, 0));
                        CvInvoke.cvCvtColor(hsv_color, rgb_color, COLOR_CONVERSION.CV_HSV2BGR);
                        Emgu.CV.Structure.MCvScalar color = CvInvoke.cvGet2D(rgb_color, 0, 0);
                        CvInvoke.cvRectangle(hist_img, new System.Drawing.Point(i * bin_w, height), new System.Drawing.Point((i + 1) * bin_w, height - intensity), color, -1, Emgu.CV.CvEnum.LINE_TYPE.EIGHT_CONNECTED, 0);
                    }
                }

                /*
                 *使用openCV函式繪製
                 * CvInvoke.cvNamedWindow("Source");
                 * CvInvoke.cvShowImage("Source", this.srcImage);
                 * CvInvoke.cvNamedWindow("H-S Histogram");
                 * CvInvoke.cvShowImage("H-S Histogram", hist_img);
                 * CvInvoke.cvWaitKey(0);
                 * */
                return(EmguFormatConvetor.IplImagePointerToEmgucvImage <Bgr, Byte>(hist_img));
            }
            catch (Exception ex)
            {
                throw new InvalidOperationException(ex.Message);
            }
        }
示例#34
0
 public abstract bool Execute(DenseHistogram hist, out float minPos);
示例#35
0
        //////////////////////////////////////////////////////////////////////////////////////////////
        #endregion

        #region 直方圖匹配
        //////////////////////////////////////////////////////////////////////////////////////////////
        /// <summary>
        /// 匹配值方圖,使用CV_COMP_BHATTACHARYYA
        /// </summary>
        /// <param name="templateHist"></param>
        /// <param name="observedHist"></param>
        /// <returns>回傳匹配率,CV_COMP_BHATTACHARYYA方法,數值越低比對越精準,反之相似度低,範圍0-1</returns>
        public static double CompareHist(DenseHistogram templateHist, DenseHistogram observedHist)
        {
            return(CvInvoke.cvCompareHist(templateHist, observedHist, HISTOGRAM_COMP_METHOD.CV_COMP_BHATTACHARYYA));
        }
示例#36
0
        protected void Button1_Click(object sender, EventArgs e)
        {
            if (FileUploader.HasFile)
            {
                try
                {
                    FileUploader.SaveAs(Server.MapPath(DefaultFileName) + FileUploader.FileName);

                    Image <Bgr, Byte> originalImage = new Image <Bgr, byte>(Server.MapPath(DefaultFileName) + FileUploader.FileName);
                    int width, height, channels = 0;
                    width    = originalImage.Width;
                    height   = originalImage.Height;
                    channels = originalImage.NumberOfChannels;

                    Image <Bgr, byte>  colorImage = new Image <Bgr, byte>(originalImage.ToBitmap());
                    Image <Gray, byte> grayImage  = colorImage.Convert <Gray, Byte>();

                    float[]        GrayHist;
                    DenseHistogram Histo = new DenseHistogram(255, new RangeF(0, 255));
                    Histo.Calculate(new Image <Gray, Byte>[] { grayImage }, true, null);
                    GrayHist = new float[256];
                    Histo.MatND.ManagedArray.CopyTo(GrayHist, 0);
                    float largestHist   = GrayHist[0];
                    int   thresholdHist = 0;
                    for (int i = 0; i < 255; i++)
                    {
                        if (GrayHist[i] > largestHist)
                        {
                            largestHist   = GrayHist[i];
                            thresholdHist = i;
                        }
                    }

                    grayImage  = grayImage.ThresholdAdaptive(new Gray(255), ADAPTIVE_THRESHOLD_TYPE.CV_ADAPTIVE_THRESH_MEAN_C, THRESH.CV_THRESH_BINARY, 85, new Gray(4));
                    colorImage = colorImage.Copy();
                    int countRedCells = 0;
                    using (MemStorage storage = new MemStorage())
                    {
                        for (Contour <Point> contours = grayImage.FindContours(Emgu.CV.CvEnum.CHAIN_APPROX_METHOD.CV_CHAIN_APPROX_SIMPLE, Emgu.CV.CvEnum.RETR_TYPE.CV_RETR_LIST, storage); contours != null; contours = contours.HNext)
                        {
                            Contour <Point> currentContour = contours.ApproxPoly(contours.Perimeter * 0.015, storage);
                            if (currentContour.BoundingRectangle.Width > 20)
                            {
                                CvInvoke.cvDrawContours(colorImage, contours, new MCvScalar(0, 0, 255), new MCvScalar(0, 0, 255), -1, 2, Emgu.CV.CvEnum.LINE_TYPE.EIGHT_CONNECTED, new Point(0, 0));
                                colorImage.Draw(currentContour.BoundingRectangle, new Bgr(0, 255, 0), 1);
                                countRedCells++;
                            }
                        }
                    }

                    Image <Gray, byte> grayImageCopy2 = originalImage.Convert <Gray, Byte>();
                    grayImageCopy2 = grayImageCopy2.ThresholdBinary(new Gray(100), new Gray(255));
                    colorImage     = colorImage.Copy();
                    int countMalaria = 0;
                    using (MemStorage storage = new MemStorage())
                    {
                        for (Contour <Point> contours = grayImageCopy2.FindContours(Emgu.CV.CvEnum.CHAIN_APPROX_METHOD.CV_CHAIN_APPROX_SIMPLE, Emgu.CV.CvEnum.RETR_TYPE.CV_RETR_TREE, storage); contours != null; contours = contours.HNext)
                        {
                            Contour <Point> currentContour = contours.ApproxPoly(contours.Perimeter * 0.015, storage);
                            if (currentContour.BoundingRectangle.Width > 20)
                            {
                                CvInvoke.cvDrawContours(colorImage, contours, new MCvScalar(255, 0, 0), new MCvScalar(255, 0, 0), -1, 2, Emgu.CV.CvEnum.LINE_TYPE.EIGHT_CONNECTED, new Point(0, 0));
                                colorImage.Draw(currentContour.BoundingRectangle, new Bgr(0, 255, 0), 1);
                                countMalaria++;
                            }
                        }
                    }

                    colorImage.Save(Server.MapPath(DefaultFileName2) + FileUploader.FileName);

                    inputDiv.Attributes["style"]  = "display: block; margin-left: auto; margin-right: auto";
                    outputDiv.Attributes["style"] = "display: block; margin-left: auto; margin-right: auto";
                    Image1.ImageUrl = this.ResolveUrl(DefaultFileName + FileUploader.FileName);
                    Image2.ImageUrl = this.ResolveUrl(DefaultFileName2 + FileUploader.FileName);
                    Chart1.DataBindTable(GrayHist);
                    Label1.Text = "Uploaded Successfully";
                    Label2.Text = "File name: " +
                                  FileUploader.PostedFile.FileName + "<br>" + "File Size: " +
                                  FileUploader.PostedFile.ContentLength + " kb<br>" + "Content type: " + FileUploader.PostedFile.ContentType + "<br>"
                                  + "Resolution: " + width.ToString() + "x" + height.ToString() + "<br>"
                                  + "Number of channels: " + channels.ToString() + "<br>"
                                  + "Histogram (maximum value): " + largestHist + " @ " + thresholdHist;

                    LabelRed.Text     = countRedCells.ToString();
                    LabelMalaria.Text = countMalaria.ToString();
                }
                catch (Exception ex)
                {
                    Label1.Text = "ERROR: " + ex.Message.ToString();
                    Label2.Text = "";
                }
            }
            else
            {
                Label1.Text = "You have not specified a file.";
                Label2.Text = "";
            }
        }
示例#37
0
        public RotatedRect Tracking(Image <Bgr, Byte> image)
        {
            GetFrameHue(image);

            // User changed bins num ,recalculate Hist
            if (Main._advancedHsv)
            {
                if (bins != Main.HsvSetting.Getbins)
                {
                    bins = Main.HsvSetting.Getbins;
                    hist.Dispose();
                    hist = new DenseHistogram(bins, new RangeF(0, 180));
                    CalcHist(image);
                }
            }

            backprojection = hist.BackProject(new Image <Gray, Byte>[] { hue });

            // Add mask
            backprojection._And(mask);

            // FindContours
            //CvInvoke.Canny(backprojection, backcopy, 3, 6);
            backprojection.CopyTo(backcopy);
            CvInvoke.FindContours(backcopy, vvp, null, Emgu.CV.CvEnum.RetrType.External, Emgu.CV.CvEnum.ChainApproxMethod.ChainApproxNone);
            int trackArea = trackingWindow.Height * trackingWindow.Width;

            FindTargetByArea(vvp, trackArea * 0.25, trackArea * 10, ref vvpApprox);
            vvpApproxDensity = GetVVPDensity(vvpApprox, out vvpApproxRect);
            targetVVPIndex   = FindTargetByOverlap(vvpApprox, trackingWindow);
            //FindTargetByCenter(vvpApprox, new PointF(trackingWindow.X + trackingWindow.Width / 2, trackingWindow.Y + trackingWindow.Height / 2));


            // If lost trackbox
            if (trackingWindow.IsEmpty || trackingWindow.Width <= 10 || trackingWindow.Height <= 10 || _lost || targetVVPIndex == -1)
            {
                if (!timer.IsRunning)
                {
                    timer.Start();
                }
                if (timer.ElapsedMilliseconds > 1000)
                {
                    _lost = true;
                }
                if (timer.ElapsedMilliseconds > 3000)
                {
                    //targetVVPIndex = Array.IndexOf(vvpApproxDensity, vvpApproxDensity.Max());
                }
                for (int i = 0; i < vvpApproxDensity.Length; i++)
                {
                    if (vvpApproxDensity[i] >= targetDensity * 0.8)
                    {
                        trackingWindow = vvpApproxRect[i];
                        _lost          = false;
                        timer.Reset();
                    }
                }
            }
            else
            {
                trackbox       = CvInvoke.CamShift(backprojection, ref trackingWindow, new MCvTermCriteria(10, 1));
                targetDensity += vvpApproxDensity[targetVVPIndex];
                targetDensity /= 2;
                if (timer.IsRunning)
                {
                    timer.Reset();
                }
            }
            return(trackbox);
        }
示例#38
0
        private void MainLoop()
        {
            CurrentFrame = Cam.QueryFrame().Convert<Hsv, byte>();
            Image<Gray, byte>[] channels;
            Image<Gray, byte> HistImg1 = new Image<Gray, byte>(500, 500);
            Image<Gray, byte> HistImg2 = new Image<Gray, byte>(500, 500);
            Image<Gray, byte> ProbImage;
            DenseHistogram hist1 = new DenseHistogram(new int[] { 10, 10 }, new RangeF[] { new RangeF(0, 255), new RangeF(0, 255) });
            DenseHistogram hist2 = new DenseHistogram(new int[] { 10, 10 }, new RangeF[] { new RangeF(0, 255), new RangeF(0, 255) });


            MCvConnectedComp comp;
            MCvTermCriteria criteria = new MCvTermCriteria(10, 1);
            MCvBox2D box;

            while (true)
            {
                    CurrentFrame = Cam.QueryFrame().Convert<Hsv, byte>();
                    if (OnSettingArea && TrackArea != Rectangle.Empty)
                    {
                        CurrentFrame.ROI = TrackArea;
                        channels = CurrentFrame.Split();
                        hist1.Calculate(new Image<Gray, byte>[] { channels[0], channels[1] }, false, null);
                        CurrentFrame.Not().CopyTo(CurrentFrame);

                        CurrentFrame.ROI = Rectangle.Empty;
                        CurrentFrame.Draw(TrackArea, new Hsv(100, 100, 100), 2);
                        imageBox1.Image = CurrentFrame;
                    }
                    else
                    {
                        if (TrackArea != Rectangle.Empty)
                        {      
                            channels = CurrentFrame.Split();
                            ProbImage = hist1.BackProject<byte>(new Image<Gray, byte>[] { channels[0], channels[1] });
                            imageBox_Hist2.Image = ProbImage.Convert<Gray, byte>();

                            lock (LockObject)
                            {
                                if (TrackArea.Height * TrackArea.Width > 0)
                                {
                                    CvInvoke.cvCamShift(ProbImage, TrackArea, criteria, out comp, out box);

                                    TrackArea = comp.rect;
                                    CurrentFrame.Draw(box, new Hsv(100, 100, 100), 2);
                                }
                                /**
                                ResetContourPoints();
                                for (int i = 0; i < 60; i++)
                                {
                                    ProbImage.Snake(ContourPoints, (float)1.0, (float)0.5, (float)1.5, new Size(17, 17), criteria, true);
                                }
                                CurrentFrame.DrawPolyline(ContourPoints, true, new Hsv(100, 100, 100), 2);
                                */
                            }
                        }
                        imageBox1.Image = CurrentFrame;
                        //calculate histogram;
                        //channels = CurrentFrame.Split();
                        //hist2.Calculate(new Image<Gray, byte>[] { channels[0], channels[1] }, false, null);
                        //hist2.Normalize(1);
                        //HistImg1.SetZero();
                        //DrawHist2D(HistImg1, hist1);
                        //imageBox_Hist1.Image = HistImg1;
                    }
            }
        }
示例#39
0
        //////////////////////////////////////////////////////////////////////////////////////////////
        #endregion

        #region 匹配值方圖
        //////////////////////////////////////////////////////////////////////////////////////////////
        /// <summary>
        /// 直方圖匹配(使用BHATTACHARYYA)
        /// </summary>
        /// <param name="template">樣板值方圖</param>
        /// <param name="observedSrcImg">要比對的圖像</param>
        /// <param name="observedHist">觀察影像的直方圖</param>
        /// <returns>匹配率越低表示匹配度越高</returns>
        public static double CompareHistogram(DenseHistogram template, Image <Bgr, Byte> observedSrcImg, out DenseHistogram observedHist)
        {
            //計算影像的值方圖
            if (template.Dimension == 1)
            {
                observedHist = HistogramOperation.CalHsvHistogram(observedSrcImg.Ptr, template.Dimension, template.BinDimension[0].Size);
            }
            else if (template.Dimension == 2)
            {
                observedHist = HistogramOperation.CalHsvHistogram(observedSrcImg.Ptr, template.Dimension, template.BinDimension[0].Size, template.BinDimension[1].Size);
            }
            else
            {
                observedHist = HistogramOperation.CalHsvHistogram(observedSrcImg.Ptr, template.Dimension, template.BinDimension[0].Size, template.BinDimension[1].Size, template.BinDimension[2].Size);
            }
            //匹配後回傳匹配率
            return(HistogramOperation.CompareHist(template, observedHist));
        }
示例#40
0
        public void tracking(Mat hist_roi)
        {
            using (var nextframe = cap.QueryFrame().ToImage <Bgr, Byte>())
            {
                if (nextframe != null)
                {
                    float[] range    = { 0, 180 };
                    int[]   histsize = { 180 };
                    int[]   channels = { 0, 0 };
                    int[]   Chn      = { 0 };
                    //Rectangle  ret = new Rectangle();
                    //ret = nextframe.Mat;

                    Rectangle trackwindow = new Rectangle(rectx, recty, rectw, recth);
                    Mat       hsv         = new Mat();
                    Mat       hist        = new DenseHistogram(16, new RangeF(0, 16));
                    CvInvoke.CvtColor(nextframe, hsv, ColorConversion.Bgr2Hsv);//hsv
                    Mat mask = new Mat();
                    CvInvoke.InRange(hsv, new ScalarArray(new MCvScalar(0, 60, 32)), new ScalarArray(new MCvScalar(180, 256, 255)), mask);
                    Mat hue = new Mat();
                    hue.Create(hsv.Rows, hsv.Cols, hsv.Depth, 0);
                    //CvInvoke.MixChannels()
                    int[] chn  = { 0, 0 };
                    var   vhue = new VectorOfMat(hue);
                    var   vhsv = new VectorOfMat(hsv);

                    //var vhsv = new VectorOfMat(hsv);
                    CvInvoke.MixChannels(vhsv, vhue, chn);


                    Mat     dst   = new Mat();
                    float[] Range = { 0, 180, 0, 255 };
                    CvInvoke.CalcBackProject(vhue, Chn, hist_roi, dst, Range, 1);
                    Size s = new Size(5, 5);
                    //  CvInvoke.GetStructuringElement(ElementShape.Ellipse,s);
                    CvInvoke.Threshold(dst, dst, 50, 255, 0);
                    imageBox1.Image = dst;
                    //  MCvTermCriteria termcriteria = new MCvTermCriteria(TermCritType.Eps | TermCritType.Iter, 10, 1);
                    MCvTermCriteria termCrit  = new MCvTermCriteria(10, 0.1);
                    RotatedRect     result    = CvInvoke.CamShift(dst, ref trackerbox, termCrit);
                    var             grayframe = nextframe.Convert <Gray, byte>();
                    grayframe.ROI = trackerbox;
                    var grayface  = grayframe.Copy().Mat;
                    var faces     = haar.DetectMultiScale(grayface, 1.1, 10, Size.Empty);
                    int totalface = faces.Length;


                    RectangleF ret = trackerbox;


                    // PointF[] PTS = CvInvoke.BoxPoints(ret);
                    // Point[] pts = new Point[10];
                    //for (int x = 0; x < PTS.Length; x++)
                    // {
                    //   pts[x] = Point.Round(PTS[x]);
                    CvInvoke.CvtColor(dst, nextframe, ColorConversion.Gray2Bgr);
                    //CvInvoke.Polylines(nextframe, pts, true, new MCvScalar(255, 0));
                    // if (totalface == 1)
                    //   {
                    MCvScalar color = new MCvScalar(0, 0, 255);
                    CvInvoke.Ellipse(nextframe, ret, color, 3, LineType.AntiAlias);
                    //  }
                }
                imageBox1.Image = nextframe;
            }    //while loop end*/
        }
示例#41
0
        public override bool Execute(DenseHistogram hist, out float minPos)
        {
            minPos = Param;

            return(true);
        }
        private float[] GetHistogramData(Image<Gray, byte> imgGray)
        {
            float[] histoGrammData;

            DenseHistogram histoGramm = new DenseHistogram(255, new RangeF(0, 255));
            histoGramm.Calculate(new Image<Gray, Byte>[] { imgGray }, true, null);
            //The data is here
            //Histo.MatND.ManagedArray
            histoGrammData = new float[256];
            histoGramm.MatND.ManagedArray.CopyTo(histoGrammData, 0);

            return histoGrammData;
        }
示例#43
0
        public mHistogram(Image <Bgr, Byte> img)
        {
            Obraz = img;

            #region oblicz wartosci histogramów

            var Histo = new DenseHistogram(255, new RangeF(0, 255));

            Image <Gray, Byte> img2Blue  = img[0];
            Image <Gray, Byte> img2Green = img[1];
            Image <Gray, Byte> img2Red   = img[2];

            Histo.Calculate(new[] { img2Blue }, true, null);
            BlueHist = new float[256];
            Histo.MatND.ManagedArray.CopyTo(BlueHist, 0);

            Histo.Clear();

            Histo.Calculate(new[] { img2Green }, true, null);
            GreenHist = new float[256];
            Histo.MatND.ManagedArray.CopyTo(GreenHist, 0);

            Histo.Clear();

            Histo.Calculate(new[] { img2Red }, true, null);
            RedHist = new float[256];
            Histo.MatND.ManagedArray.CopyTo(RedHist, 0);

            #endregion

            #region 'kwantyzacja histogramów''

            int   wielkoscPrzedialu = 4;
            int   aktualnaPozycjaR  = 0;
            int   aktualnaPozycjaG  = 0;
            int   aktualnaPozycjaB  = 0;
            float wartoscR          = 0;
            float wartoscG          = 0;
            float wartoscB          = 0;
            RedHistQ   = new float[RedHist.Length / wielkoscPrzedialu];
            GreenHistQ = new float[GreenHist.Length / wielkoscPrzedialu];
            BlueHistQ  = new float[BlueHist.Length / wielkoscPrzedialu];


            for (int i = 0; i < RedHist.Length / wielkoscPrzedialu; i++)
            {
                for (int j = 0; j < wielkoscPrzedialu; j++)
                {
                    wartoscR += RedHist[aktualnaPozycjaR + j];
                }
                RedHistQ[i] = wartoscR;
                wartoscR    = 0;
                aktualnaPozycjaR++;
            }
            for (int i = 0; i < GreenHist.Length / wielkoscPrzedialu; i++)
            {
                for (int j = 0; j < wielkoscPrzedialu; j++)
                {
                    wartoscG += GreenHist[aktualnaPozycjaG + j];
                }
                GreenHistQ[i] = wartoscG;
                wartoscG      = 0;
                aktualnaPozycjaG++;
            }
            for (int i = 0; i < BlueHist.Length / wielkoscPrzedialu; i++)
            {
                for (int j = 0; j < wielkoscPrzedialu; j++)
                {
                    wartoscB += BlueHist[aktualnaPozycjaB + j];
                }
                BlueHistQ[i] = wartoscB;
                wartoscB     = 0;
                aktualnaPozycjaB++;
            }

            #endregion
        }
示例#44
0
      /// <summary>
      /// Eliminate the matched features whose scale and rotation do not aggree with the majority's scale and rotation.
      /// </summary>
      /// <param name="rotationBins">The numbers of bins for rotation, a good value might be 20 (which means each bin covers 18 degree)</param>
      /// <param name="scaleIncrement">This determins the different in scale for neighbour hood bins, a good value might be 1.5 (which means matched features in bin i+1 is scaled 1.5 times larger than matched features in bin i</param>
      /// <param name="matchedFeatures">The matched feature that will be participated in the voting. For each matchedFeatures, only the zero indexed ModelFeature will be considered.</param>
      public static MatchedSURFFeature[] VoteForSizeAndOrientation(MatchedSURFFeature[] matchedFeatures, double scaleIncrement, int rotationBins)
      {
         int elementsCount = matchedFeatures.Length;
         float[] scales = new float[elementsCount];
         float[] rotations = new float[elementsCount];
         float[] flags = new float[elementsCount];
         float minScale = float.MaxValue;
         float maxScale = float.MinValue;

         for (int i = 0; i < matchedFeatures.Length; i++)
         {
            float scale = (float)matchedFeatures[i].ObservedFeature.Point.size / (float)matchedFeatures[i].SimilarFeatures[0].Feature.Point.size;
            scale = (float)Math.Log10(scale);
            scales[i] = scale;
            if (scale < minScale) minScale = scale;
            if (scale > maxScale) maxScale = scale;

            float rotation = matchedFeatures[i].ObservedFeature.Point.dir - matchedFeatures[i].SimilarFeatures[0].Feature.Point.dir;
            rotations[i] = rotation < 0.0 ? rotation + 360 : rotation;
         }

         int scaleBinSize = (int)Math.Max(((maxScale - minScale) / Math.Log10(scaleIncrement)), 1);
         int count;
         using (DenseHistogram h = new DenseHistogram(new int[] { scaleBinSize, rotationBins }, new RangeF[] { new RangeF(minScale, maxScale), new RangeF(0, 360) }))
         {
            GCHandle scaleHandle = GCHandle.Alloc(scales, GCHandleType.Pinned);
            GCHandle rotationHandle = GCHandle.Alloc(rotations, GCHandleType.Pinned);
            GCHandle flagsHandle = GCHandle.Alloc(flags, GCHandleType.Pinned);

            using (Matrix<float> flagsMat = new Matrix<float>(1, elementsCount, flagsHandle.AddrOfPinnedObject()))
            using (Matrix<float> scalesMat = new Matrix<float>(1, elementsCount, scaleHandle.AddrOfPinnedObject()))
            using (Matrix<float> rotationsMat = new Matrix<float>(1, elementsCount, rotationHandle.AddrOfPinnedObject()))
            {
               h.Calculate(new Matrix<float>[] { scalesMat, rotationsMat }, true, null);

               float minVal, maxVal;
               int[] minLoc, maxLoc;
               h.MinMax(out minVal, out maxVal, out minLoc, out maxLoc);

               h.Threshold(maxVal * 0.5);

               CvInvoke.cvCalcBackProject(new IntPtr[] { scalesMat.Ptr, rotationsMat.Ptr }, flagsMat.Ptr, h.Ptr);
               count = CvInvoke.cvCountNonZero(flagsMat);
            }
            scaleHandle.Free();
            rotationHandle.Free();
            flagsHandle.Free();

            MatchedSURFFeature[] matchedGoodFeatures = new MatchedSURFFeature[count];
            int index = 0;
            for (int i = 0; i < matchedFeatures.Length; i++)
               if (flags[i] != 0)
                  matchedGoodFeatures[index++] = matchedFeatures[i];

            return matchedGoodFeatures;
         }
      }
示例#45
0
        public void TestHistogram()
        {
            using (Image<Bgr, Byte> img = new Image<Bgr, byte>("stuff.jpg"))
             using (Image<Hsv, Byte> img2 = img.Convert<Hsv, Byte>())
             {
            Image<Gray, Byte>[] HSVs = img2.Split();

            using (DenseHistogram h = new DenseHistogram(20, new RangeF(0, 180)))
            {
               h.Calculate(new Image<Gray, Byte>[1] { HSVs[0] }, true, null);
               using (Image<Gray, Byte> bpj = h.BackProject(new Image<Gray, Byte>[1] { HSVs[0] }))
               {
                  Size sz = bpj.Size;
               }
               using (Image<Gray, Single> patchBpj = h.BackProjectPatch(
                  new Image<Gray, Byte>[1] { HSVs[0] },
                  new Size(5, 5),
                  Emgu.CV.CvEnum.HISTOGRAM_COMP_METHOD.CV_COMP_CHISQR,
                  1.0))
               {
                  Size sz = patchBpj.Size;
               }
            }

            foreach (Image<Gray, Byte> i in HSVs) i.Dispose();
             }
        }
示例#46
0
        /// <summary>
        /// Eliminate the matched features whose scale and rotation do not aggree with the majority's scale and rotation.
        /// </summary>
        /// <param name="rotationBins">The numbers of bins for rotation, a good value might be 20 (which means each bin covers 18 degree)</param>
        /// <param name="scaleIncrement">This determins the different in scale for neighbour hood bins, a good value might be 1.5 (which means matched features in bin i+1 is scaled 1.5 times larger than matched features in bin i</param>
        /// <param name="matchedFeatures">The matched feature that will be participated in the voting. For each matchedFeatures, only the zero indexed ModelFeature will be considered.</param>
        public static MatchedSURFFeature[] VoteForSizeAndOrientation(MatchedSURFFeature[] matchedFeatures, double scaleIncrement, int rotationBins)
        {
            int elementsCount = matchedFeatures.Length;

            float[] scales    = new float[elementsCount];
            float[] rotations = new float[elementsCount];
            float[] flags     = new float[elementsCount];
            float   minScale  = float.MaxValue;
            float   maxScale  = float.MinValue;

            for (int i = 0; i < matchedFeatures.Length; i++)
            {
                float scale = (float)matchedFeatures[i].ObservedFeature.Point.size / (float)matchedFeatures[i].SimilarFeatures[0].Feature.Point.size;
                scale     = (float)Math.Log10(scale);
                scales[i] = scale;
                if (scale < minScale)
                {
                    minScale = scale;
                }
                if (scale > maxScale)
                {
                    maxScale = scale;
                }

                float rotation = matchedFeatures[i].ObservedFeature.Point.dir - matchedFeatures[i].SimilarFeatures[0].Feature.Point.dir;
                rotations[i] = rotation < 0.0 ? rotation + 360 : rotation;
            }

            int scaleBinSize = (int)Math.Max(((maxScale - minScale) / Math.Log10(scaleIncrement)), 1);
            int count;

            using (DenseHistogram h = new DenseHistogram(new int[] { scaleBinSize, rotationBins }, new RangeF[] { new RangeF(minScale, maxScale), new RangeF(0, 360) }))
            {
                GCHandle scaleHandle    = GCHandle.Alloc(scales, GCHandleType.Pinned);
                GCHandle rotationHandle = GCHandle.Alloc(rotations, GCHandleType.Pinned);
                GCHandle flagsHandle    = GCHandle.Alloc(flags, GCHandleType.Pinned);

                using (Matrix <float> flagsMat = new Matrix <float>(1, elementsCount, flagsHandle.AddrOfPinnedObject()))
                    using (Matrix <float> scalesMat = new Matrix <float>(1, elementsCount, scaleHandle.AddrOfPinnedObject()))
                        using (Matrix <float> rotationsMat = new Matrix <float>(1, elementsCount, rotationHandle.AddrOfPinnedObject()))
                        {
                            h.Calculate(new Matrix <float>[] { scalesMat, rotationsMat }, true, null);

                            float minVal, maxVal;
                            int[] minLoc, maxLoc;
                            h.MinMax(out minVal, out maxVal, out minLoc, out maxLoc);

                            h.Threshold(maxVal * 0.5);

                            CvInvoke.cvCalcBackProject(new IntPtr[] { scalesMat.Ptr, rotationsMat.Ptr }, flagsMat.Ptr, h.Ptr);
                            count = CvInvoke.cvCountNonZero(flagsMat);
                        }
                scaleHandle.Free();
                rotationHandle.Free();
                flagsHandle.Free();

                MatchedSURFFeature[] matchedGoodFeatures = new MatchedSURFFeature[count];
                int index = 0;
                for (int i = 0; i < matchedFeatures.Length; i++)
                {
                    if (flags[i] != 0)
                    {
                        matchedGoodFeatures[index++] = matchedFeatures[i];
                    }
                }

                return(matchedGoodFeatures);
            }
        }
示例#47
0
        public ArrayList bgSubtraction(Image <Bgr, Byte> currImage, Image <Bgr, Byte> bgImage, ref Image <Gray, byte> finalBlobImg, ref ArrayList blobRect)
        {
            //### inputs are currImage and bgImage. Output is finalBlobImg - 1 for FG and 0 for BG and blobRect to store ROIs of each blob in this frame
            //### extracting pixels from currImage and bgImage
            byte[, ,] curImgPix = new byte[Main.w, Main.h, 1];
            byte[, ,] bw_2d     = new byte[Main.h / Main.b, Main.w / Main.b, 1];
            ArrayList blobDistanceList = new ArrayList(1);

            curImgPix = bitmap22D(currImage);
            currImgGy = currImage.Convert <Gray, byte>();
            bgImgGy   = bgImage.Convert <Gray, byte>();

            //### Motion Detection between currImage pixels and bgImage pixels
            motionDetection(curImgPix, bitmap22D(bgImgGy), Main.w, Main.h, Main.b, ref bw_2d);

            //Component Labeling for localizing objects that are moving. There can be more than one objects that are moving in the scene.
            byte      m  = 1;
            ArrayList mv = new ArrayList();

            for (int x = 0; x < h / b; x++)
            {
                for (int y = 0; y < w / b; y++)
                {
                    if (bw_2d[x, y, 0] == 1)
                    {
                        ArrayList label = new ArrayList();
                        compLabel(x, y, ++m, label, ref bw_2d);
                        mv.Add(label);
                    }
                }
            }
            //Console.WriteLine("-----No of Blobs=" + mv.Count);

            //### outimage - binay image of each blob; finalBlobImg - OR of all blob images to get final binay image with 1 for FG and 0 for BG
            finalBlobImg = new Image <Gray, byte>(w, h);
            Image <Gray, byte> outimage = new Image <Gray, byte>(w, h);

            //### blobRect - to store the ROIs of each blob in the currImage.
            blobRect = new ArrayList();

            //Calculate xmin ymin xmax ymax for each blob detected
            foreach (ArrayList blob in mv)
            {
                if (blob.Count > 25)   //no of blocks in each blob > 3
                {
                    //Console.WriteLine(blob.Count+"\n");
                    int xmin, xmax, ymin, ymax;

                    IEnumerator iblob = blob.GetEnumerator();
                    iblob.MoveNext();
                    ArrayList   pt  = (ArrayList)iblob.Current;
                    IEnumerator ipt = pt.GetEnumerator();
                    ipt.MoveNext();
                    //Console.Write("{y"+ipt.Current);
                    ymin = ymax = (int)ipt.Current;
                    ipt.MoveNext();
                    xmin = xmax = (int)ipt.Current;
                    //Console.Write(" x"+ipt.Current+"}\n");


                    while (iblob.MoveNext())
                    {
                        ArrayList   ptt  = (ArrayList)iblob.Current;
                        IEnumerator iptt = ptt.GetEnumerator();
                        iptt.MoveNext();

                        int y = (int)iptt.Current;
                        iptt.MoveNext();
                        int x = (int)iptt.Current;
                        // Console.Write(x+","+y+" ; ");

                        if (xmin > x)
                        {
                            xmin = x;
                        }
                        if (xmax < x)
                        {
                            xmax = x;
                        }
                        if (ymin > y)
                        {
                            ymin = y;
                        }
                        if (ymax < y)
                        {
                            ymax = y;
                        }
                    }
                    //Console.WriteLine("****" + xmin + " " + xmax + " " + ymin + " " + ymax+" "+blob.Count);
                    // g.drawRect((xmin*blk),(ymin*blk),((xmax-xmin)*blk)+blk,((ymax-ymin)*blk)+blk);

                    subrect = new Rectangle((xmin * b), (ymin * b), ((xmax - xmin) * b) + b, ((ymax - ymin) * b) + b);
                    blobRect.Add(subrect);
                    currImage.Draw(subrect, new Bgr(0, 0, 0), 1);

                    Image <Gray, byte> subImgBg = bgImgGy.GetSubRect(subrect);
                    Image <Gray, byte> subImgFg = currImgGy.GetSubRect(subrect);

                    //subImgBg.Save("bg.jpg");
                    //subImgFg.Save("fg"+k+++".jpg");

                    Image <Gray, byte> imMask = subImgFg.AbsDiff(subImgBg);
                    //Console.WriteLine(Thread.CurrentThread.Name + " " + subrect);


                    for (int i = 0; i < subrect.Height; i++)
                    {
                        for (int j = 0; j < subrect.Width; j++)
                        {
                            //subImgFg.Data[i, j, 0] = 255;
                            if (imMask.Data[i, j, 0] < Main.ThSub)
                            {
                                imMask.Data[i, j, 0] = 0;
                                outimage.Data[i + subrect.Y, j + subrect.X, 0] = 0;
                            }
                            else
                            {
                                imMask.Data[i, j, 0] = 255;
                                outimage.Data[i + subrect.Y, j + subrect.X, 0] = 255;
                            }
                        }
                        //Console.WriteLine();
                    }

                    //imMask._Erode(1);
                    //imMask._Dilate(2);

                    outimage._Erode(2);
                    outimage._Dilate(3);
                    try
                    {
                        Image <Bgr, byte> subimg = currImage.And((outimage.Convert <Bgr, Byte>())).GetSubRect(subrect);
                        //subimg.GetSubRect(subrect);//.Save(Thread.CurrentThread.Name + "\\" + k++ + ".jpg");

                        //Calc HISTOGRAM of each blob

                        DenseHistogram    histBlob = new DenseHistogram(hdims, hranges); //cvCreateHist(1, &hdims, CV_HIST_ARRAY, &hranges, 1);
                        Image <Hsv, byte> hsvBlob  = subimg.Convert <Hsv, byte>();

                        //extract the hue and value channels
                        Image <Gray, Byte>[] channelsBlob = hsvBlob.Split();                                             //split into components
                        Image <Gray, Byte>[] imghueBlob   = new Image <Gray, byte> [1]; imghueBlob[0] = channelsBlob[0]; //hsv, so channels[0] is hue.

                        Hsv hsv_lower = new Hsv(0, smin, Math.Min(vmin, vmax));
                        Hsv hsv_upper = new Hsv(180, 256, Math.Max(vmin, vmax));
                        Image <Gray, Byte> maskBlob = hsvBlob.InRange(hsv_lower, hsv_upper);

                        histBlob.Calculate(imghueBlob, false, maskBlob);

                        double distance = CvInvoke.cvCompareHist(Main.hist.Ptr, histBlob.Ptr, Emgu.CV.CvEnum.HISTOGRAM_COMP_METHOD.CV_COMP_BHATTACHARYYA);

                        //Console.WriteLine(Thread.CurrentThread.Name + " = " + distance);


                        //Add rect and distance of each blob into blobDistanceList
                        Blob currenBlob;
                        currenBlob.rect     = subrect;
                        currenBlob.distance = distance;
                        blobDistanceList.Add(currenBlob);
                    }

                    catch (CvException cve)
                    {
                        //     MessageBox.Show(cve.StackTrace);
                    }

                    finalBlobImg = finalBlobImg.Or(outimage);
                }
            }
            return(blobDistanceList);
        }
示例#48
0
        private void CalibrateHSV(ref Image<Hsv, Byte> hsvImage, ref DenseHistogram histogram)
        {
            float horizontalFactor = 0.2f;
            float verticalFactor = 0.2f;

            int rectWidth = (int)(hsvImage.Width * horizontalFactor);
            int rectHeight = (int)(hsvImage.Height * verticalFactor);

            int topLeftX = (int)((((float)hsvImage.Width / 2) - rectWidth) / 2);
            int topLeftY = (int)(((float)hsvImage.Height - rectHeight) / 2);

            Rectangle rangeOfInterest = new Rectangle(topLeftX, topLeftY, rectWidth, rectHeight);

            Image<Gray, Byte> maskedImage = hsvImage.InRange(
                new Hsv(hue_min, saturation_min, value_min),
                new Hsv(hue_max, saturation_max, value_max));

            Image<Hsv, byte> partToCompute = hsvImage.Copy(rangeOfInterest);

            int[] h_bins = { 30, 30 };
            RangeF[] h_ranges = {
                new RangeF(0, 180),
                new RangeF(0, 255)
            };
            Image<Gray, byte>[] channels = partToCompute.Split().Take(2).ToArray();

            histogram = new DenseHistogram(h_bins, h_ranges);
            histogram.Calculate(channels, true, null);

            float minValue, maxValue;
            int[] posMinValue, posMaxValue;
            histogram.MinMax(out minValue, out maxValue, out posMinValue, out posMaxValue);
            histogram.Threshold(
                (double)minValue + (maxValue - minValue) * 40 / 100
            );

            hsvImage = maskedImage.Convert<Hsv, Byte>() //tu powstaje jakiś "First chance of exception..."
                .SmoothGaussian(5)
                .Dilate(1)
                .Convert<Rgb, Byte>()
                .ThresholdBinary(new Rgb(127,127,127), new Rgb(255,255,255))
                .Convert<Hsv, Byte>();

            //hsvImage.Draw(rangeOfInterest, new Hsv(255, 255, 255), 3);
        }
        void dataStream(object sender, EventArgs e)
        {
            {
                RangeF[] range = new RangeF[2];
                range[0] = new RangeF(0, 180);
                range[1] = new RangeF(0, 255);

                pollColorImageStream();
                pollDepthImageStream();

                //Color------------------
                Bitmap bitmapColor = new Bitmap(colorImage.Width, colorImage.Height, System.Drawing.Imaging.PixelFormat.Format32bppArgb);

                BitmapData bmd = bitmapColor.LockBits(new System.Drawing.Rectangle(0, 0, colorImage.Width, colorImage.Height), ImageLockMode.ReadWrite, bitmapColor.PixelFormat);

                Marshal.Copy(colorPixelData, 0, bmd.Scan0, colorPixelData.Length);

                bitmapColor.UnlockBits(bmd);

                Image<Bgr, Byte> colorTemp = new Image<Bgr, Byte>(bitmapColor);
                //Color------------------end

                //depth------------------

                byte[] byteDepth = new byte[640 * 480];
                byte[] remap = new byte[640 * 480];
                sensor.MapDepthFrameToColorFrame(DepthImageFormat.Resolution640x480Fps30, depthPixelData, ColorImageFormat.RgbResolution640x480Fps30, colorCoordinate);
                for (int y = 0; y < 480; y++)
                {
                    for (int x = 0; x < 640; x++)
                    {
                        int position = y * 640 + x;
                        short tempShort = depthPixelData[position];
                        //depthImage[y, x] = new Gray(tempShort);
                        byteDepth[position] = (byte)(tempShort >> 8);
                        //byteDepth[y, x] = new Gray((byte)(tempShort));

                        int positionRemap = colorCoordinate[position].Y * 640 + colorCoordinate[position].X;
                        if (positionRemap > 640 * 480)
                            continue;
                        depthRemapData[positionRemap] = depthPixelData[position];
                        remap[positionRemap] = (byte)(tempShort >> 8);
                        //byteDepth[y, x] = new Gray((byte)(tempShort));
                    }
                }
                Bitmap bitmapDepth = new Bitmap(depthImage.Width, depthImage.Height, System.Drawing.Imaging.PixelFormat.Format8bppIndexed);

                BitmapData bmd2 = bitmapDepth.LockBits(new System.Drawing.Rectangle(0, 0, depthImage.Width, depthImage.Height), ImageLockMode.ReadWrite, bitmapDepth.PixelFormat);

                Marshal.Copy(byteDepth, 0, bmd2.Scan0, byteDepth.Length);

                bitmapDepth.UnlockBits(bmd2);

                Image<Gray, Byte> depthTemp = new Image<Gray, Byte>(bitmapDepth);
                //depth------------------end

                Byte[] backFrame = new Byte[640 * 480];
                BitmapImage trackingOut = new BitmapImage();

                if (trackingFlag != 0)
                {
                    Image<Hsv, Byte> hsv = new Image<Hsv, Byte>(640, 480);
                    CvInvoke.cvCvtColor(colorTemp, hsv, COLOR_CONVERSION.CV_BGR2HSV);
                    Image<Gray, Byte> hue = hsv.Split()[0];
                    //range of hist is 180 or 256? not quite sure
                    DenseHistogram hist = new DenseHistogram(180, new RangeF(0.0f, 179.0f));

                    Image<Gray, Byte> mask = new Image<Gray, Byte>(trackWindow.Width, trackWindow.Height);

                    for (int y = 0; y < 480; y++)
                    {
                        for (int x = 0; x < 640; x++)
                        {
                            if (x >= trackWindow.X && x < trackWindow.X + trackWindow.Width && y >= trackWindow.Y && y < trackWindow.Y + trackWindow.Height)
                                mask[y - trackWindow.Y, x - trackWindow.X] = hue[y, x];
                        }
                    }
                    hist.Calculate(new IImage[] { mask }, false, null);
                    //maybe need to re-scale the hist to 0~255?

                    //back projection

                    IntPtr backProject = CvInvoke.cvCreateImage(hsv.Size, IPL_DEPTH.IPL_DEPTH_8U, 1);
                    CvInvoke.cvCalcBackProject(new IntPtr[1] { hue }, backProject, hist);

                    CvInvoke.cvErode(backProject, backProject, IntPtr.Zero, 3);

                    //CAMshift
                    CvInvoke.cvCamShift(backProject, trackWindow, new MCvTermCriteria(50, 0.1), out trackComp, out trackBox);
                    trackWindow = trackComp.rect;
                    if (trackWindow.Width < 5 || trackWindow.Height < 5)
                    {
                        if (trackWindow.Width < 5)
                        {
                            trackWindow.X = trackWindow.X + trackWindow.Width / 2 - 3;
                            trackWindow.Width = 6;
                        }
                        if (trackWindow.Height < 5)
                        {
                            trackWindow.Y = trackWindow.Y + trackWindow.Height / 2 - 3;
                            trackWindow.Height = 6;
                        }
                    }

                    Image<Bgr, Byte> showFrame = colorTemp;
                    showFrame.Draw(trackWindow, new Bgr(System.Drawing.Color.Blue), 2);

                    using (var stream = new MemoryStream())
                    {
                        showFrame.Bitmap.Save(stream, ImageFormat.Bmp);
                        trackingOut.BeginInit();
                        trackingOut.StreamSource = new MemoryStream(stream.ToArray());
                        trackingOut.EndInit();
                    }

                    //calculate the average depth of tracking object
                    int min = 65528, max = 0, num = 0;
                    UInt32 sum = 0;
                    for (int y = 0; y < trackWindow.Height; y++)
                    {
                        for (int x = 0; x < trackWindow.Width; x++)
                        {
                            int position = (trackWindow.X + x) + (trackWindow.Y + y) * 640;
                            ushort temp = (ushort)depthRemapData[position];
                            if (temp != 65528 && temp != 0)//black
                            {
                                if (temp < min)
                                    min = temp;
                                if (temp > max)
                                    max = temp;
                                sum += temp;
                                num++;
                            }
                        }
                    }
                    ushort average = 0;
                    if (num != 0)
                    {
                        average = (ushort)(sum / num);
                    }
                    //Int32 depthInches = (Int32)((average >> DepthImageFrame.PlayerIndexBitmaskWidth) * 0.0393700787);
                    //Int32 depthFt = depthInches / 12;
                    //depthInches = depthInches % 12;
                    Int32 depth = average >> DepthImageFrame.PlayerIndexBitmaskWidth;
                    textBlock1.Text = String.Format("{0}mm", depth);
                    Double distanceInMeter = (Double)depth / 1000;
                    Messenger.Default.Send<Double>(distanceInMeter, "Distance");
                }

                //if (rbtnColorFrame.IsChecked == true)
                //{
                    if (trackingFlag != 0)
                        image1.Source = trackingOut;
                    else
                        image1.Source = BitmapSource.Create(640, 480, 96, 96, PixelFormats.Bgr32, null, colorPixelData, 640 * 4);
                //    else
                //        imageOutputBig.Source = BitmapSource.Create(640, 480, 96, 96, PixelFormats.Bgr32, null, colorPixelData, 640 * 4);
                //    //imageOutputBig.Source = BitmapSource.Create(640, 480, 96, 96, PixelFormats.Gray8, null, backFrame, 640);
                //    imageOutputSmall.Source = BitmapSource.Create(640, 480, 96, 96, PixelFormats.Gray16, null, depthRemapData, 640 * 2);
                //}
                //else
                //{
                //    imageOutputSmall.Source = BitmapSource.Create(640, 480, 96, 96, PixelFormats.Bgr32, null, colorPixelData, 640 * 4);
                //    imageOutputBig.Source = BitmapSource.Create(640, 480, 96, 96, PixelFormats.Gray16, null, depthRemapData, 640 * 2);
                //}
                //if(CvInvoke.cvWaitKey(0)=='q')
                //{
                //    trackingFlag = 0;
                //}
            }
        }
示例#50
0
        public void Compute(Image <Bgr, Byte> image)
        {
            using (Image <Hsv, Byte> hsvImage = image.Convert <Hsv, byte>())
            {
                Image <Gray, Byte>[] channels = hsvImage.Split();

                Rectangle roi1      = new Rectangle(0, 0, image.Width / 2, image.Height / 2);
                Rectangle roi2      = new Rectangle(image.Width / 2, 0, image.Width / 2, image.Height / 2);
                Rectangle roi3      = new Rectangle(0, image.Height / 2, image.Width / 2, image.Height / 2);
                Rectangle roi4      = new Rectangle(image.Width / 2, image.Height / 2, image.Width / 2, image.Height / 2);
                Rectangle roiCenter = new Rectangle(image.Width / 4, image.Height / 4, image.Width / 2, image.Height / 2);

                DenseHistogram hist   = new DenseHistogram(64, new RangeF(0.0f, 255.0f));
                double         factor = 100.0;

                List <float> totalHist = new List <float>();
                for (int i = 0; i < channels.Length; ++i)
                {
                    float[] histRaw1      = new float[64];
                    float[] histRaw2      = new float[64];
                    float[] histRaw3      = new float[64];
                    float[] histRaw4      = new float[64];
                    float[] histRawCenter = new float[64];

                    Image <Gray, byte>[] tempImages = new Image <Gray, byte>[] { channels[i] };

                    // Top Left
                    channels[i].ROI = roi1;
                    hist.Calculate(tempImages, false, null);
                    hist.Normalize(factor);
                    hist.MatND.ManagedArray.CopyTo(histRaw1, 0);
                    totalHist.AddRange(histRaw1);

                    // Top Right
                    channels[i].ROI = roi2;
                    hist.Calculate(tempImages, false, null);
                    hist.Normalize(factor);
                    hist.MatND.ManagedArray.CopyTo(histRaw2, 0);
                    totalHist.AddRange(histRaw2);

                    // Bottom Left
                    channels[i].ROI = roi3;
                    hist.Calculate(tempImages, false, null);
                    hist.Normalize(factor);
                    hist.MatND.ManagedArray.CopyTo(histRaw3, 0);
                    totalHist.AddRange(histRaw3);

                    // Bottom Right
                    channels[i].ROI = roi4;
                    hist.Calculate(tempImages, false, null);
                    hist.Normalize(factor);
                    hist.MatND.ManagedArray.CopyTo(histRaw4, 0);
                    totalHist.AddRange(histRaw4);

                    // Center
                    channels[i].ROI = roiCenter;
                    hist.Calculate(tempImages, false, null);
                    hist.Normalize(factor);
                    hist.MatND.ManagedArray.CopyTo(histRawCenter, 0);
                    totalHist.AddRange(histRawCenter);

                    tempImages = null;
                }

                _descriptors = new Matrix <float>(totalHist.ToArray());
                _descriptors = _descriptors.Transpose();
            }
        }
示例#51
0
 public void SetHist(DenseHistogram hist)
 {
     Reset();
     _hist = hist;
     isTracked = true;
 }
示例#52
0
        //histogram match
        static bool HistogramMatch(Bitmap frame1, Bitmap frame2)
        {
            //convert bitmap to  temp "Image" for color processing by older version of emgucv
            Image <Bgr, byte> frame1_Image = new Image <Bgr, byte>(frame1);
            Image <Bgr, byte> frame2_Image = new Image <Bgr, byte>(frame2);

            //convert frames to HSV color space
            Image <Gray, byte> frame1_hist = new Image <Gray, byte>(f_width, f_height);
            Image <Gray, byte> frame2_hist = new Image <Gray, byte>(f_width, f_height);

            CvInvoke.cvCvtColor(frame1_Image, frame1_hist, COLOR_CONVERSION.BGR2GRAY);
            CvInvoke.cvCvtColor(frame2_Image, frame2_hist, COLOR_CONVERSION.BGR2GRAY);

            //dispose temp Image after color conversion
            frame1_Image.Dispose();
            frame2_Image.Dispose();


            #region Multi-dimentional hitogram (HSV channels)
            ////set histogram parameters

            /*int h_bins = 50; int s_bins = 60;
             * int[] histSize = { h_bins, s_bins };       //int histSize[] = { h_bins, s_bins };
             *
             * float[] h_ranges = { 0, 180 };
             * float[] s_ranges = { 0, 256 };
             *
             * //const float[] ranges = { h_ranges, s_ranges };
             * float[][] ranges = { h_ranges };*/


            //set histogram parameters

            /*int[] bins = {256, 256, 256};
             * RangeF r = new RangeF(0, 256);
             * RangeF[] ranges = {r, r, r};*/

            //DenseHistogram denseHist_frame1 = new DenseHistogram(bins, ranges);
            //DenseHistogram denseHist_frame2 = new DenseHistogram(bins, ranges);*
            #endregion

            #region Single-dimentional (Grayscale) histogram
            DenseHistogram denseHist_frame1 = new DenseHistogram(256, new RangeF(0.0f, 256.0f));
            DenseHistogram denseHist_frame2 = new DenseHistogram(256, new RangeF(0.0f, 256.0f));

            denseHist_frame1.Calculate(new Image <Gray, byte>[] { frame1_hist }, true, null);
            denseHist_frame2.Calculate(new Image <Gray, byte>[] { frame2_hist }, true, null);

            denseHist_frame1.Normalize(1);
            denseHist_frame2.Normalize(1);
            #endregion

            double histCompareRst = CvInvoke.cvCompareHist(denseHist_frame1, denseHist_frame2, HISTOGRAM_COMP_METHOD.CV_COMP_CORREL);

            float thresh_min = 0.2f;        //get unique keyframes
            float thresh_max = 0.997f;      //good for fast moving objects in video
            if (histCompareRst < 0.8f)
            {
                return(false);                       //not a match: likely different scenes
            }
            return(true);
        }
示例#53
0
        private int hack(DenseHistogram[] referenceHistogram, IEnumerable<DenseHistogram[]> testHistograms, HISTOGRAM_COMP_METHOD method, bool printHigh)
        {
            var comparisons = testHistograms.Select(x => GetHistogramComparison(x, referenceHistogram, method));
            var multiplied = comparisons.Select(x => Math.Abs(x[0] * x[1] * x[2]));

            var i = 0;
            foreach (var x in comparisons)
            {
                Console.WriteLine("{0,1}: {1:E4}   {2:E4}   {3:E4}    ---    {4:E4}", i, x[0], x[1], x[2], multiplied.ToList()[i]);
                i++;
            }

            var minAndMax = findMinAndMax(multiplied);
            return printHigh ? minAndMax[1] : minAndMax[0];
        }
示例#54
0
        public void run()
        {
            if (Thread.CurrentThread.Name.EndsWith("2"))
            {
                Thread.Sleep(10000);//MessageBox.Show("play " + Thread.CurrentThread.Name);// //
            }
            if (Thread.CurrentThread.Name.EndsWith("3"))
            {
                Thread.Sleep(23000); //MessageBox.Show("play " + Thread.CurrentThread.Name);// Thread.Sleep(5000);
            }
            try
            {
                //if (Thread.CurrentThread.Name.Equals("camera2"))
                //    Thread.Sleep(1000);
                switch (camno)
                {
                case 1:
                    break;

                case 2:
                    break;

                case 3:
                    break;

                default:
                    break;
                }

                //Thread Processing
                while ((currImage = cap.QueryFrame()) != null)
                {
                    //### updating the currImage every time
                    currImage = currImage.Resize(pictureBox1.Width, pictureBox1.Height, Emgu.CV.CvEnum.INTER.CV_INTER_LINEAR);
                    //### Background Subtraction ~ currImage is subtracted with the bgImage and the result is stored in finalBlobImg.


                    switch (this.state)
                    {
                    case "BGSUB":

                        // Console.WriteLine("_________________");

                        if (!Main.tracking)    //&& Main.lasttrack!=camno
                        {
                            Console.WriteLine("###########" + Thread.CurrentThread.Name + "starts BGSUB");
                            blobDistanceList = bgSubtraction(currImage, bgImage, ref finalBlobImg, ref blobRect);

                            if (blobDistanceList != null)
                            {
                                foreach (Blob blob in blobDistanceList)
                                {
                                    //Console.WriteLine("Blob::" + blob.distance + " " + blob.rect);
                                    if (blob.distance < Main.Dis)     //set the tracker to cam with same object //&& Main.lasttrack!=camno
                                    {
                                        track_window_mean = blob.rect;
                                        if (blob.rect.Width < 50)
                                        {
                                            track_window_mean.Width = 60;
                                        }
                                        else
                                        {
                                            track_window_mean.Width = blob.rect.Width;
                                        }

                                        if (blob.rect.Width + blob.rect.X > 319)
                                        {
                                            track_window_mean.X     = track_window_mean.X - 10;
                                            track_window_mean.Width = 40;
                                        }
                                        if (blob.rect.Height + blob.rect.Y > 239)
                                        {
                                            track_window_mean.Height = track_window_mean.Height - 20;
                                        }
                                        if (blob.rect.Y == 0)
                                        {
                                            track_window_mean.Y = blob.rect.Y + 15;
                                        }

                                        //Console.WriteLine("Blob::::::::" + blob.distance + " " + blob.rect);
                                        Main.lasttrack = camno;
                                        Main.tracking  = true;
                                        state          = "TRACK";
                                        Console.WriteLine("###########" + Thread.CurrentThread.Name + "starts TRACK");
                                        break;
                                    }
                                }
                            }
                        }

                        break;

                    case "TRACK":

                        blobDistanceList = bgSubtraction(currImage, bgImage, ref finalBlobImg, ref blobRect);
                        //--------------
                        foreach (Blob blob in blobDistanceList)
                        {
                            Console.WriteLine("Tracking Blob== " + blob.distance + " " + blob.rect);
                        }
                        Console.WriteLine("----");
                        //-------------

                        Image <Hsv, Byte> hsv = new Image <Hsv, Byte>(w, h);
                        hsv = currImage.Convert <Hsv, Byte>();
                        Console.WriteLine("1");
                        //extract the hue and value channels
                        Image <Gray, Byte>[] channels = hsv.Split();                                         //split into components
                        Image <Gray, Byte>[] imghue   = new Image <Gray, byte> [1]; imghue[0] = channels[0]; //hsv, so channels[0] is hue.
                        Image <Gray, Byte>   imgval   = channels[2];                                         //hsv, so channels[2] is value.
                        Image <Gray, Byte>   imgsat   = channels[1];                                         //hsv, so channels[1] is saturation.

                        mask = new Image <Gray, Byte>(w, h);
                        Hsv hsv_lower = new Hsv(0, smin, Math.Min(vmin, vmax));
                        Hsv hsv_upper = new Hsv(180, 256, Math.Max(vmin, vmax));
                        mask = hsv.InRange(hsv_lower, hsv_upper);

                        Image <Gray, Byte> backproject = Main.hist.BackProject(imghue);

                        mask        = mask.And(finalBlobImg.Dilate(2));
                        backproject = mask.And(backproject);
                        MCvConnectedComp trac_comp = new MCvConnectedComp();
                        //Console.WriteLine("2");
                        MCvTermCriteria criteria_mean = new MCvTermCriteria(100, 0.002);
                        pictureBox2.Image = mask.Bitmap;
                        //Console.WriteLine(criteria_mean.GetType);
                        try
                        {
                            Emgu.CV.CvInvoke.cvMeanShift(backproject, track_window_mean, criteria_mean, out trac_comp);
                        }
                        catch (CvException e)
                        {
                            Console.WriteLine(track_window_mean);
                            MessageBox.Show(e.ToString());
                        }
                        // Console.WriteLine("3");

                        currImage.Draw(trac_comp.rect, new Bgr(255, 0, 0), 2);
                        currImage.Draw(new Cross2DF(new PointF((trac_comp.rect.X + trac_comp.rect.Width / 2), (trac_comp.rect.Y + trac_comp.rect.Height / 2)), 20, 20), new Bgr(255, 255, 255), 2);
                        track_window_mean = trac_comp.rect;

                        //check person left the view
                        Image <Gray, byte> subImgBg = bgImgGy.GetSubRect(trac_comp.rect);
                        Image <Gray, byte> subImgFg = currImgGy.GetSubRect(trac_comp.rect);
                        Image <Gray, byte> imMask   = subImgFg.AbsDiff(subImgBg);
                        Gray cnt = imMask.GetAverage();
                        if (cnt.Intensity < 10)
                        {
                            Main.lasttrack = camno;
                            Main.tracking  = false;
                            state          = "BGSUB";
                            Console.WriteLine("###########" + Thread.CurrentThread.Name + "switches to BGSUB");
                        }
                        //---------------------------
                        outimage = new Image <Gray, byte>(w, h);
                        for (int i = 0; i < trac_comp.rect.Height; i++)
                        {
                            for (int j = 0; j < trac_comp.rect.Width; j++)
                            {
                                //subImgFg.Data[i, j, 0] = 255;
                                if (imMask.Data[i, j, 0] < Main.ThSub)
                                {
                                    imMask.Data[i, j, 0] = 0;
                                    outimage.Data[i + trac_comp.rect.Y, j + trac_comp.rect.X, 0] = 0;
                                }
                                else
                                {
                                    imMask.Data[i, j, 0] = 255;
                                    outimage.Data[i + trac_comp.rect.Y, j + trac_comp.rect.X, 0] = 255;
                                }
                            }
                            //Console.WriteLine();
                        }

                        outimage._Erode(2);
                        outimage._Dilate(3);
                        try
                        {
                            Image <Bgr, byte> subimg = currImage.And((outimage.Convert <Bgr, Byte>())).GetSubRect(trac_comp.rect);
                            //subimg.GetSubRect(subrect);//.Save(Thread.CurrentThread.Name + "\\" + k++ + ".jpg");

                            //Calc HISTOGRAM of each blob

                            DenseHistogram    histBlob = new DenseHistogram(hdims, hranges); //cvCreateHist(1, &hdims, CV_HIST_ARRAY, &hranges, 1);
                            Image <Hsv, byte> hsvBlob  = subimg.Convert <Hsv, byte>();

                            //extract the hue and value channels
                            Image <Gray, Byte>[] channelsBlob = hsvBlob.Split();                                             //split into components
                            Image <Gray, Byte>[] imghueBlob   = new Image <Gray, byte> [1]; imghueBlob[0] = channelsBlob[0]; //hsv, so channels[0] is hue.

                            Image <Gray, Byte> maskBlob = hsvBlob.InRange(hsv_lower, hsv_upper);

                            histBlob.Calculate(imghueBlob, false, maskBlob);

                            double distance = CvInvoke.cvCompareHist(Main.hist.Ptr, histBlob.Ptr, Emgu.CV.CvEnum.HISTOGRAM_COMP_METHOD.CV_COMP_BHATTACHARYYA);
                            //if (distance < 0.15)
                            //{
                            //  //  Main.hist = histBlob;
                            //    Console.WriteLine(Thread.CurrentThread.Name + " ===== " + distance);
                            //}
                        }

                        catch (CvException cve)
                        {
                            MessageBox.Show(cve.StackTrace);
                        }
                        //---------------------------

                        //pictureBox2.Image = mask.Bitmap;
                        //pictureBox3.Image = mask.And(finalBlobImg).Bitmap;
                        break;
                    }
                    pictureBox1.Image = currImage.Bitmap;


                    Thread.Sleep(20);
                }
                Console.WriteLine("###########" + Thread.CurrentThread.Name + " exited");
            }catch (CvException e)
            {}
        }
示例#55
0
        public static Image <Bgr, Byte> Draw2DHisImg(Image <Bgr, Byte> srcImage, int h_bins, int s_bins)
        {
            DenseHistogram histDense = Cal2DHsvHist(srcImage, h_bins, s_bins);

            return(draw2DHistImg(histDense, 466, 72));
        }
示例#56
0
        /// <summary>
        /// Recognize gesture.
        /// </summary>
        /// <param name="contour">Hand contour</param>
        /// <param name="fingersCount">Number of fingers</param>
        /// <returns>Gesture (if any)</returns>
        public Gesture RecognizeGesture(Image <Gray, byte> contour, int fingersCount)
        {
            List <Gesture> recognizedGestures = new List <Gesture>(Gestures);

            Gesture bestFit = new Gesture();

            bestFit.RecognizedData.ContourMatch   = 999;
            bestFit.RecognizedData.HistogramMatch = 999;

            foreach (var g in recognizedGestures)
            {
                if (g.FingersCount != fingersCount)
                {
                    continue;
                }

                using (MemStorage storage = new MemStorage())
                {
                    Contour <Point> c1 = contour.FindContours(CHAIN_APPROX_METHOD.CV_CHAIN_APPROX_SIMPLE,
                                                              RETR_TYPE.CV_RETR_LIST, storage);
                    Contour <Point> c2 = g.Image.FindContours(CHAIN_APPROX_METHOD.CV_CHAIN_APPROX_SIMPLE,
                                                              RETR_TYPE.CV_RETR_LIST, storage);

                    if (c1 != null && c2 != null)
                    {
                        DenseHistogram hist1 = new DenseHistogram(new int[2] {
                            8, 8
                        }, new RangeF[2] {
                            new RangeF(-180, 180), new RangeF(100, 100)
                        });
                        DenseHistogram hist2 = new DenseHistogram(new int[2] {
                            8, 8
                        }, new RangeF[2] {
                            new RangeF(-180, 180), new RangeF(100, 100)
                        });

                        CvInvoke.cvCalcPGH(c1, hist1.Ptr);
                        CvInvoke.cvCalcPGH(c2, hist2.Ptr);
                        CvInvoke.cvNormalizeHist(hist1.Ptr, 100.0);
                        CvInvoke.cvNormalizeHist(hist2.Ptr, 100.0);

                        g.RecognizedData.Hand           = Hand;
                        g.RecognizedData.HistogramMatch = CvInvoke.cvCompareHist(hist1, hist2, HISTOGRAM_COMP_METHOD.CV_COMP_BHATTACHARYYA);
                        g.RecognizedData.ContourMatch   = CvInvoke.cvMatchShapes(c1, c2, CONTOURS_MATCH_TYPE.CV_CONTOURS_MATCH_I3, 0);

                        double rating    = g.RecognizedData.ContourMatch * g.RecognizedData.HistogramMatch;
                        double bestSoFar = bestFit.RecognizedData.ContourMatch * bestFit.RecognizedData.HistogramMatch;

                        if (rating < bestSoFar)
                        {
                            bestFit = g;
                        }
                    }
                }
            }

            // Reliable, but strict: 0.01, 0.80, 0.20
            if (bestFit.RecognizedData.ContourMatch * bestFit.RecognizedData.HistogramMatch <= 0.0125 &&
                bestFit.RecognizedData.ContourMatch <= 0.80 &&
                bestFit.RecognizedData.HistogramMatch <= 0.20)
            {
                return(bestFit);
            }
            else
            {
                return(null);
            }
        }
        public void Detection()
        {
            try
            {
                check = comp1;
                for (int i = 0; i < dt.Rows.Count; i++)
                {
                    capturedImg = new Image <Gray, byte>(pbDetectedFace.Image.Bitmap);
                    DBImg       = new Image <Gray, byte>((dt.Rows[i].ItemArray[0]).ToString());

                    hist1 = new DenseHistogram(256, new RangeF(0.0f, 255.0f));
                    hist2 = new DenseHistogram(256, new RangeF(0.0f, 255.0f));

                    hist1.Calculate(new Image <Gray, byte>[] { capturedImg }, false, null);
                    hist2.Calculate(new Image <Gray, byte>[] { DBImg }, false, null);

                    mat1 = new Mat();
                    hist1.CopyTo(mat1);
                    mat2 = new Mat();
                    hist2.CopyTo(mat2);

                    //float[] histFloat = new float[256];
                    //hist1.CopyTo(histFloat);

                    //float[] hist2Float = new float[256];
                    //hist2.CopyTo(hist2Float);

                    //double count1 = 0, count2 = 0;
                    //for (int j = 0; j < 256; j++)
                    //{
                    //    count1 += histFloat[j];
                    //    count2 += hist2Float[j];
                    //}

                    //unsafe
                    //{
                    //    fixed (char* ch = (dt.Rows[i].ItemArray[0]).ToString().ToCharArray())
                    //    {
                    //        fixed (char* ch2 = (dt.Rows[i].ItemArray[0]).ToString().ToCharArray())
                    //        {
                    //            OpenCVWrapper.OpencvWrapperClass obj = new OpencvWrapperClass();
                    //            sbyte* pic1 = (sbyte*)ch2;
                    //            sbyte* pic2 = (sbyte*)ch;
                    //            comp1=obj.CompareHistogram(pic1, pic2);
                    //        }
                    //    }
                    //}

                    comp1 = CvInvoke.CompareHist(mat1, mat2, Emgu.CV.CvEnum.HistogramCompMethod.Correl);
                    if (comp1 > check && comp1 < 0.40 && comp1 > 0.221)
                    {
                        check = comp1;
                        index = i;
                    }
                }
                MessageBox.Show(check + " " + index.ToString());
            }
            catch (IndexOutOfRangeException index)
            {
                MessageBox.Show(index.Message);
            }
            catch (Exception ee)
            {
                MessageBox.Show(ee.Message);
            }
        }
示例#58
0
文件: Form1.cs 项目: CR-Ko/testFilter
 public DenseHistogram GetHistogram(Image<Gray, Byte> image)
 {
     //Create a histogram
     DenseHistogram histogram =
         new DenseHistogram(
             256,               //number of bins
             new RangeF(0, 255) //pixel value range
             );
     //Compute histogram
     histogram.Calculate(
         new Image<Gray, Byte>[] { image }, //input image
         true, //If it is true, the histogram is not cleared in the beginning
         null  //no mask is used
         );
     float[] grayHist = new float[256]; //the resulting histogram array
     histogram.MatND.ManagedArray.CopyTo(grayHist, 0); //copy array
     //Loop over each bin
     for (int i = 0; i < 256; i++)
     {
         Console.WriteLine("value " + i + " = " + grayHist[i]);
     }
     return histogram;
 }
示例#59
0
        /// <summary>
        /// Generate histograms for the image. One histogram is generated for each color channel.
        /// You will need to call the Refresh function to do the painting afterward.
        /// </summary>
        /// <param name="image">The image to generate histogram from</param>
        /// <param name="numberOfBins">The number of bins for each histogram</param>
        public void GenerateHistograms(IImage image, int numberOfBins)
        {
            IImage[] channels;
            Type     imageType;

            if ((imageType = Toolbox.GetBaseType(image.GetType(), "Image`2")) != null)
            {
                channels = image.Split();
            }
            else if ((imageType = Toolbox.GetBaseType(image.GetType(), "GpuImage`2")) != null)
            {
                IImage img = imageType.GetMethod("ToImage").Invoke(image, null) as IImage;
                channels = img.Split();
            }
            else
            {
                throw new ArgumentException("The input image type of {0} is not supported", image.GetType().ToString());
            }

            IColor typeOfColor = Activator.CreateInstance(imageType.GetGenericArguments()[0]) as IColor;

            String[] channelNames = Reflection.ReflectColorType.GetNamesOfChannels(typeOfColor);
            Color[]  colors       = Reflection.ReflectColorType.GetDisplayColorOfChannels(typeOfColor);

            float minVal, maxVal;

            #region Get the maximum and minimum color intensity values
            Type typeOfDepth = imageType.GetGenericArguments()[1];
            if (typeOfDepth == typeof(Byte))
            {
                minVal = 0.0f;
                maxVal = 256.0f;
            }
            else
            {
                #region obtain the maximum and minimum color value
                double[] minValues, maxValues;
                Point[]  minLocations, maxLocations;
                image.MinMax(out minValues, out maxValues, out minLocations, out maxLocations);

                double min = minValues[0], max = maxValues[0];
                for (int i = 1; i < minValues.Length; i++)
                {
                    if (minValues[i] < min)
                    {
                        min = minValues[i];
                    }
                    if (maxValues[i] > max)
                    {
                        max = maxValues[i];
                    }
                }
                #endregion

                minVal = (float)min;
                maxVal = (float)max;
            }
            #endregion

            for (int i = 0; i < channels.Length; i++)
            {
                using (DenseHistogram hist = new DenseHistogram(numberOfBins, new RangeF(minVal, maxVal)))
                {
                    hist.Calculate(new IImage[1] {
                        channels[i]
                    }, true, null);
                    AddHistogram(channelNames[i], colors[i], hist);
                }
            }
        }
示例#60
-1
    private Image<Gray, Byte> GetBackproject(Image<Gray, Byte> hue, DenseHistogram _hist,Image<Gray,Byte> mask,Rectangle hide)
    {
        Image<Gray, Byte> backproject = new Image<Gray, byte>(hue.Width, hue.Height);
        var imgs = new IntPtr[1] { hue };
        Emgu.CV.CvInvoke.cvCalcBackProject(imgs, backproject, _hist);
        Emgu.CV.CvInvoke.cvAnd(backproject, mask, backproject, IntPtr.Zero);

        if (th_check)
        {
            backproject.ROI = face_rect;
            if (backproject.GetAverage().Intensity < backproj_threshold/2)
            {
                isTracked = false;
            }
            th_check = false;
            Emgu.CV.CvInvoke.cvResetImageROI(backproject);
        }

        hide.Height += 50;
        Emgu.CV.CvInvoke.cvSetImageROI(backproject, hide);
        try
        {
            Emgu.CV.CvInvoke.cvZero(backproject);
        }
        catch { }
        Emgu.CV.CvInvoke.cvResetImageROI(backproject);

        return backproject;
    }