public static void UnregisterTextInput() { _variable = null; KeyGrabber.InboundCharEvent -= ProcessInput; KeyGrabber.UnregisterMessageFilter(); _recievingRawInput = false; }
public MyVariable(Data.Variable var, Type type) : base(var.Type, var.Name, var.Relation) { this.type = type; this.objectName = var.Type; this.alias = string.Empty; this.isList = false; }
public static void RegisterTextInput(Data.Variable variable) { _variable = variable; KeyGrabber.InboundCharEvent += ProcessInput; KeyGrabber.RegisterMessageFilter(); _recievingRawInput = true; }
private static void ProcessInput(char input) { //Only append characters that exist in the spritefont. if (input == 13) { try { var method = EngineGlobals.GenerateMethodFromString( _variable.AsString.Replace(' ',';')); method.ExecuteMethod(null); ConsoleWindow.WriteLine("Executing..."); } catch(EngineException ex) { ConsoleWindow.WriteLine("Warning: {0}", ex.Message); } _variable.AsString = ""; return; } if (input < 32 && input > 9) return; if (input > 126) return; if (input == 8) { if (_variable.AsString.Length > 0) _variable.AsString = _variable.AsString.Substring(0, _variable.AsString.Length - 1); } else _variable += input; }
/// <summary> /// Connectionist Temporal Classification is a loss function useful for performing supervised learning on sequence data, without needing an alignment between input data and labels. For example, CTC can be used to train end-to-end systems for speech recognition /// </summary> protected static Data.Function ConnectionistTemporalClassificationFunction(Data.Variable labels, Data.Variable predictions) { return(CNTKLib.EditDistanceError(predictions, labels, 0, 1, 1, true, new SizeTVector(1) { (uint)labels.Shape.TotalSize })); }
/// <summary> /// Tops the k accuracy. /// </summary> private static Function TopKAccuracyFunction(Data.Variable labels, Data.Variable predictions, uint k) { return((Data.Constant) 1f - (Data.Function)CNTKLib.ClassificationError(predictions, labels, k)); }
public static void UnregisterTextInput() { _variable = null; _recievingRawInput = false; }
public static void RegisterTextInput(Data.Variable variable) { _variable = variable; _recievingRawInput = true; }
/// <summary> /// Binaries the cross entropy. /// </summary> protected static Data.Function BinaryCrossEntropyFunction(Data.Variable labels, Data.Variable predictions) { return(CNTKLib.BinaryCrossEntropy(predictions, labels)); }
/// <summary> /// Crosses the entropy. /// </summary> protected static Data.Function CrossEntropyFunction(Data.Variable labels, Data.Variable predictions) { return(CNTKLib.CrossEntropyWithSoftmax(predictions, labels)); }
/// <summary> /// Sparses the cross entropy. /// </summary> protected static Data.Function SparseCrossEntropyFunction(Data.Variable labels, Data.Variable predictions) { return(CNTKLib.CrossEntropyWithSoftmax(predictions, CNTKLib.Reshape(labels, new[] { labels.Shape.TotalSize }))); }