/// <summary> /// Densely-connected layer class. aka fully-connected<br></br> /// `outputs = activation(inputs * kernel + bias)` /// </summary> /// <param name="inputs"></param> /// <param name="units">Python integer, dimensionality of the output space.</param> /// <param name="activation"></param> /// <param name="use_bias">Boolean, whether the layer uses a bias.</param> /// <param name="kernel_initializer"></param> /// <param name="bias_initializer"></param> /// <param name="trainable"></param> /// <param name="name"></param> /// <param name="reuse"></param> /// <returns></returns> public Tensor dense(Tensor inputs, int units, Activation activation = null, bool use_bias = true, IInitializer kernel_initializer = null, IInitializer bias_initializer = null, bool trainable = true, string name = null, bool?reuse = null) { if (bias_initializer == null) { bias_initializer = tf.zeros_initializer; } var layer = new Dense(new DenseArgs { Units = units, Activation = activation, UseBias = use_bias, BiasInitializer = bias_initializer, KernelInitializer = kernel_initializer, Trainable = trainable, Name = name }); return(layer.Apply(inputs)); }